Self-Hybridized Polaritonic Emission from Layered Perovskites

Light–matter coupling in excitonic materials has been the subject of intense recent investigations due to emergence of new materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room temperature with some of the highest oscillator streng...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 21; no. 14; pp. 6245 - 6252
Main Authors Anantharaman, Surendra B, Stevens, Christopher E, Lynch, Jason, Song, Baokun, Hou, Jin, Zhang, Huiqin, Jo, Kiyoung, Kumar, Pawan, Blancon, Jean-Christophe, Mohite, Aditya D, Hendrickson, Joshua R, Jariwala, Deep
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.07.2021
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
1530-6992
DOI10.1021/acs.nanolett.1c02058

Cover

Loading…
Abstract Light–matter coupling in excitonic materials has been the subject of intense recent investigations due to emergence of new materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room temperature with some of the highest oscillator strengths and electric loss tangents among the known excitonic materials. Here, we report strong light–matter coupling in Ruddlesden–Popper phase 2D HOIP crystals without the necessity of an external cavity. We report the concurrent occurrence of multiple orders of hybrid light–matter states via both reflectance and luminescence spectroscopy in thick (>100 nm) crystals and near-unity absorption in thin (<20 nm) crystals. We observe resonances with quality factors of >250 in hybridized exciton-polaritons and identify a linear correlation between exciton-polariton mode splitting and extinction coefficient of the various 2D HOIPs. Our work opens the door to studying polariton dynamics in self-hybridized and open cavity systems with broad applications in optoelectronics and photochemistry.
AbstractList Light–matter coupling in excitonic materials has been the subject of intense recent investigations due to emergence of new materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room temperature with some of the highest oscillator strengths and electric loss tangents among the known excitonic materials. Here, we report strong light–matter coupling in Ruddlesden–Popper phase 2D HOIP crystals without the necessity of an external cavity. We report the concurrent occurrence of multiple orders of hybrid light–matter states via both reflectance and luminescence spectroscopy in thick (>100 nm) crystals and near-unity absorption in thin (<20 nm) crystals. We observe resonances with quality factors of >250 in hybridized exciton-polaritons and identify a linear correlation between exciton-polariton mode splitting and extinction coefficient of the various 2D HOIPs. Our work opens the door to studying polariton dynamics in self-hybridized and open cavity systems with broad applications in optoelectronics and photochemistry.
Light-matter coupling in excitonic materials has been the subject of intense recent investigations due to emergence of new materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room temperature with some of the highest oscillator strengths and electric loss tangents among the known excitonic materials. Here, we report strong light-matter coupling in Ruddlesden-Popper phase 2D HOIP crystals without the necessity of an external cavity. We report the concurrent occurrence of multiple orders of hybrid light-matter states via both reflectance and luminescence spectroscopy in thick (>100 nm) crystals and near-unity absorption in thin (<20 nm) crystals. We observe resonances with quality factors of >250 in hybridized exciton-polaritons and identify a linear correlation between exciton-polariton mode splitting and extinction coefficient of the various 2D HOIPs. Our work opens the door to studying polariton dynamics in self-hybridized and open cavity systems with broad applications in optoelectronics and photochemistry.Light-matter coupling in excitonic materials has been the subject of intense recent investigations due to emergence of new materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room temperature with some of the highest oscillator strengths and electric loss tangents among the known excitonic materials. Here, we report strong light-matter coupling in Ruddlesden-Popper phase 2D HOIP crystals without the necessity of an external cavity. We report the concurrent occurrence of multiple orders of hybrid light-matter states via both reflectance and luminescence spectroscopy in thick (>100 nm) crystals and near-unity absorption in thin (<20 nm) crystals. We observe resonances with quality factors of >250 in hybridized exciton-polaritons and identify a linear correlation between exciton-polariton mode splitting and extinction coefficient of the various 2D HOIPs. Our work opens the door to studying polariton dynamics in self-hybridized and open cavity systems with broad applications in optoelectronics and photochemistry.
Not provided.
Author Lynch, Jason
Song, Baokun
Blancon, Jean-Christophe
Hou, Jin
Mohite, Aditya D
Kumar, Pawan
Jo, Kiyoung
Hendrickson, Joshua R
Stevens, Christopher E
Jariwala, Deep
Anantharaman, Surendra B
Zhang, Huiqin
AuthorAffiliation Department of Materials Science and Nanoengineering
Department of Chemical and Biomolecular Engineering
Department of Electrical and Systems Engineering
Rice University
AuthorAffiliation_xml – name: Department of Materials Science and Nanoengineering
– name: Department of Electrical and Systems Engineering
– name: Department of Chemical and Biomolecular Engineering
– name: Rice University
Author_xml – sequence: 1
  givenname: Surendra B
  orcidid: 0000-0002-1882-5540
  surname: Anantharaman
  fullname: Anantharaman, Surendra B
  organization: Department of Electrical and Systems Engineering
– sequence: 2
  givenname: Christopher E
  surname: Stevens
  fullname: Stevens, Christopher E
– sequence: 3
  givenname: Jason
  surname: Lynch
  fullname: Lynch, Jason
  organization: Department of Electrical and Systems Engineering
– sequence: 4
  givenname: Baokun
  surname: Song
  fullname: Song, Baokun
  organization: Department of Electrical and Systems Engineering
– sequence: 5
  givenname: Jin
  surname: Hou
  fullname: Hou, Jin
  organization: Rice University
– sequence: 6
  givenname: Huiqin
  surname: Zhang
  fullname: Zhang, Huiqin
  organization: Department of Electrical and Systems Engineering
– sequence: 7
  givenname: Kiyoung
  orcidid: 0000-0003-4587-234X
  surname: Jo
  fullname: Jo, Kiyoung
  organization: Department of Electrical and Systems Engineering
– sequence: 8
  givenname: Pawan
  orcidid: 0000-0002-5764-2915
  surname: Kumar
  fullname: Kumar, Pawan
  organization: Department of Electrical and Systems Engineering
– sequence: 9
  givenname: Jean-Christophe
  surname: Blancon
  fullname: Blancon, Jean-Christophe
  organization: Rice University
– sequence: 10
  givenname: Aditya D
  orcidid: 0000-0001-8865-409X
  surname: Mohite
  fullname: Mohite, Aditya D
  organization: Rice University
– sequence: 11
  givenname: Joshua R
  orcidid: 0000-0002-5342-0346
  surname: Hendrickson
  fullname: Hendrickson, Joshua R
– sequence: 12
  givenname: Deep
  orcidid: 0000-0002-3570-8768
  surname: Jariwala
  fullname: Jariwala, Deep
  email: dmj@seas.upenn.edu
  organization: Department of Electrical and Systems Engineering
BackLink https://www.osti.gov/biblio/1848909$$D View this record in Osti.gov
BookMark eNqFkM1KAzEURoNUsFbfwEVx5WbqTTKZH8GFlGqFgoK6DumdDKZOk5qkQn16U1pduNDVDdzvJF_OMelZZzUhZxRGFBi9VBhGVlnX6RhHFIGBqA5InwoOWVHXrPdzrvIjchzCAgBqLqBPrp9012bTzdybxnzqZvjoOuVNdNbgcLI0IRhnh613y-FMbbTfJrR3H-HNRB1OyGGruqBP93NAXm4nz-NpNnu4ux_fzDLFBYtZJfKSISiOgKoQWFJUnEFDecN1W84BGsFYXSvFFOd5wbFo2hJ1WzXlHEXJB-R8d68L0ciA6W18RWetxihplVd1-s6AXOxCK-_e1zpEmeqj7jpltVsHyYRgUEBZFCma76LoXQhet3LlzVL5jaQgt0plUiq_lcq90oRd_cJSExWToeiV6f6DYQdvtwu39jYZ-xv5Am40lA0
CitedBy_id crossref_primary_10_1021_acsami_4c06916
crossref_primary_10_3390_ijms23136943
crossref_primary_10_1021_acs_nanolett_2c02729
crossref_primary_10_1016_j_matt_2024_11_023
crossref_primary_10_1021_acsnano_4c05043
crossref_primary_10_1007_s11467_023_1347_6
crossref_primary_10_1021_acsnano_2c12546
crossref_primary_10_1021_acs_nanolett_4c00418
crossref_primary_10_1038_s41467_022_33088_0
crossref_primary_10_1126_sciadv_adq5521
crossref_primary_10_1038_s44160_023_00422_3
crossref_primary_10_1021_acsnano_2c04833
crossref_primary_10_1021_acs_jpclett_2c01792
crossref_primary_10_1021_acs_jpcc_2c01577
crossref_primary_10_1021_acsphotonics_4c00824
crossref_primary_10_1021_acs_nanolett_5c00399
crossref_primary_10_1515_nanoph_2023_0830
crossref_primary_10_1002_pssr_202300221
crossref_primary_10_1021_acs_jpcc_1c06377
crossref_primary_10_1103_PhysRevLett_129_177401
crossref_primary_10_1063_5_0101317
crossref_primary_10_1103_PhysRevB_106_205401
crossref_primary_10_1038_s41566_024_01590_0
crossref_primary_10_1038_s41467_022_34987_y
crossref_primary_10_1021_acs_nanolett_1c04764
crossref_primary_10_1038_s41377_023_01334_9
Cites_doi 10.1021/acs.nanolett.6b01914
10.1038/nmat3443
10.1021/acs.nanolett.6b04659
10.1002/adom.202000176
10.1038/ncomms13078
10.1002/adma.201903030
10.1021/nl303086r
10.1021/acsphotonics.0c00038
10.1039/C2CS35335K
10.1038/s41565-020-00811-1
10.1038/s41467-020-17313-2
10.1021/acsnano.8b03737
10.1038/s41586-020-2621-1
10.1021/acsmaterialslett.0c00505
10.1038/s41467-021-21539-z
10.1021/acsnano.1c00708
10.1021/acs.nanolett.0c01364
10.1038/nmat4940
10.1002/adsu.201700106
10.1073/pnas.1816251115
10.21203/rs.3.rs-361585/v1
10.1103/PhysRevLett.79.5170
10.1126/sciadv.aav9967
10.1063/1.2369533
10.1039/C9TC04773E
10.1103/PhysRevB.86.205301
10.1038/nnano.2013.99
10.1088/1367-2630/10/6/065007
10.1126/sciadv.aay4900
10.1021/acsami.9b19968
10.1038/s41467-018-04659-x
10.1364/OL.40.003424
10.1021/acs.nanolett.6b03086
10.1002/adfm.201806997
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
CorporateAuthor Rice Univ., Houston, TX (United States)
CorporateAuthor_xml – name: Rice Univ., Houston, TX (United States)
DBID AAYXX
CITATION
7X8
OTOTI
DOI 10.1021/acs.nanolett.1c02058
DatabaseName CrossRef
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1530-6992
EndPage 6252
ExternalDocumentID 1848909
10_1021_acs_nanolett_1c02058
c714976130
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
7X8
OTOTI
ID FETCH-LOGICAL-a352t-85472c0a3c0ca65c71ca320d13d3ef7b00d52299aa2a33463c6df7cef8d7bc573
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri May 19 00:47:17 EDT 2023
Thu Jul 10 18:41:40 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Tue Jul 01 04:09:54 EDT 2025
Fri Jul 30 07:10:20 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Hybrid states
Polaritons
Boser action
Rabi splitting
Ruddlesden−Popper perovskites
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a352t-85472c0a3c0ca65c71ca320d13d3ef7b00d52299aa2a33463c6df7cef8d7bc573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
EE0008843
ORCID 0000-0001-8865-409X
0000-0002-3570-8768
0000-0003-4587-234X
0000-0002-5764-2915
0000-0002-5342-0346
0000-0002-1882-5540
000000034587234X
0000000218825540
000000018865409X
0000000253420346
0000000257642915
0000000235708768
PQID 2552060766
PQPubID 23479
PageCount 8
ParticipantIDs osti_scitechconnect_1848909
proquest_miscellaneous_2552060766
crossref_primary_10_1021_acs_nanolett_1c02058
crossref_citationtrail_10_1021_acs_nanolett_1c02058
acs_journals_10_1021_acs_nanolett_1c02058
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-28
PublicationDateYYYYMMDD 2021-07-28
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1021/acs.nanolett.6b01914
– ident: ref12/cit12
  doi: 10.1038/nmat3443
– ident: ref28/cit28
  doi: 10.1021/acs.nanolett.6b04659
– ident: ref10/cit10
  doi: 10.1002/adom.202000176
– ident: ref5/cit5
  doi: 10.1038/ncomms13078
– ident: ref34/cit34
  doi: 10.1002/adma.201903030
– ident: ref3/cit3
  doi: 10.1021/nl303086r
– ident: ref32/cit32
  doi: 10.1021/acsphotonics.0c00038
– ident: ref1/cit1
  doi: 10.1039/C2CS35335K
– ident: ref7/cit7
  doi: 10.1038/s41565-020-00811-1
– ident: ref16/cit16
  doi: 10.1038/s41467-020-17313-2
– ident: ref18/cit18
  doi: 10.1021/acsnano.8b03737
– ident: ref33/cit33
  doi: 10.1038/s41586-020-2621-1
– ident: ref8/cit8
  doi: 10.1021/acsmaterialslett.0c00505
– ident: ref29/cit29
  doi: 10.1038/s41467-021-21539-z
– ident: ref14/cit14
  doi: 10.1021/acsnano.1c00708
– ident: ref31/cit31
  doi: 10.1021/acs.nanolett.0c01364
– ident: ref6/cit6
  doi: 10.1038/nmat4940
– ident: ref15/cit15
  doi: 10.1002/adsu.201700106
– ident: ref21/cit21
  doi: 10.1073/pnas.1816251115
– ident: ref22/cit22
  doi: 10.21203/rs.3.rs-361585/v1
– ident: ref11/cit11
  doi: 10.1103/PhysRevLett.79.5170
– ident: ref9/cit9
  doi: 10.1126/sciadv.aav9967
– ident: ref19/cit19
  doi: 10.1063/1.2369533
– ident: ref24/cit24
  doi: 10.1039/C9TC04773E
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.86.205301
– ident: ref4/cit4
  doi: 10.1038/nnano.2013.99
– ident: ref20/cit20
  doi: 10.1088/1367-2630/10/6/065007
– ident: ref30/cit30
  doi: 10.1126/sciadv.aay4900
– ident: ref17/cit17
  doi: 10.1021/acsami.9b19968
– ident: ref25/cit25
  doi: 10.1038/s41467-018-04659-x
– ident: ref27/cit27
  doi: 10.1364/OL.40.003424
– ident: ref2/cit2
  doi: 10.1021/acs.nanolett.6b03086
– ident: ref23/cit23
  doi: 10.1002/adfm.201806997
SSID ssj0009350
Score 2.519993
Snippet Light–matter coupling in excitonic materials has been the subject of intense recent investigations due to emergence of new materials. Two-dimensional layered...
Light-matter coupling in excitonic materials has been the subject of intense recent investigations due to emergence of new materials. Two-dimensional layered...
Not provided.
SourceID osti
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6245
SubjectTerms Chemistry
Materials Science
Physics
Science & Technology - Other Topics
Title Self-Hybridized Polaritonic Emission from Layered Perovskites
URI http://dx.doi.org/10.1021/acs.nanolett.1c02058
https://www.proquest.com/docview/2552060766
https://www.osti.gov/biblio/1848909
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvTgW1xfVPDioWuapEl68CCiLOILVPBWstMExKUV2xX01zvptj4R9do2hcnMZL7JvAjZkYZppyMRCutHmFE7CA3jKMsM0PdxXLg6iebsXPZvxMltfPvuKH6N4LNoz0DZy01eIBlVLwKEN7GeJFNMoh57KHR49d5kl9cTWVGJ0SVKtGhL5X74izdIUH4ySJ0CFevbsVzbmuM5ctFW7IxTTO57o2rQg5fvDRz_SMY8mW1gZ3AwlpMFMmHzRTLzoRnhEtm_skMX9p99Cdfdi82CS-_1osLndxAcoTj4e7XAl6MEp-bZj_gMLu1j8VT6-99ymdwcH10f9sNmuEJoEHNVoY6FYkANBwpGxqAiMJzRLOIZt06hNmYIzZLEGGY4F5KDzJwC63SmBhArvkI6eZHbVRIg6ES-2shoK4WjkFiXoAwoLliUcW26ZBepTxvlKNM67s2i1D9styRttqRLeMuNFJou5X5YxvCXVeHbqodxl45fvl_3jE4RZfhWueBzigDfaqETmnTJdsv_FHfXR1BMbotRmaL_xaikSsq1f9C0TqaZz4ShKmR6g3Sqx5HdRChTDbZq-X0FClXwOg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R7aHtAfpC3QJtKvXSQ7aO7djOgQNCoG27ICSg4mZ5HVtCRUlFspXg1zMTEqBUFeKaxJbH_ib-xp4HwGfluIkmk6kMVMKMhXnquEAsc4-2TxQydk40e_tqeiy_n-QnS5APsTA4iAZ7arpL_NvsAtlXela5qkZp2knmkeXk5gk8RT7CCdhb24e3uXZFV5gVdRkto8LIIWLuP73QvuSbv_alUY369c_fudtydlfg581gO0-TX5NFO5_4y3t5HB8tzUtY7klosnWNmlewFKrX8OJOasI3sHkYzmI6vaCArtPLUCYHZAOj-lenPtlBcNApW0LBKcnMXVDBz-QgnNd_GjoNbt7C8e7O0fY07UstpA4ZWJuaXGrumROeeadyrzPvBGdlJkoRokbdLJGoFYVz3AkhlfCqjNqHaEo997kWqzCq6iq8gwQpKK5yyJwJSkbmixALRIQWkmelMG4MX1B626tKY7tbcJ5ZejhMie2nZAxiWBTr-5zlVDrj7IFW6U2r39c5Ox74fo3W2yLnoMS5njyMPL410hSsGMOnAQYWZ5fuU1wV6kVj0RrjTDGt1PtHyPQRnk2P9mZ29m3_xxo85-Qjw3TKzTqM2vNF2ECS084_dJC-AiFr-Js
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ_gkRh9EPEjnoguiS8-7Nltu233wQcCXA75yCVIQnxpet02IZJdwu6ZwF_vzLIHqDFEXrvbpjP9TTvTmc4AfFSOm2gymcpAJcxYmKWOC8Qy92j7RCFjF0RzcKgmx_LrSX5yp9QXTqLBkZrOiU9SfV7GPsNA9pnaK1fVSFE7yjxqOrl5BMvkuSNwb24d3ebbFV1xVpRntI4KIxev5v4xCp1NvvntbBrUKGN_7dDdsTNege83E-6iTX6M5u1s5K_-yOX4IIqew7NeGU02r9GzCkuhegFP76QofAlfjsJZTCeX9LDr9CqUyZRsYdwGqlOf7CBI6LYtoUcqyb67pMKfyTRc1D8buhVuXsHxeOfb1iTtSy6kDjWxNjW51NwzJzzzTuVeZ94JzspMlCJEjTJaosJWFM5xJ4RUwqsyah-iKfXM51q8hkFVV-ENJKiK4mqHzJmgZGS-CLFAZGgheVYK44bwCam3vcg0tvOG88xS44IltmfJEMRiYazvc5dTCY2ze3qlN73Or3N33PP_Gq25Rd2DEuh6ijTy-NVIU7BiCBsLKFjkLvlVXBXqeWPRKuNMMa3U2_-g6QM8nm6P7f7u4d4aPOEUKsN0ys07GLQX87COuk47e9-h-hckCPse
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Hybridized+Polaritonic+Emission+from+Layered+Perovskites&rft.jtitle=Nano+letters&rft.au=Anantharaman%2C+Surendra+B&rft.au=Stevens%2C+Christopher+E&rft.au=Lynch%2C+Jason&rft.au=Song%2C+Baokun&rft.date=2021-07-28&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=21&rft.issue=14&rft.spage=6245&rft_id=info:doi/10.1021%2Facs.nanolett.1c02058&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon