Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment
•The water migration mainly occurred along depth during active freezing stage.•The quantity of freezing tubes can be optimized by controlling boundary conditions.•Multilayer temperatures contribute an actual thermal gradient to model computation.•The deformation of multilayers is directly relevant t...
Saved in:
Published in | Tunnelling and underground space technology Vol. 107; p. 103647 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The water migration mainly occurred along depth during active freezing stage.•The quantity of freezing tubes can be optimized by controlling boundary conditions.•Multilayer temperatures contribute an actual thermal gradient to model computation.•The deformation of multilayers is directly relevant to the position of frost front.•Frost heave in AGF can be predicted based on SP theory and field experimental data.
Artificial ground freezing (AGF) is a method of paramount importance for underground construction in soft soil area. There were numerous studies concerned on field observations and the theoretical formulations on frost heaves. However, the field observations and validity of the theoretical models from practical points were lack. This paper focused on a more accurate practical prediction method of frost heave by multilayer field experiments and segregation potential (SP) model, for a strict deformation requirement AGF project in a non-stopping airport during construction. Thus, a large-scale area (3.5 times than actual frozen curtain) field experiment of multilayered temperatures and displacements was conceived and developed, to evaluate the freezing effect and deformation characteristics. Temperature variations show that the additional freezing tubes at the tunnel opening can only achieve faster cooling rate initially but could not descend the final stable temperature, and so substantially increasing freezing tubes at the tunnel opening may not be best choice to keep excavation safe. Multilayered temperatures and displacements show that deformation of multi-layers is directly relevant to the position of frost front. A simplified frost heave prediction method using segregation potential concept is proposed based on field experimental data. The temperature gradient and frost front function have been calculated based on field monitoring results and served for the model computation. This prediction method was further validated by both other’s published and our field experimental data. 2–8% relative errors surrounding the axis of frozen curtain prove the applicability of this practical prediction model is much well. This paper provides valuable reference for urban tunneling under extreme conditions such as non-stopping airport or adjacent to existing structures. |
---|---|
AbstractList | •The water migration mainly occurred along depth during active freezing stage.•The quantity of freezing tubes can be optimized by controlling boundary conditions.•Multilayer temperatures contribute an actual thermal gradient to model computation.•The deformation of multilayers is directly relevant to the position of frost front.•Frost heave in AGF can be predicted based on SP theory and field experimental data.
Artificial ground freezing (AGF) is a method of paramount importance for underground construction in soft soil area. There were numerous studies concerned on field observations and the theoretical formulations on frost heaves. However, the field observations and validity of the theoretical models from practical points were lack. This paper focused on a more accurate practical prediction method of frost heave by multilayer field experiments and segregation potential (SP) model, for a strict deformation requirement AGF project in a non-stopping airport during construction. Thus, a large-scale area (3.5 times than actual frozen curtain) field experiment of multilayered temperatures and displacements was conceived and developed, to evaluate the freezing effect and deformation characteristics. Temperature variations show that the additional freezing tubes at the tunnel opening can only achieve faster cooling rate initially but could not descend the final stable temperature, and so substantially increasing freezing tubes at the tunnel opening may not be best choice to keep excavation safe. Multilayered temperatures and displacements show that deformation of multi-layers is directly relevant to the position of frost front. A simplified frost heave prediction method using segregation potential concept is proposed based on field experimental data. The temperature gradient and frost front function have been calculated based on field monitoring results and served for the model computation. This prediction method was further validated by both other’s published and our field experimental data. 2–8% relative errors surrounding the axis of frozen curtain prove the applicability of this practical prediction model is much well. This paper provides valuable reference for urban tunneling under extreme conditions such as non-stopping airport or adjacent to existing structures. Artificial ground freezing (AGF) is a method of paramount importance for underground construction in soft soil area. There were numerous studies concerned on field observations and the theoretical formulations on frost heaves. However, the field observations and validity of the theoretical models from practical points were lack. This paper focused on a more accurate practical prediction method of frost heave by multilayer field experiments and segregation potential (SP) model, for a strict deformation requirement AGF project in a non-stopping airport during construction. Thus, a large-scale area (3.5 times than actual frozen curtain) field experiment of multilayered temperatures and displacements was conceived and developed, to evaluate the freezing effect and deformation characteristics. Temperature variations show that the additional freezing tubes at the tunnel opening can only achieve faster cooling rate initially but could not descend the final stable temperature, and so substantially increasing freezing tubes at the tunnel opening may not be best choice to keep excavation safe. Multilayered temperatures and displacements show that deformation of multi-layers is directly relevant to the position of frost front. A simplified frost heave prediction method using segregation potential concept is proposed based on field experimental data. The temperature gradient and frost front function have been calculated based on field monitoring results and served for the model computation. This prediction method was further validated by both other's published and our field experimental data. 2–8% relative errors surrounding the axis of frozen curtain prove the applicability of this practical prediction model is much well. This paper provides valuable reference for urban tunneling under extreme conditions such as non-stopping airport or adjacent to existing structures. |
ArticleNumber | 103647 |
Author | Tang, Yiqun Zhou, Jie Zhao, Wenqiang |
Author_xml | – sequence: 1 givenname: Jie surname: Zhou fullname: Zhou, Jie organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People’s Republic of China – sequence: 2 givenname: Wenqiang surname: Zhao fullname: Zhao, Wenqiang organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People’s Republic of China – sequence: 3 givenname: Yiqun surname: Tang fullname: Tang, Yiqun email: tangyiqun2@tongji.edu.cn organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People’s Republic of China |
BookMark | eNp9kEtPLCEQRonRxPHxB1yRuO6xoF904saY6yMx0YWuCQOFw9jCCIyvXy-dcXUXrigq36Goc0B2ffBIyAmDOQPWna3meZPynAOfGnXX9DtkxkQvqqZcdskMhOiqvh_EPjlIaQUALefDjLw8RKWz02qk64jGlTp4-op5GQwtlY0hZbpE9Y40WJqCzVSP6os6T1XMzjrtCvscw8abkkb8dv6Zfri8pNbhaCh-rjG6V_T5iOxZNSY8_j0PydPVv8fLm-ru_vr28uKuUnXLcmX50BgFjHG10ChaaJoFb-0ADauNNWAXrDUdILOaKewQ2tJVLYO-E3UvoD4kp9t31zG8bTBluQqb6MtIyRsBfBg63pcU36Z0WTFFtHJdvqnil2QgJ6lyJSepcpIqt1ILJP6DtMtqcpajcuPf6PkWxbL6u8Mok3bodZEeUWdpgvsL_wGGqpaA |
CitedBy_id | crossref_primary_10_1155_2022_6198660 crossref_primary_10_1016_j_jrmge_2021_07_015 crossref_primary_10_1051_geotech_2022008 crossref_primary_10_1016_j_coldregions_2022_103627 crossref_primary_10_3390_app13148508 crossref_primary_10_19110_1994_5655_2024_3_106_115 crossref_primary_10_1016_j_amc_2021_126343 crossref_primary_10_1061_IJGNAI_GMENG_9132 crossref_primary_10_1007_s00603_023_03710_8 crossref_primary_10_1016_j_coldregions_2023_103985 crossref_primary_10_1038_s41598_025_85839_w crossref_primary_10_3390_su151914166 crossref_primary_10_1016_j_coldregions_2023_103908 crossref_primary_10_1016_j_rcar_2023_11_005 crossref_primary_10_1016_j_coldregions_2021_103313 crossref_primary_10_1016_j_tust_2024_106015 crossref_primary_10_1007_s12205_024_1833_6 crossref_primary_10_1016_j_tust_2023_105469 crossref_primary_10_1061__ASCE_CR_1943_5495_0000280 crossref_primary_10_1144_qjegh2020_116 crossref_primary_10_1016_j_tust_2021_104352 crossref_primary_10_1007_s10706_021_01904_x crossref_primary_10_1016_j_enggeo_2024_107796 crossref_primary_10_1016_j_coldregions_2024_104371 crossref_primary_10_1016_j_tust_2022_104948 crossref_primary_10_1088_2053_1591_ad913d crossref_primary_10_1007_s12517_021_08282_x crossref_primary_10_1007_s12205_022_1038_9 crossref_primary_10_1520_JTE20240128 crossref_primary_10_1155_2022_1004735 crossref_primary_10_7242_1999_6691_2021_14_2_12 crossref_primary_10_1016_j_soildyn_2023_108222 crossref_primary_10_32604_cmes_2022_020388 crossref_primary_10_1016_j_undsp_2023_06_003 crossref_primary_10_1155_2022_9410466 crossref_primary_10_1016_j_enggeo_2024_107770 crossref_primary_10_1016_j_enggeo_2025_107992 crossref_primary_10_3390_geotechnics4030038 crossref_primary_10_1002_nag_3805 crossref_primary_10_1016_j_cscm_2025_e04239 crossref_primary_10_1155_2021_5573372 |
Cites_doi | 10.1139/t78-058 10.1061/(ASCE)0887-381X(2004)18:1(2) 10.1016/j.coldregions.2009.12.007 10.1086/623637 10.1016/S0266-352X(01)00015-5 10.1103/RevModPhys.78.695 10.1139/t84-008 10.1002/ppp.3430050307 10.1146/annurev.fluid.37.061903.175758 10.1103/PhysRevLett.74.5076 10.1016/0165-232X(95)00028-A 10.1061/(ASCE)0733-9399(2005)131:2(211) 10.1029/WR009i005p01314 10.1016/j.coldregions.2008.01.002 10.1007/s11440-017-0579-4 10.1061/9780784413401.021 10.1016/j.cma.2020.113358 10.1007/s11440-011-0135-6 10.2136/vzj2012.0049 10.1007/BF02882762 10.1016/j.enggeo.2009.08.009 10.1016/j.coldregions.2015.06.010 10.1139/t80-005 10.1016/j.compgeo.2019.103155 10.1016/j.ijheatmasstransfer.2018.05.059 10.1016/j.sandf.2016.08.014 10.1016/0165-232X(80)90015-4 10.1139/t82-053 10.1016/j.compgeo.2019.103382 10.1016/j.ijheatmasstransfer.2017.12.065 10.1016/j.coldregions.2018.11.003 10.1680/geot.9.P.120 10.1016/0165-232X(89)90004-9 10.1088/0034-4885/58/1/003 10.1103/PhysRevE.81.031604 10.1017/S0022112003006761 10.1016/j.coldregions.2019.03.004 10.1002/nag.2184 10.1016/j.advwatres.2006.08.008 10.1139/t91-102 10.1139/t02-077 10.1139/t04-080 10.1103/PhysRevLett.87.088501 10.1137/S0036139993252554 10.1016/j.tust.2015.07.008 10.1007/s00526-007-0133-6 10.1016/j.coldregions.2018.10.004 10.1086/623720 10.1680/geot.2009.59.3.173 10.1155/2019/1670820 10.1016/j.coldregions.2005.03.003 10.1139/t94-001 10.1039/tf9615701541 10.1007/s12205-018-0049-z 10.1139/t81-059 10.1139/t82-059 10.1016/S0895-7177(03)00053-0 10.1016/j.enggeo.2015.03.002 10.1016/j.coldregions.2015.12.015 10.1016/j.ijheatmasstransfer.2014.07.035 10.1103/PhysRevE.87.032404 10.1016/j.tust.2020.103534 10.1029/WR021i003p00281 10.1061/41108(381)33 10.1126/science.246.4937.1591 10.1061/(ASCE)CR.1943-5495.0000089 10.1002/nag.497 10.1016/j.compgeo.2019.103416 10.1016/j.ijplas.2018.04.007 10.1139/t80-056 10.1029/2006JF000525 10.1016/j.compgeo.2015.11.014 10.1029/WR002i002p00241 10.1680/envgeo.14.00004 10.1016/j.coldregions.2015.04.005 10.1007/s00603-019-01786-9 10.1007/s12205-019-1599-4 10.1016/j.coldregions.2011.11.006 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jan 2021 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2021 |
DBID | AAYXX CITATION 8FD FR3 KR7 |
DOI | 10.1016/j.tust.2020.103647 |
DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-4364 |
ExternalDocumentID | 10_1016_j_tust_2020_103647 S0886779820306015 |
Genre | Feature |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SST SSZ T5K WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-a351t-f294da0112abce85044b25f90413dfd0fb15d60e1fc1ae6e05dfda51076837803 |
IEDL.DBID | .~1 |
ISSN | 0886-7798 |
IngestDate | Mon Jul 14 08:29:00 EDT 2025 Thu Apr 24 22:58:27 EDT 2025 Tue Jul 01 01:06:28 EDT 2025 Fri Feb 23 02:46:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Artificial ground freezing Freezing effects Multi-layer deformation Field experiment Segregation potential model Practical frost heave prediction model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a351t-f294da0112abce85044b25f90413dfd0fb15d60e1fc1ae6e05dfda51076837803 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 2480299627 |
PQPubID | 2045384 |
ParticipantIDs | proquest_journals_2480299627 crossref_primary_10_1016_j_tust_2020_103647 crossref_citationtrail_10_1016_j_tust_2020_103647 elsevier_sciencedirect_doi_10_1016_j_tust_2020_103647 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Tunnelling and underground space technology |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Hu, Wang (b0120) 2011 Liu, Lai, Wong, Feng (b0200) 2018; 107 Konrad (b0180) 2002; 39 Beskow (b0020) 1935; 375 Dash (b0050) 1989; 246 Thomas, Cleall, Li, Harris, Kern-Luetschg (b0365) 2009; 59 Lai, Pei, Zhang, Zhou (b0195) 2014; 78 Tang, Hong, Yang, Wang, Hu (b0350) 2009; 31 Pimentel, Sres, Anagnostou (b0280) 2012; 62 Zhang, Yang (b0430) 2013; 37 Harlan (b0090) 1973; 9 Rouabhi, Jahangir, Tounsi (b0305) 2018; 120 Hoekstra (b0105) 1966; 2 Liu, Yu (b0205) 2011; 6 Tang, Xiao, Zhou (b0355) 2019; 23 Zheng, Kanie (b0440) 2015; 29 Michalowski, Zhu (b0225) 2006; 30 Takashi, Yamamoto, Ohrai, Masuda (b0340) 1978 Anderson, D.M., Tice, A.R., McKim, H.L., 1973. The unfrozen water and the apparent specific heat capacity of frozen soils. In: Second international conference on Permafrost, Yakutsk, USSR. North American Contribution, pp. 289–295. Wilen, Dash (b0395) 1995; 74 Bronfenbrener, Bronfenbrener (b0025) 2010; 61 Hu (b0115) 2011 Hansen-Goos, Wettlaufer (b0085) 2010; 81 Konrad, Morgenstern (b0150) 1980; 17 Zheng, Kanie, Niu, Akagawa, Li (b0445) 2016; 56 Kim, Zhou, Huang (b0145) 2008; 53 Wang, B., Rong, C. X., Lin, J., Cheng, H., Cai, H. B., 2019. Study on the formation law of the freezing temperature field of freezing shaft sinking under the action of large-flow-rate groundwater. Adv. Mater. Sci. Eng., 2019. Casini, Gens, Olivella, Viggiani (b0040) 2014; 3 Tounsi, Rouabhi, Jahangir (b0370) 2020; 119 Alzoubi, Nie-Rouquette, Sasmito (b0005) 2018; 126 Saruya, Kurita, Rempel (b0315) 2013; 87 Taylor, Luthin (b0360) 1978; 15 Zhou, Zhou, Hu, Wang, Shang (b0455) 2018; 13 Chen, Cheng, Li, Guo, Zhu (b0045) 2000; 22 Röger, Tonegawa (b0300) 2008; 32 Taber (b0330) 1929; 37 Zhou, Tang (b0470) 2015; 190 Mao, Li, Ma, Mu, Wang, Miao, Wu (b0215) 2019; 161 Zueter, Nie-Rouquette, Alzoubi, Sasmito (b0485) 2020; 120 Lackner, Amon, Lagger (b0190) 2005; 131 Miller (b0230) 1972; 393 Neaupane, Yamabe (b0240) 2001; 28 McKenzie, Voss, Siegel (b0220) 2007; 30 Nixon, J. F., Ellwood, J. R., Slusarchuk, W. A., 1981. In-situ frost heave testing using cold plates. In: Proceedings, 4th Canadian Permafrost Conference, Calgary, NRCC NO. 20124, National Research Council of Canada, Ottawa, Ont. Xu, Shen, Du (b0420) 2009; 109 Zhen, Xiong (b0435) 2011; 6 Wettlaufer, Worster (b0390) 2006; 38 Nixon (b0255) 1982; 19 Konrad, Morgenstern (b0155) 1981; 18 Hu, Liu, Li, Yao (b0110) 2018; 22 Huang, Bray, Akagawa, Fukuda (b0135) 2004; 18 Fremond, Mikkola (b0075) 1991 Rempel (b0295) 2007; 112 Xu, Deng (b0405) 1991 Ming, Li (b0235) 2016; 124 Rempel, Wettlaufer, Worster (b0290) 2004; 498 Hu, X. D., Guo, W., 2011. Construction methods for cross passage in soft ground tunnels in China. In: 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, pp. 193–196. Konrad, Morgenstern (b0160) 1982; 19 Mageau, Morgenstern (b0210) 1980; 17 Xu, Wang, Zhang (b0415) 2001 Rempel, Wettlaufer, Worster (b0285) 2001; 87 Konrad, Morgenstern (b0165) 1984; 21 Konrad, Shen (b0175) 1996; 24 Hu, X. D., Zhao, F., Yu, R. Z., 2010. Safety Problem of Freezing Projects in Saline Soils. In: Ground improvement and geosynthetics. Proceedings of sessions of GeoShanghai 2010, Shanghai, China, 3-5 June, 2010. American Society of Civil Engineers (ASCE), pp. 255–262. Ji, Zhou, Zhou, Vandeginste (b0140) 2019; 158 Zhou, M.M., Meschke, G., 2014. Numerical modeling of artificial ground freezing: multiphase modeling and strength upscaling. In Ground Improvement and Geosynthetics, pp. 209-219. Konrad (b0170) 1989; 16 Zheng, Kanie, Niu, Li (b0450) 2015; 118 Taber (b0335) 1930; 38 Yang, Chen, Zhang, Wan (b0425) 2017; 39 Zhou, Tang (b0465) 2015; 117 Talamucci (b0345) 2003; 37 Tounsi, Rouabhi, Tijani, Guérin (b0375) 2019; 52 Cai, Li, Liang, Yao, Cheng (b0030) 2019; 115 Konrad (b0185) 2005; 42 Gioda, Locatelli, Gallavresi (b0080) 1994; 31 Canadian Geotechnical Society. Foundations Committee. 1978. Canadian foundation engineering manual. Canadian Geotechnical Society. Sweidan, Heider, Markert (b0325) 2020; 372 Alzoubi, Xu, Hassani, Poncet, Sasmito (b0010) 2020; 104 Peppin, Style (b0270) 2013; 12 Russo, Corbo, Cavuoto, Autuori (b0310) 2015; 50 Dash, Rempel, Wettlaufer (b0060) 2006; 78 Everett (b0065) 1961; 57 Xu, Li, Lai, Pang, Zhang (b0400) 2019; 157 Hermansson, Guthrie (b0100) 2005; 43 Zhou, Li (b0460) 2012; 72 Nixon (b0245) 1991; 28 Fowler, Krantz (b0070) 1994; 54 O'Neill, Miller (b0260) 1985; 21 Xu, Wang, Zhang, Deng, Chuvilin, Yershov, Ishizaki, Fukuda (b0410) 1997; 42 Zhou, Meschke (b0475) 2013; 37 Penner, E., 1959. The mechanism of frost heaving in soils. Highway Research Board Bulletin, (225). Vitel, Rouabhi, Tijani, Guérin (b0380) 2016; 73 Dash, Fu, Wettlaufer (b0055) 1995; 58 Perfect, Williams (b0275) 1980; 3 Solomatin, Xu (b0320) 1994; 5 Harris (b0095) 1995 Dash (10.1016/j.tust.2020.103647_b0055) 1995; 58 Michalowski (10.1016/j.tust.2020.103647_b0225) 2006; 30 Ming (10.1016/j.tust.2020.103647_b0235) 2016; 124 Cai (10.1016/j.tust.2020.103647_b0030) 2019; 115 Taylor (10.1016/j.tust.2020.103647_b0360) 1978; 15 Liu (10.1016/j.tust.2020.103647_b0205) 2011; 6 Nixon (10.1016/j.tust.2020.103647_b0245) 1991; 28 Zhou (10.1016/j.tust.2020.103647_b0470) 2015; 190 Rouabhi (10.1016/j.tust.2020.103647_b0305) 2018; 120 Solomatin (10.1016/j.tust.2020.103647_b0320) 1994; 5 Vitel (10.1016/j.tust.2020.103647_b0380) 2016; 73 Wettlaufer (10.1016/j.tust.2020.103647_b0390) 2006; 38 Tounsi (10.1016/j.tust.2020.103647_b0370) 2020; 119 Nixon (10.1016/j.tust.2020.103647_b0255) 1982; 19 Xu (10.1016/j.tust.2020.103647_b0400) 2019; 157 Perfect (10.1016/j.tust.2020.103647_b0275) 1980; 3 Rempel (10.1016/j.tust.2020.103647_b0285) 2001; 87 Huang (10.1016/j.tust.2020.103647_b0135) 2004; 18 Wilen (10.1016/j.tust.2020.103647_b0395) 1995; 74 Zhang (10.1016/j.tust.2020.103647_b0430) 2013; 37 Hu (10.1016/j.tust.2020.103647_b0120) 2011 Harlan (10.1016/j.tust.2020.103647_b0090) 1973; 9 Takashi (10.1016/j.tust.2020.103647_b0340) 1978 Bronfenbrener (10.1016/j.tust.2020.103647_b0025) 2010; 61 Mao (10.1016/j.tust.2020.103647_b0215) 2019; 161 Konrad (10.1016/j.tust.2020.103647_b0155) 1981; 18 Sweidan (10.1016/j.tust.2020.103647_b0325) 2020; 372 Zueter (10.1016/j.tust.2020.103647_b0485) 2020; 120 O'Neill (10.1016/j.tust.2020.103647_b0260) 1985; 21 Zhou (10.1016/j.tust.2020.103647_b0455) 2018; 13 Dash (10.1016/j.tust.2020.103647_b0060) 2006; 78 Thomas (10.1016/j.tust.2020.103647_b0365) 2009; 59 Mageau (10.1016/j.tust.2020.103647_b0210) 1980; 17 Yang (10.1016/j.tust.2020.103647_b0425) 2017; 39 Lai (10.1016/j.tust.2020.103647_b0195) 2014; 78 Xu (10.1016/j.tust.2020.103647_b0405) 1991 Xu (10.1016/j.tust.2020.103647_b0420) 2009; 109 Konrad (10.1016/j.tust.2020.103647_b0165) 1984; 21 10.1016/j.tust.2020.103647_b0480 Taber (10.1016/j.tust.2020.103647_b0330) 1929; 37 Hoekstra (10.1016/j.tust.2020.103647_b0105) 1966; 2 Harris (10.1016/j.tust.2020.103647_b0095) 1995 Ji (10.1016/j.tust.2020.103647_b0140) 2019; 158 Xu (10.1016/j.tust.2020.103647_b0410) 1997; 42 Pimentel (10.1016/j.tust.2020.103647_b0280) 2012; 62 Alzoubi (10.1016/j.tust.2020.103647_b0005) 2018; 126 Alzoubi (10.1016/j.tust.2020.103647_b0010) 2020; 104 10.1016/j.tust.2020.103647_b0125 Saruya (10.1016/j.tust.2020.103647_b0315) 2013; 87 10.1016/j.tust.2020.103647_b0130 Zhen (10.1016/j.tust.2020.103647_b0435) 2011; 6 10.1016/j.tust.2020.103647_b0250 Gioda (10.1016/j.tust.2020.103647_b0080) 1994; 31 Lackner (10.1016/j.tust.2020.103647_b0190) 2005; 131 Zheng (10.1016/j.tust.2020.103647_b0445) 2016; 56 Zheng (10.1016/j.tust.2020.103647_b0440) 2015; 29 Hu (10.1016/j.tust.2020.103647_b0110) 2018; 22 Beskow (10.1016/j.tust.2020.103647_b0020) 1935; 375 10.1016/j.tust.2020.103647_b0015 Röger (10.1016/j.tust.2020.103647_b0300) 2008; 32 10.1016/j.tust.2020.103647_b0265 10.1016/j.tust.2020.103647_b0385 Hu (10.1016/j.tust.2020.103647_b0115) 2011 Hansen-Goos (10.1016/j.tust.2020.103647_b0085) 2010; 81 Zhou (10.1016/j.tust.2020.103647_b0475) 2013; 37 Tang (10.1016/j.tust.2020.103647_b0350) 2009; 31 Xu (10.1016/j.tust.2020.103647_b0415) 2001 Zhou (10.1016/j.tust.2020.103647_b0465) 2015; 117 Hermansson (10.1016/j.tust.2020.103647_b0100) 2005; 43 Zhou (10.1016/j.tust.2020.103647_b0460) 2012; 72 Kim (10.1016/j.tust.2020.103647_b0145) 2008; 53 Russo (10.1016/j.tust.2020.103647_b0310) 2015; 50 Fowler (10.1016/j.tust.2020.103647_b0070) 1994; 54 Rempel (10.1016/j.tust.2020.103647_b0290) 2004; 498 Konrad (10.1016/j.tust.2020.103647_b0150) 1980; 17 Chen (10.1016/j.tust.2020.103647_b0045) 2000; 22 Tang (10.1016/j.tust.2020.103647_b0355) 2019; 23 Miller (10.1016/j.tust.2020.103647_b0230) 1972; 393 Tounsi (10.1016/j.tust.2020.103647_b0375) 2019; 52 Casini (10.1016/j.tust.2020.103647_b0040) 2014; 3 Rempel (10.1016/j.tust.2020.103647_b0295) 2007; 112 Peppin (10.1016/j.tust.2020.103647_b0270) 2013; 12 Neaupane (10.1016/j.tust.2020.103647_b0240) 2001; 28 Everett (10.1016/j.tust.2020.103647_b0065) 1961; 57 McKenzie (10.1016/j.tust.2020.103647_b0220) 2007; 30 10.1016/j.tust.2020.103647_b0035 Dash (10.1016/j.tust.2020.103647_b0050) 1989; 246 Talamucci (10.1016/j.tust.2020.103647_b0345) 2003; 37 Konrad (10.1016/j.tust.2020.103647_b0180) 2002; 39 Zheng (10.1016/j.tust.2020.103647_b0450) 2015; 118 Konrad (10.1016/j.tust.2020.103647_b0185) 2005; 42 Konrad (10.1016/j.tust.2020.103647_b0175) 1996; 24 Fremond (10.1016/j.tust.2020.103647_b0075) 1991 Konrad (10.1016/j.tust.2020.103647_b0170) 1989; 16 Konrad (10.1016/j.tust.2020.103647_b0160) 1982; 19 Liu (10.1016/j.tust.2020.103647_b0200) 2018; 107 Taber (10.1016/j.tust.2020.103647_b0335) 1930; 38 |
References_xml | – volume: 53 start-page: 382 year: 2008 end-page: 396 ident: b0145 article-title: Frost heave predictions of buried chilled gas pipelines with the effect of permafrost publication-title: Cold Reg. Sci. Technol. – volume: 21 start-page: 100 year: 1984 end-page: 115 ident: b0165 article-title: Frost heave prediction of chilled pipelines buried in unfrozen soils publication-title: Can. Geotech. J. – volume: 57 start-page: 1541 year: 1961 end-page: 1551 ident: b0065 article-title: The thermodynamics of frost damage to porous solids publication-title: Trans. Faraday Soc. – volume: 124 start-page: 87 year: 2016 end-page: 94 ident: b0235 article-title: A model of migration potential for moisture migration during soil freezing publication-title: Cold Reg. Sci. Technol. – volume: 161 start-page: 43 year: 2019 end-page: 50 ident: b0215 article-title: Field observation of permafrost degradation under Mo'he airport, Northeastern China from 2007 to 2016 publication-title: Cold Reg. Sci. Technol. – volume: 498 start-page: 227 year: 2004 end-page: 244 ident: b0290 article-title: Premelting dynamics in a continuum model of frost heave publication-title: J. Fluid Mech. – volume: 6 start-page: 51 year: 2011 end-page: 65 ident: b0435 article-title: Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation publication-title: Acta Geotech. – volume: 81 year: 2010 ident: b0085 article-title: Theory of ice premelting in porous media publication-title: Phys. Rev. E – volume: 16 start-page: 25 year: 1989 end-page: 36 ident: b0170 article-title: Influence of cooling rate on the temperature of ice lens formation in clayey silts publication-title: Cold Reg. Sci. Technol. – volume: 2 start-page: 241 year: 1966 end-page: 250 ident: b0105 article-title: Moisture movement in soils under temperature gradients with the cold-side temperature below freezing publication-title: Water Resour. Res. – volume: 87 year: 2013 ident: b0315 article-title: Experimental constraints on the kinetics of ice lens initiation and growth publication-title: Phys. Rev. E – volume: 117 start-page: 1 year: 2015 end-page: 11 ident: b0465 article-title: Artificial ground freezing of fully saturated mucky clay: Thawing problem by centrifuge modeling publication-title: Cold Reg. Sci. Technol. – reference: Hu, X. D., Guo, W., 2011. Construction methods for cross passage in soft ground tunnels in China. In: 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, pp. 193–196. – volume: 13 start-page: 207 year: 2018 end-page: 217 ident: b0455 article-title: Separate-ice frost heave model for one-dimensional soil freezing process publication-title: Acta Geotech. – volume: 28 start-page: 613 year: 2001 end-page: 637 ident: b0240 article-title: A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium publication-title: Comput. Geotech. – volume: 23 start-page: 1064 year: 2019 end-page: 1076 ident: b0355 article-title: Deformation Prediction and Deformation Characteristics of Multilayers of Mucky Clay under Artificial Freezing Condition publication-title: KSCE J. Civ. Eng. – start-page: 6 year: 1978 ident: b0340 article-title: Effect of penetration rate of freezing and confining stress on the frost heave ratio of soil publication-title: 3rd International Conference Permafrost – volume: 74 start-page: 5076 year: 1995 ident: b0395 article-title: Frost heave dynamics at a single crystal interface publication-title: Phys. Rev. Lett. – volume: 37 start-page: 428 year: 1929 end-page: 461 ident: b0330 article-title: Frost heaving publication-title: J. Geol. – reference: Anderson, D.M., Tice, A.R., McKim, H.L., 1973. The unfrozen water and the apparent specific heat capacity of frozen soils. In: Second international conference on Permafrost, Yakutsk, USSR. North American Contribution, pp. 289–295. – reference: Zhou, M.M., Meschke, G., 2014. Numerical modeling of artificial ground freezing: multiphase modeling and strength upscaling. In Ground Improvement and Geosynthetics, pp. 209-219. – volume: 157 start-page: 110 year: 2019 end-page: 118 ident: b0400 article-title: Effect of moisture content on mechanical and damage behavior of frozen loess under triaxial condition along with different confining pressures publication-title: Cold Reg. Sci. Technol. – volume: 18 start-page: 2 year: 2004 end-page: 34 ident: b0135 article-title: Field investigation of soil heave by a large diameter chilled gas pipeline experiment, Fairbanks, Alaska publication-title: J. Cold Regions Eng. – volume: 115 year: 2019 ident: b0030 article-title: Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique publication-title: Comput. Geotech. – volume: 17 start-page: 54 year: 1980 end-page: 60 ident: b0210 article-title: Observations on moisture migration in frozen soils publication-title: Can. Geotech. J. – volume: 19 start-page: 526 year: 1982 end-page: 529 ident: b0255 article-title: Field frost heave predictions using the segregation potential concept publication-title: Can. Geotech. J. – volume: 17 start-page: 473 year: 1980 end-page: 486 ident: b0150 article-title: A mechanistic theory of ice lens formation in fine-grained soils publication-title: Can. Geotech. J. – volume: 30 start-page: 966 year: 2007 end-page: 983 ident: b0220 article-title: Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs publication-title: Adv. Water Resour. – year: 1991 ident: b0405 article-title: Experimental study on water migration in freezing and frozen soils – volume: 22 start-page: 4136 year: 2018 end-page: 4142 ident: b0110 article-title: Artificial ground freezing in tunnelling through aquifer soil layers: a case study in Nanjing Metro Line 2 publication-title: KSCE J. Civ. Eng. – volume: 5 start-page: 185 year: 1994 end-page: 190 ident: b0320 article-title: Water migration and ice segregation in the transition zone between thawed and frozen soil publication-title: Permafrost Periglac. Process. – volume: 38 start-page: 303 year: 1930 end-page: 317 ident: b0335 article-title: The mechanics of frost heaving publication-title: J. Geol. – volume: 3 start-page: 101 year: 1980 end-page: 109 ident: b0275 article-title: Thermally induced water migration in frozen soils publication-title: Cold Reg. Sci. Technol. – volume: 39 start-page: 2226 year: 2017 end-page: 2234 ident: b0425 article-title: Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF publication-title: Chin. J. Geotech. Eng. – volume: 52 start-page: 3889 year: 2019 end-page: 3907 ident: b0375 article-title: Thermo-hydro-mechanical modeling of artificial ground freezing: application in mining engineering publication-title: Rock Mech. Rock Eng. – volume: 62 start-page: 227 year: 2012 end-page: 241 ident: b0280 article-title: Large-scale laboratory tests on artificial ground freezing under seepage-flow conditions publication-title: Geotechnique – volume: 56 start-page: 904 year: 2016 end-page: 914 ident: b0445 article-title: Application of practical one-dimensional frost heave estimation method in two-dimensional situation publication-title: Soils Found. – volume: 32 start-page: 111 year: 2008 end-page: 136 ident: b0300 article-title: Convergence of phase-field approximations to the Gibbs-Thomson law publication-title: Calc. Var. Partial. Differ. Equ. – volume: 59 start-page: 173 year: 2009 end-page: 184 ident: b0365 article-title: Modelling of cryogenic processes in permafrost and seasonally frozen soils publication-title: Geotechnique – volume: 190 start-page: 98 year: 2015 end-page: 108 ident: b0470 article-title: Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing publication-title: Eng. Geol. – volume: 37 start-page: 3173 year: 2013 end-page: 3193 ident: b0475 article-title: A three-phase thermo-hydro-mechanical finite element model for freezing soils publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 39 start-page: 1231 year: 2002 end-page: 1242 ident: b0180 article-title: Prediction of freezing-induced movements for an underground construction project in Japan publication-title: Can. Geotech. J. – volume: 87 year: 2001 ident: b0285 article-title: Interfacial premelting and the thermomolecular force: thermodynamic buoyancy publication-title: Phys. Rev. Lett. – volume: 131 start-page: 211 year: 2005 end-page: 220 ident: b0190 article-title: Artificial ground freezing of fully saturated soil: thermal problem publication-title: J. Eng. Mech. – start-page: 17 year: 1991 end-page: 24 ident: b0075 article-title: Thermomechanical modeling of freezing soil publication-title: Proceedings of 6th International Symposium on Ground Freezing – volume: 43 start-page: 128 year: 2005 end-page: 139 ident: b0100 article-title: Frost heave and water uptake rates in silty soil subject to variable water table height during freezing publication-title: Cold Reg. Sci. Technol. – volume: 58 start-page: 115 year: 1995 ident: b0055 article-title: The premelting of ice and its environmental consequences publication-title: Rep. Prog. Phys. – volume: 12 start-page: 1 year: 2013 end-page: 12 ident: b0270 article-title: The physics of frost heave and ice-lens growth publication-title: Vadose Zone J. – volume: 246 start-page: 1591 year: 1989 end-page: 1593 ident: b0050 article-title: Thermomolecular pressure in surface melting: motivation for frost heave publication-title: Science – volume: 104 year: 2020 ident: b0010 article-title: Artificial ground freezing: A review of thermal and hydraulic aspects publication-title: Tunn. Undergr. Space Technol. – volume: 393 start-page: 1 year: 1972 end-page: 11 ident: b0230 article-title: Freezing and heaving of saturated and unsaturated soils publication-title: Highway Res. Rec. – volume: 28 start-page: 843 year: 1991 end-page: 859 ident: b0245 article-title: Discrete ice lens theory for frost heave in soils publication-title: Can. Geotech. J. – year: 2001 ident: b0415 article-title: Physics of frozen soil – volume: 73 start-page: 1 year: 2016 end-page: 15 ident: b0380 article-title: Modeling heat and mass transfer during ground freezing subjected to high seepage velocities publication-title: Comput. Geotech. – volume: 15 start-page: 548 year: 1978 end-page: 555 ident: b0360 article-title: A model for coupled heat and moisture transfer during soil freezing publication-title: Can. Geotech. J. – reference: Canadian Geotechnical Society. Foundations Committee. 1978. Canadian foundation engineering manual. Canadian Geotechnical Society. – volume: 6 start-page: 51 year: 2011 end-page: 65 ident: b0205 article-title: Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation publication-title: Acta Geotech. – reference: Nixon, J. F., Ellwood, J. R., Slusarchuk, W. A., 1981. In-situ frost heave testing using cold plates. In: Proceedings, 4th Canadian Permafrost Conference, Calgary, NRCC NO. 20124, National Research Council of Canada, Ottawa, Ont. – reference: Penner, E., 1959. The mechanism of frost heaving in soils. Highway Research Board Bulletin, (225). – volume: 29 start-page: 04014019 year: 2015 ident: b0440 article-title: Combined thermal-hydraulic-mechanical frost heave model based on Takashi’s equation publication-title: J. Cold Reg. Eng. – volume: 118 start-page: 30 year: 2015 end-page: 37 ident: b0450 article-title: Three-dimensional frost heave evaluation based on practical Takashi's equation publication-title: Cold Reg. Sci. Technol. – volume: 372 year: 2020 ident: b0325 article-title: A unified water/ice kinematics approach for phase-field thermo-hydro-mechanical modeling of frost action in porous media publication-title: Comput. Methods Appl. Mech. Eng. – volume: 37 start-page: 117 year: 2013 end-page: 121 ident: b0430 article-title: Effects of unilateralist freezing on the moisture migration of soil publication-title: J. Nanjing Forest. Univ. (Nat. Sci. Ed.) – volume: 107 start-page: 246 year: 2018 end-page: 285 ident: b0200 article-title: An elastoplastic model for saturated freezing soils based on thermo-poromechanics publication-title: Int. J. Plast. – reference: Wang, B., Rong, C. X., Lin, J., Cheng, H., Cai, H. B., 2019. Study on the formation law of the freezing temperature field of freezing shaft sinking under the action of large-flow-rate groundwater. Adv. Mater. Sci. Eng., 2019. – volume: 42 start-page: 38 year: 2005 end-page: 50 ident: b0185 article-title: Estimation of the segregation potential of fine-grained soils using the frost heave response of two reference soils publication-title: Can. Geotech. J. – volume: 78 start-page: 695 year: 2006 ident: b0060 article-title: The physics of premelted ice and its geophysical consequences publication-title: Rev. Mod. Phys. – volume: 42 start-page: 1290 year: 1997 end-page: 1294 ident: b0410 article-title: Mechanism of frost heave by film water migration under temperature gradient publication-title: Chin. Sci. Bull. – volume: 54 start-page: 1650 year: 1994 end-page: 1675 ident: b0070 article-title: A generalized secondary frost heave model publication-title: SIAM J. Appl. Math. – volume: 112 year: 2007 ident: b0295 article-title: Formation of ice lenses and frost heave publication-title: J. Geophys. Res. Earth Surf. – volume: 61 start-page: 43 year: 2010 end-page: 64 ident: b0025 article-title: Modeling frost heave in freezing soils publication-title: Cold Reg. Sci. Technol. – volume: 30 start-page: 703 year: 2006 end-page: 722 ident: b0225 article-title: Frost heave modelling using porosity rate function publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 158 start-page: 10 year: 2019 end-page: 17 ident: b0140 article-title: Frost heave in freezing soils: A quasi-static model for ice lens growth publication-title: Cold Reg. Sci. Technol. – volume: 50 start-page: 226 year: 2015 end-page: 238 ident: b0310 article-title: Artificial ground freezing to excavate a tunnel in sandy soil. Measurements and back analysis publication-title: Tunn. Undergr. Space Technol. – volume: 120 year: 2020 ident: b0485 article-title: Thermal and hydraulic analysis of selective artificial ground freezing using air insulation: Experiment and modeling publication-title: Comput. Geotech. – volume: 72 start-page: 43 year: 2012 end-page: 49 ident: b0460 article-title: Numerical analysis of coupled water, heat and stress in saturated freezing soil publication-title: Cold Reg. Sci. Technol. – volume: 109 start-page: 241 year: 2009 end-page: 254 ident: b0420 article-title: Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures publication-title: Eng. Geol. – volume: 3 start-page: 141 year: 2014 end-page: 154 ident: b0040 article-title: Artificial ground freezing of a volcanic ash: laboratory tests and modelling publication-title: Environ. Geotech. – volume: 78 start-page: 805 year: 2014 end-page: 819 ident: b0195 article-title: Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil publication-title: Int. J. Heat Mass Transf. – volume: 22 start-page: 43 year: 2000 end-page: 47 ident: b0045 article-title: Development and prospect of research on application of artificial ground freezing publication-title: Chin. J. Geotech. Eng. – volume: 18 start-page: 482 year: 1981 end-page: 491 ident: b0155 article-title: The segregation potential of a freezing soil publication-title: Can. Geotech. J. – start-page: 5735 year: 2011 end-page: 5738 ident: b0120 article-title: Analysis of salt-induced influence on frozen soil structure in artificial ground freezing publication-title: 2011 International Conference on Electric Technology and Civil Engineering (ICETCE) – volume: 126 start-page: 740 year: 2018 end-page: 752 ident: b0005 article-title: Conjugate heat transfer in artificial ground freezing using enthalpy-porosity method: experiments and model validation publication-title: Int. J. Heat Mass Transf. – volume: 31 start-page: 772 year: 2009 end-page: 776 ident: b0350 article-title: Frost-heaving behaviors of mucky clay by artificial horizontal freezing method publication-title: Chin. J. Geotech. Eng. – reference: Hu, X. D., Zhao, F., Yu, R. Z., 2010. Safety Problem of Freezing Projects in Saline Soils. In: Ground improvement and geosynthetics. Proceedings of sessions of GeoShanghai 2010, Shanghai, China, 3-5 June, 2010. American Society of Civil Engineers (ASCE), pp. 255–262. – volume: 31 start-page: 1 year: 1994 end-page: 11 ident: b0080 article-title: A numerical and experimental study of the artificial freezing of sand publication-title: Can. Geotech. J. – volume: 19 start-page: 494 year: 1982 end-page: 505 ident: b0160 article-title: Effects of applied pressure on freezing soils publication-title: Can. Geotech. J. – volume: 119 year: 2020 ident: b0370 article-title: Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid publication-title: Comput. Geotech. – year: 2011 ident: b0115 article-title: Development of the separate-ice frost heave model for the soil freezing process – volume: 38 start-page: 427 year: 2006 end-page: 452 ident: b0390 article-title: Premelting dynamics publication-title: Annu. Rev. Fluid Mech. – volume: 375 start-page: 14 year: 1935 end-page: 21 ident: b0020 article-title: Soil freezing and frost heaving with special application to roads and railroads publication-title: Swedich Geol. Soc., Ser. C – volume: 24 start-page: 263 year: 1996 end-page: 278 ident: b0175 article-title: 2-D frost action modeling using the segregation potential of soil publication-title: Cold Reg. Sci. Technol. – year: 1995 ident: b0095 article-title: Ground freezing in practice – volume: 9 start-page: 1314 year: 1973 end-page: 1323 ident: b0090 article-title: Analysis of coupled heat-fluid transport in partially frozen soil publication-title: Water Resour. Res. – volume: 37 start-page: 595 year: 2003 end-page: 602 ident: b0345 article-title: Freezing processes in porous media: Formation of ice lenses, swelling of the soil publication-title: Math. Comput. Modell. – volume: 120 start-page: 523 year: 2018 end-page: 533 ident: b0305 article-title: Modeling heat and mass transfer during ground freezing taking into account the salinity of the saturating fluid publication-title: Int. J. Heat Mass Transf. – volume: 21 start-page: 281 year: 1985 end-page: 296 ident: b0260 article-title: Exploration of a rigid ice model of frost heave publication-title: Water Resour. Res. – ident: 10.1016/j.tust.2020.103647_b0265 – volume: 15 start-page: 548 issue: 4 year: 1978 ident: 10.1016/j.tust.2020.103647_b0360 article-title: A model for coupled heat and moisture transfer during soil freezing publication-title: Can. Geotech. J. doi: 10.1139/t78-058 – volume: 18 start-page: 2 issue: 1 year: 2004 ident: 10.1016/j.tust.2020.103647_b0135 article-title: Field investigation of soil heave by a large diameter chilled gas pipeline experiment, Fairbanks, Alaska publication-title: J. Cold Regions Eng. doi: 10.1061/(ASCE)0887-381X(2004)18:1(2) – start-page: 6 year: 1978 ident: 10.1016/j.tust.2020.103647_b0340 article-title: Effect of penetration rate of freezing and confining stress on the frost heave ratio of soil – volume: 393 start-page: 1 issue: 1 year: 1972 ident: 10.1016/j.tust.2020.103647_b0230 article-title: Freezing and heaving of saturated and unsaturated soils publication-title: Highway Res. Rec. – volume: 61 start-page: 43 issue: 1 year: 2010 ident: 10.1016/j.tust.2020.103647_b0025 article-title: Modeling frost heave in freezing soils publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2009.12.007 – volume: 37 start-page: 428 issue: 5 year: 1929 ident: 10.1016/j.tust.2020.103647_b0330 article-title: Frost heaving publication-title: J. Geol. doi: 10.1086/623637 – volume: 28 start-page: 613 issue: 8 year: 2001 ident: 10.1016/j.tust.2020.103647_b0240 article-title: A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium publication-title: Comput. Geotech. doi: 10.1016/S0266-352X(01)00015-5 – volume: 78 start-page: 695 issue: 3 year: 2006 ident: 10.1016/j.tust.2020.103647_b0060 article-title: The physics of premelted ice and its geophysical consequences publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.78.695 – volume: 21 start-page: 100 issue: 1 year: 1984 ident: 10.1016/j.tust.2020.103647_b0165 article-title: Frost heave prediction of chilled pipelines buried in unfrozen soils publication-title: Can. Geotech. J. doi: 10.1139/t84-008 – start-page: 5735 year: 2011 ident: 10.1016/j.tust.2020.103647_b0120 article-title: Analysis of salt-induced influence on frozen soil structure in artificial ground freezing – volume: 5 start-page: 185 issue: 3 year: 1994 ident: 10.1016/j.tust.2020.103647_b0320 article-title: Water migration and ice segregation in the transition zone between thawed and frozen soil publication-title: Permafrost Periglac. Process. doi: 10.1002/ppp.3430050307 – volume: 38 start-page: 427 year: 2006 ident: 10.1016/j.tust.2020.103647_b0390 article-title: Premelting dynamics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.37.061903.175758 – volume: 74 start-page: 5076 issue: 25 year: 1995 ident: 10.1016/j.tust.2020.103647_b0395 article-title: Frost heave dynamics at a single crystal interface publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.5076 – volume: 24 start-page: 263 issue: 3 year: 1996 ident: 10.1016/j.tust.2020.103647_b0175 article-title: 2-D frost action modeling using the segregation potential of soil publication-title: Cold Reg. Sci. Technol. doi: 10.1016/0165-232X(95)00028-A – volume: 131 start-page: 211 issue: 2 year: 2005 ident: 10.1016/j.tust.2020.103647_b0190 article-title: Artificial ground freezing of fully saturated soil: thermal problem publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2005)131:2(211) – volume: 9 start-page: 1314 issue: 5 year: 1973 ident: 10.1016/j.tust.2020.103647_b0090 article-title: Analysis of coupled heat-fluid transport in partially frozen soil publication-title: Water Resour. Res. doi: 10.1029/WR009i005p01314 – volume: 53 start-page: 382 issue: 3 year: 2008 ident: 10.1016/j.tust.2020.103647_b0145 article-title: Frost heave predictions of buried chilled gas pipelines with the effect of permafrost publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2008.01.002 – volume: 13 start-page: 207 issue: 1 year: 2018 ident: 10.1016/j.tust.2020.103647_b0455 article-title: Separate-ice frost heave model for one-dimensional soil freezing process publication-title: Acta Geotech. doi: 10.1007/s11440-017-0579-4 – ident: 10.1016/j.tust.2020.103647_b0480 doi: 10.1061/9780784413401.021 – volume: 372 year: 2020 ident: 10.1016/j.tust.2020.103647_b0325 article-title: A unified water/ice kinematics approach for phase-field thermo-hydro-mechanical modeling of frost action in porous media publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113358 – year: 1991 ident: 10.1016/j.tust.2020.103647_b0405 – ident: 10.1016/j.tust.2020.103647_b0015 – volume: 6 start-page: 51 issue: 2 year: 2011 ident: 10.1016/j.tust.2020.103647_b0435 article-title: Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation publication-title: Acta Geotech. doi: 10.1007/s11440-011-0135-6 – volume: 12 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.tust.2020.103647_b0270 article-title: The physics of frost heave and ice-lens growth publication-title: Vadose Zone J. doi: 10.2136/vzj2012.0049 – volume: 42 start-page: 1290 issue: 15 year: 1997 ident: 10.1016/j.tust.2020.103647_b0410 article-title: Mechanism of frost heave by film water migration under temperature gradient publication-title: Chin. Sci. Bull. doi: 10.1007/BF02882762 – volume: 109 start-page: 241 issue: 3–4 year: 2009 ident: 10.1016/j.tust.2020.103647_b0420 article-title: Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2009.08.009 – volume: 118 start-page: 30 year: 2015 ident: 10.1016/j.tust.2020.103647_b0450 article-title: Three-dimensional frost heave evaluation based on practical Takashi's equation publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2015.06.010 – volume: 37 start-page: 117 issue: 1 year: 2013 ident: 10.1016/j.tust.2020.103647_b0430 article-title: Effects of unilateralist freezing on the moisture migration of soil publication-title: J. Nanjing Forest. Univ. (Nat. Sci. Ed.) – volume: 17 start-page: 54 issue: 1 year: 1980 ident: 10.1016/j.tust.2020.103647_b0210 article-title: Observations on moisture migration in frozen soils publication-title: Can. Geotech. J. doi: 10.1139/t80-005 – volume: 115 year: 2019 ident: 10.1016/j.tust.2020.103647_b0030 article-title: Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2019.103155 – volume: 126 start-page: 740 year: 2018 ident: 10.1016/j.tust.2020.103647_b0005 article-title: Conjugate heat transfer in artificial ground freezing using enthalpy-porosity method: experiments and model validation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.05.059 – volume: 56 start-page: 904 issue: 5 year: 2016 ident: 10.1016/j.tust.2020.103647_b0445 article-title: Application of practical one-dimensional frost heave estimation method in two-dimensional situation publication-title: Soils Found. doi: 10.1016/j.sandf.2016.08.014 – volume: 3 start-page: 101 issue: 2–3 year: 1980 ident: 10.1016/j.tust.2020.103647_b0275 article-title: Thermally induced water migration in frozen soils publication-title: Cold Reg. Sci. Technol. doi: 10.1016/0165-232X(80)90015-4 – volume: 19 start-page: 494 issue: 4 year: 1982 ident: 10.1016/j.tust.2020.103647_b0160 article-title: Effects of applied pressure on freezing soils publication-title: Can. Geotech. J. doi: 10.1139/t82-053 – volume: 119 year: 2020 ident: 10.1016/j.tust.2020.103647_b0370 article-title: Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2019.103382 – ident: 10.1016/j.tust.2020.103647_b0125 – volume: 120 start-page: 523 year: 2018 ident: 10.1016/j.tust.2020.103647_b0305 article-title: Modeling heat and mass transfer during ground freezing taking into account the salinity of the saturating fluid publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.12.065 – volume: 158 start-page: 10 year: 2019 ident: 10.1016/j.tust.2020.103647_b0140 article-title: Frost heave in freezing soils: A quasi-static model for ice lens growth publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2018.11.003 – volume: 62 start-page: 227 issue: 3 year: 2012 ident: 10.1016/j.tust.2020.103647_b0280 article-title: Large-scale laboratory tests on artificial ground freezing under seepage-flow conditions publication-title: Geotechnique doi: 10.1680/geot.9.P.120 – volume: 16 start-page: 25 issue: 1 year: 1989 ident: 10.1016/j.tust.2020.103647_b0170 article-title: Influence of cooling rate on the temperature of ice lens formation in clayey silts publication-title: Cold Reg. Sci. Technol. doi: 10.1016/0165-232X(89)90004-9 – volume: 58 start-page: 115 issue: 1 year: 1995 ident: 10.1016/j.tust.2020.103647_b0055 article-title: The premelting of ice and its environmental consequences publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/58/1/003 – volume: 81 issue: 3 year: 2010 ident: 10.1016/j.tust.2020.103647_b0085 article-title: Theory of ice premelting in porous media publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.031604 – volume: 498 start-page: 227 year: 2004 ident: 10.1016/j.tust.2020.103647_b0290 article-title: Premelting dynamics in a continuum model of frost heave publication-title: J. Fluid Mech. doi: 10.1017/S0022112003006761 – volume: 375 start-page: 14 year: 1935 ident: 10.1016/j.tust.2020.103647_b0020 article-title: Soil freezing and frost heaving with special application to roads and railroads publication-title: Swedich Geol. Soc., Ser. C – year: 1995 ident: 10.1016/j.tust.2020.103647_b0095 – volume: 161 start-page: 43 year: 2019 ident: 10.1016/j.tust.2020.103647_b0215 article-title: Field observation of permafrost degradation under Mo'he airport, Northeastern China from 2007 to 2016 publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2019.03.004 – volume: 37 start-page: 3173 issue: 18 year: 2013 ident: 10.1016/j.tust.2020.103647_b0475 article-title: A three-phase thermo-hydro-mechanical finite element model for freezing soils publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.2184 – volume: 30 start-page: 966 issue: 4 year: 2007 ident: 10.1016/j.tust.2020.103647_b0220 article-title: Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2006.08.008 – volume: 28 start-page: 843 issue: 6 year: 1991 ident: 10.1016/j.tust.2020.103647_b0245 article-title: Discrete ice lens theory for frost heave in soils publication-title: Can. Geotech. J. doi: 10.1139/t91-102 – volume: 39 start-page: 1231 issue: 6 year: 2002 ident: 10.1016/j.tust.2020.103647_b0180 article-title: Prediction of freezing-induced movements for an underground construction project in Japan publication-title: Can. Geotech. J. doi: 10.1139/t02-077 – volume: 22 start-page: 43 issue: 1 year: 2000 ident: 10.1016/j.tust.2020.103647_b0045 article-title: Development and prospect of research on application of artificial ground freezing publication-title: Chin. J. Geotech. Eng. – volume: 42 start-page: 38 issue: 1 year: 2005 ident: 10.1016/j.tust.2020.103647_b0185 article-title: Estimation of the segregation potential of fine-grained soils using the frost heave response of two reference soils publication-title: Can. Geotech. J. doi: 10.1139/t04-080 – volume: 87 issue: 8 year: 2001 ident: 10.1016/j.tust.2020.103647_b0285 article-title: Interfacial premelting and the thermomolecular force: thermodynamic buoyancy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.088501 – volume: 6 start-page: 51 issue: 2 year: 2011 ident: 10.1016/j.tust.2020.103647_b0205 article-title: Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation publication-title: Acta Geotech. doi: 10.1007/s11440-011-0135-6 – volume: 54 start-page: 1650 issue: 6 year: 1994 ident: 10.1016/j.tust.2020.103647_b0070 article-title: A generalized secondary frost heave model publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139993252554 – volume: 50 start-page: 226 year: 2015 ident: 10.1016/j.tust.2020.103647_b0310 article-title: Artificial ground freezing to excavate a tunnel in sandy soil. Measurements and back analysis publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2015.07.008 – volume: 32 start-page: 111 issue: 1 year: 2008 ident: 10.1016/j.tust.2020.103647_b0300 article-title: Convergence of phase-field approximations to the Gibbs-Thomson law publication-title: Calc. Var. Partial. Differ. Equ. doi: 10.1007/s00526-007-0133-6 – volume: 157 start-page: 110 year: 2019 ident: 10.1016/j.tust.2020.103647_b0400 article-title: Effect of moisture content on mechanical and damage behavior of frozen loess under triaxial condition along with different confining pressures publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2018.10.004 – volume: 38 start-page: 303 issue: 4 year: 1930 ident: 10.1016/j.tust.2020.103647_b0335 article-title: The mechanics of frost heaving publication-title: J. Geol. doi: 10.1086/623720 – volume: 59 start-page: 173 issue: 3 year: 2009 ident: 10.1016/j.tust.2020.103647_b0365 article-title: Modelling of cryogenic processes in permafrost and seasonally frozen soils publication-title: Geotechnique doi: 10.1680/geot.2009.59.3.173 – volume: 39 start-page: 2226 issue: 12 year: 2017 ident: 10.1016/j.tust.2020.103647_b0425 article-title: Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF publication-title: Chin. J. Geotech. Eng. – ident: 10.1016/j.tust.2020.103647_b0385 doi: 10.1155/2019/1670820 – volume: 43 start-page: 128 issue: 3 year: 2005 ident: 10.1016/j.tust.2020.103647_b0100 article-title: Frost heave and water uptake rates in silty soil subject to variable water table height during freezing publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2005.03.003 – volume: 31 start-page: 1 issue: 1 year: 1994 ident: 10.1016/j.tust.2020.103647_b0080 article-title: A numerical and experimental study of the artificial freezing of sand publication-title: Can. Geotech. J. doi: 10.1139/t94-001 – volume: 57 start-page: 1541 year: 1961 ident: 10.1016/j.tust.2020.103647_b0065 article-title: The thermodynamics of frost damage to porous solids publication-title: Trans. Faraday Soc. doi: 10.1039/tf9615701541 – volume: 22 start-page: 4136 issue: 10 year: 2018 ident: 10.1016/j.tust.2020.103647_b0110 article-title: Artificial ground freezing in tunnelling through aquifer soil layers: a case study in Nanjing Metro Line 2 publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-018-0049-z – volume: 18 start-page: 482 issue: 4 year: 1981 ident: 10.1016/j.tust.2020.103647_b0155 article-title: The segregation potential of a freezing soil publication-title: Can. Geotech. J. doi: 10.1139/t81-059 – volume: 19 start-page: 526 issue: 4 year: 1982 ident: 10.1016/j.tust.2020.103647_b0255 article-title: Field frost heave predictions using the segregation potential concept publication-title: Can. Geotech. J. doi: 10.1139/t82-059 – volume: 37 start-page: 595 issue: 5–6 year: 2003 ident: 10.1016/j.tust.2020.103647_b0345 article-title: Freezing processes in porous media: Formation of ice lenses, swelling of the soil publication-title: Math. Comput. Modell. doi: 10.1016/S0895-7177(03)00053-0 – volume: 31 start-page: 772 issue: 5 year: 2009 ident: 10.1016/j.tust.2020.103647_b0350 article-title: Frost-heaving behaviors of mucky clay by artificial horizontal freezing method publication-title: Chin. J. Geotech. Eng. – volume: 190 start-page: 98 year: 2015 ident: 10.1016/j.tust.2020.103647_b0470 article-title: Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.03.002 – volume: 124 start-page: 87 year: 2016 ident: 10.1016/j.tust.2020.103647_b0235 article-title: A model of migration potential for moisture migration during soil freezing publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2015.12.015 – volume: 78 start-page: 805 year: 2014 ident: 10.1016/j.tust.2020.103647_b0195 article-title: Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.07.035 – volume: 87 issue: 3 year: 2013 ident: 10.1016/j.tust.2020.103647_b0315 article-title: Experimental constraints on the kinetics of ice lens initiation and growth publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.032404 – volume: 104 year: 2020 ident: 10.1016/j.tust.2020.103647_b0010 article-title: Artificial ground freezing: A review of thermal and hydraulic aspects publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103534 – volume: 21 start-page: 281 issue: 3 year: 1985 ident: 10.1016/j.tust.2020.103647_b0260 article-title: Exploration of a rigid ice model of frost heave publication-title: Water Resour. Res. doi: 10.1029/WR021i003p00281 – ident: 10.1016/j.tust.2020.103647_b0130 doi: 10.1061/41108(381)33 – ident: 10.1016/j.tust.2020.103647_b0250 – volume: 246 start-page: 1591 issue: 4937 year: 1989 ident: 10.1016/j.tust.2020.103647_b0050 article-title: Thermomolecular pressure in surface melting: motivation for frost heave publication-title: Science doi: 10.1126/science.246.4937.1591 – volume: 29 start-page: 04014019 issue: 4 year: 2015 ident: 10.1016/j.tust.2020.103647_b0440 article-title: Combined thermal-hydraulic-mechanical frost heave model based on Takashi’s equation publication-title: J. Cold Reg. Eng. doi: 10.1061/(ASCE)CR.1943-5495.0000089 – ident: 10.1016/j.tust.2020.103647_b0035 – volume: 30 start-page: 703 issue: 8 year: 2006 ident: 10.1016/j.tust.2020.103647_b0225 article-title: Frost heave modelling using porosity rate function publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.497 – volume: 120 year: 2020 ident: 10.1016/j.tust.2020.103647_b0485 article-title: Thermal and hydraulic analysis of selective artificial ground freezing using air insulation: Experiment and modeling publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2019.103416 – volume: 107 start-page: 246 year: 2018 ident: 10.1016/j.tust.2020.103647_b0200 article-title: An elastoplastic model for saturated freezing soils based on thermo-poromechanics publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.04.007 – volume: 17 start-page: 473 issue: 4 year: 1980 ident: 10.1016/j.tust.2020.103647_b0150 article-title: A mechanistic theory of ice lens formation in fine-grained soils publication-title: Can. Geotech. J. doi: 10.1139/t80-056 – year: 2001 ident: 10.1016/j.tust.2020.103647_b0415 – volume: 112 issue: F2 year: 2007 ident: 10.1016/j.tust.2020.103647_b0295 article-title: Formation of ice lenses and frost heave publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2006JF000525 – volume: 73 start-page: 1 year: 2016 ident: 10.1016/j.tust.2020.103647_b0380 article-title: Modeling heat and mass transfer during ground freezing subjected to high seepage velocities publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2015.11.014 – volume: 2 start-page: 241 issue: 2 year: 1966 ident: 10.1016/j.tust.2020.103647_b0105 article-title: Moisture movement in soils under temperature gradients with the cold-side temperature below freezing publication-title: Water Resour. Res. doi: 10.1029/WR002i002p00241 – volume: 3 start-page: 141 issue: 3 year: 2014 ident: 10.1016/j.tust.2020.103647_b0040 article-title: Artificial ground freezing of a volcanic ash: laboratory tests and modelling publication-title: Environ. Geotech. doi: 10.1680/envgeo.14.00004 – volume: 117 start-page: 1 year: 2015 ident: 10.1016/j.tust.2020.103647_b0465 article-title: Artificial ground freezing of fully saturated mucky clay: Thawing problem by centrifuge modeling publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2015.04.005 – volume: 52 start-page: 3889 issue: 10 year: 2019 ident: 10.1016/j.tust.2020.103647_b0375 article-title: Thermo-hydro-mechanical modeling of artificial ground freezing: application in mining engineering publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-019-01786-9 – volume: 23 start-page: 1064 issue: 3 year: 2019 ident: 10.1016/j.tust.2020.103647_b0355 article-title: Deformation Prediction and Deformation Characteristics of Multilayers of Mucky Clay under Artificial Freezing Condition publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-019-1599-4 – volume: 72 start-page: 43 year: 2012 ident: 10.1016/j.tust.2020.103647_b0460 article-title: Numerical analysis of coupled water, heat and stress in saturated freezing soil publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2011.11.006 – year: 2011 ident: 10.1016/j.tust.2020.103647_b0115 – start-page: 17 year: 1991 ident: 10.1016/j.tust.2020.103647_b0075 article-title: Thermomechanical modeling of freezing soil |
SSID | ssj0005229 |
Score | 2.4681108 |
Snippet | •The water migration mainly occurred along depth during active freezing stage.•The quantity of freezing tubes can be optimized by controlling boundary... Artificial ground freezing (AGF) is a method of paramount importance for underground construction in soft soil area. There were numerous studies concerned on... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103647 |
SubjectTerms | Airport construction Airports Artificial ground freezing Clay Cooling rate Deformation effects Experiments Field experiment Freezing Freezing effects Frost heaving Ground freezing Mathematical analysis Multi-layer deformation Multilayers Practical frost heave prediction model Prediction models Predictions Segregation potential model Soft clay Tubes Underground construction |
Title | Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment |
URI | https://dx.doi.org/10.1016/j.tust.2020.103647 https://www.proquest.com/docview/2480299627 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuLHHDl4k7omTZr2OIZjKuyig91C2iYwHd3YpqAH_3bf64dOkR28lfAS2veZpO_3HiGXPGIy4ykob6bggKIy5plMBZ6MObMMHCBLiyzfYTgYibuxHDdIr8bCYFpl5ftLn15462qkU3GzM59MOg9gH6FSMYSwAIuKINBcCIVafv2xnuZRdCpDYg-pK-BMmeO1QlgDHP8L7HmILVb-Dk6_3HQRe_p7ZLfaNNJu-V77pGHzA7KzVkrwkDyXhYeA43S-wJ8vyHBa9oem8OQQ3UHB875aOnN0Cd6XplPzRic5xe8tC0lQBHnkGVBb-w7rUrympUWWG_3uBXBERv2bx97AqxopeCaQbOU5HovMgCVzk2CbUl-IhEsX-xDBMpf5LgGBhb5lLmXGhtaXMGrAWuEsEqjID45JM5_l9oRQI0Vq48SERhjBIhO5kFkey1j4jnGnTgmrOajTqso4NruY6jqd7Ekj1zVyXZdcPyVXX3PmZY2NjdSyFoz-oSkagsDGea1airqy06XmIvIhIIdcnf1z2XOyzTHNpbiVaZHmavFiL2CfskrahSK2yVb39n4w_AR3Bee- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8Ylvc_AmZZs06eO4LMr62osK3kLaJrC61EVXQX-9M23qC_HgrYRMaCeZmST95huAQ5FyVYoCF2-Z4AElKXlgyiQKVCa45egAeVGjfIfx4Eae3arbGei3uTAEq_S-v_Hptbf2LV2vze5kNOpeoX3ESZJhCIuIVETNwhyxU6kOzPVOzwfDL0iPulgZ9Q9IwOfONDCvKWU2CNw0Ufp5TFVWfo9PPzx1HX5OlmHJ7xtZr3m1FZix1SosfmETXIP7hnsIlc4mj_T_hXTOmhLRDJ8cJXgwdL4vlj049oQOmBVj88pGFaNPbrgkGOV5VCX2tvYNx2V0U8tqoBv7LAewDjcnx9f9QeBrKQQmUnwaOJHJ0qAxC5NTpdJQylwol4UYxEpXhi7HOYtDy13BjY1tqLDVoMHicSRK0jDagE71UNlNYEbJwma5iY00kqcmdTG3IlOZDB0XLtkC3mpQF55onOpdjHWLKLvTpHVNWteN1rfg6ENm0tBs_NlbtROjvy0WjXHgT7nddha1N9UnLWQaYkyORbL9z2EPYH5wfXmhL06H5zuwIAj1Ul_S7EJn-vhs93DbMs33_bJ8B2um6m8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+prediction+method+on+frost+heave+of+soft+clay+in+artificial+ground+freezing+with+field+experiment&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Zhou%2C+Jie&rft.au=Zhao%2C+Wenqiang&rft.au=Tang%2C+Yiqun&rft.date=2021-01-01&rft.pub=Elsevier+BV&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=107&rft.spage=1&rft_id=info:doi/10.1016%2Fj.tust.2020.103647&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |