Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment

•The water migration mainly occurred along depth during active freezing stage.•The quantity of freezing tubes can be optimized by controlling boundary conditions.•Multilayer temperatures contribute an actual thermal gradient to model computation.•The deformation of multilayers is directly relevant t...

Full description

Saved in:
Bibliographic Details
Published inTunnelling and underground space technology Vol. 107; p. 103647
Main Authors Zhou, Jie, Zhao, Wenqiang, Tang, Yiqun
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The water migration mainly occurred along depth during active freezing stage.•The quantity of freezing tubes can be optimized by controlling boundary conditions.•Multilayer temperatures contribute an actual thermal gradient to model computation.•The deformation of multilayers is directly relevant to the position of frost front.•Frost heave in AGF can be predicted based on SP theory and field experimental data. Artificial ground freezing (AGF) is a method of paramount importance for underground construction in soft soil area. There were numerous studies concerned on field observations and the theoretical formulations on frost heaves. However, the field observations and validity of the theoretical models from practical points were lack. This paper focused on a more accurate practical prediction method of frost heave by multilayer field experiments and segregation potential (SP) model, for a strict deformation requirement AGF project in a non-stopping airport during construction. Thus, a large-scale area (3.5 times than actual frozen curtain) field experiment of multilayered temperatures and displacements was conceived and developed, to evaluate the freezing effect and deformation characteristics. Temperature variations show that the additional freezing tubes at the tunnel opening can only achieve faster cooling rate initially but could not descend the final stable temperature, and so substantially increasing freezing tubes at the tunnel opening may not be best choice to keep excavation safe. Multilayered temperatures and displacements show that deformation of multi-layers is directly relevant to the position of frost front. A simplified frost heave prediction method using segregation potential concept is proposed based on field experimental data. The temperature gradient and frost front function have been calculated based on field monitoring results and served for the model computation. This prediction method was further validated by both other’s published and our field experimental data. 2–8% relative errors surrounding the axis of frozen curtain prove the applicability of this practical prediction model is much well. This paper provides valuable reference for urban tunneling under extreme conditions such as non-stopping airport or adjacent to existing structures.
AbstractList •The water migration mainly occurred along depth during active freezing stage.•The quantity of freezing tubes can be optimized by controlling boundary conditions.•Multilayer temperatures contribute an actual thermal gradient to model computation.•The deformation of multilayers is directly relevant to the position of frost front.•Frost heave in AGF can be predicted based on SP theory and field experimental data. Artificial ground freezing (AGF) is a method of paramount importance for underground construction in soft soil area. There were numerous studies concerned on field observations and the theoretical formulations on frost heaves. However, the field observations and validity of the theoretical models from practical points were lack. This paper focused on a more accurate practical prediction method of frost heave by multilayer field experiments and segregation potential (SP) model, for a strict deformation requirement AGF project in a non-stopping airport during construction. Thus, a large-scale area (3.5 times than actual frozen curtain) field experiment of multilayered temperatures and displacements was conceived and developed, to evaluate the freezing effect and deformation characteristics. Temperature variations show that the additional freezing tubes at the tunnel opening can only achieve faster cooling rate initially but could not descend the final stable temperature, and so substantially increasing freezing tubes at the tunnel opening may not be best choice to keep excavation safe. Multilayered temperatures and displacements show that deformation of multi-layers is directly relevant to the position of frost front. A simplified frost heave prediction method using segregation potential concept is proposed based on field experimental data. The temperature gradient and frost front function have been calculated based on field monitoring results and served for the model computation. This prediction method was further validated by both other’s published and our field experimental data. 2–8% relative errors surrounding the axis of frozen curtain prove the applicability of this practical prediction model is much well. This paper provides valuable reference for urban tunneling under extreme conditions such as non-stopping airport or adjacent to existing structures.
Artificial ground freezing (AGF) is a method of paramount importance for underground construction in soft soil area. There were numerous studies concerned on field observations and the theoretical formulations on frost heaves. However, the field observations and validity of the theoretical models from practical points were lack. This paper focused on a more accurate practical prediction method of frost heave by multilayer field experiments and segregation potential (SP) model, for a strict deformation requirement AGF project in a non-stopping airport during construction. Thus, a large-scale area (3.5 times than actual frozen curtain) field experiment of multilayered temperatures and displacements was conceived and developed, to evaluate the freezing effect and deformation characteristics. Temperature variations show that the additional freezing tubes at the tunnel opening can only achieve faster cooling rate initially but could not descend the final stable temperature, and so substantially increasing freezing tubes at the tunnel opening may not be best choice to keep excavation safe. Multilayered temperatures and displacements show that deformation of multi-layers is directly relevant to the position of frost front. A simplified frost heave prediction method using segregation potential concept is proposed based on field experimental data. The temperature gradient and frost front function have been calculated based on field monitoring results and served for the model computation. This prediction method was further validated by both other's published and our field experimental data. 2–8% relative errors surrounding the axis of frozen curtain prove the applicability of this practical prediction model is much well. This paper provides valuable reference for urban tunneling under extreme conditions such as non-stopping airport or adjacent to existing structures.
ArticleNumber 103647
Author Tang, Yiqun
Zhou, Jie
Zhao, Wenqiang
Author_xml – sequence: 1
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People’s Republic of China
– sequence: 2
  givenname: Wenqiang
  surname: Zhao
  fullname: Zhao, Wenqiang
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People’s Republic of China
– sequence: 3
  givenname: Yiqun
  surname: Tang
  fullname: Tang, Yiqun
  email: tangyiqun2@tongji.edu.cn
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People’s Republic of China
BookMark eNp9kEtPLCEQRonRxPHxB1yRuO6xoF904saY6yMx0YWuCQOFw9jCCIyvXy-dcXUXrigq36Goc0B2ffBIyAmDOQPWna3meZPynAOfGnXX9DtkxkQvqqZcdskMhOiqvh_EPjlIaQUALefDjLw8RKWz02qk64jGlTp4-op5GQwtlY0hZbpE9Y40WJqCzVSP6os6T1XMzjrtCvscw8abkkb8dv6Zfri8pNbhaCh-rjG6V_T5iOxZNSY8_j0PydPVv8fLm-ru_vr28uKuUnXLcmX50BgFjHG10ChaaJoFb-0ADauNNWAXrDUdILOaKewQ2tJVLYO-E3UvoD4kp9t31zG8bTBluQqb6MtIyRsBfBg63pcU36Z0WTFFtHJdvqnil2QgJ6lyJSepcpIqt1ILJP6DtMtqcpajcuPf6PkWxbL6u8Mok3bodZEeUWdpgvsL_wGGqpaA
CitedBy_id crossref_primary_10_1155_2022_6198660
crossref_primary_10_1016_j_jrmge_2021_07_015
crossref_primary_10_1051_geotech_2022008
crossref_primary_10_1016_j_coldregions_2022_103627
crossref_primary_10_3390_app13148508
crossref_primary_10_19110_1994_5655_2024_3_106_115
crossref_primary_10_1016_j_amc_2021_126343
crossref_primary_10_1061_IJGNAI_GMENG_9132
crossref_primary_10_1007_s00603_023_03710_8
crossref_primary_10_1016_j_coldregions_2023_103985
crossref_primary_10_1038_s41598_025_85839_w
crossref_primary_10_3390_su151914166
crossref_primary_10_1016_j_coldregions_2023_103908
crossref_primary_10_1016_j_rcar_2023_11_005
crossref_primary_10_1016_j_coldregions_2021_103313
crossref_primary_10_1016_j_tust_2024_106015
crossref_primary_10_1007_s12205_024_1833_6
crossref_primary_10_1016_j_tust_2023_105469
crossref_primary_10_1061__ASCE_CR_1943_5495_0000280
crossref_primary_10_1144_qjegh2020_116
crossref_primary_10_1016_j_tust_2021_104352
crossref_primary_10_1007_s10706_021_01904_x
crossref_primary_10_1016_j_enggeo_2024_107796
crossref_primary_10_1016_j_coldregions_2024_104371
crossref_primary_10_1016_j_tust_2022_104948
crossref_primary_10_1088_2053_1591_ad913d
crossref_primary_10_1007_s12517_021_08282_x
crossref_primary_10_1007_s12205_022_1038_9
crossref_primary_10_1520_JTE20240128
crossref_primary_10_1155_2022_1004735
crossref_primary_10_7242_1999_6691_2021_14_2_12
crossref_primary_10_1016_j_soildyn_2023_108222
crossref_primary_10_32604_cmes_2022_020388
crossref_primary_10_1016_j_undsp_2023_06_003
crossref_primary_10_1155_2022_9410466
crossref_primary_10_1016_j_enggeo_2024_107770
crossref_primary_10_1016_j_enggeo_2025_107992
crossref_primary_10_3390_geotechnics4030038
crossref_primary_10_1002_nag_3805
crossref_primary_10_1016_j_cscm_2025_e04239
crossref_primary_10_1155_2021_5573372
Cites_doi 10.1139/t78-058
10.1061/(ASCE)0887-381X(2004)18:1(2)
10.1016/j.coldregions.2009.12.007
10.1086/623637
10.1016/S0266-352X(01)00015-5
10.1103/RevModPhys.78.695
10.1139/t84-008
10.1002/ppp.3430050307
10.1146/annurev.fluid.37.061903.175758
10.1103/PhysRevLett.74.5076
10.1016/0165-232X(95)00028-A
10.1061/(ASCE)0733-9399(2005)131:2(211)
10.1029/WR009i005p01314
10.1016/j.coldregions.2008.01.002
10.1007/s11440-017-0579-4
10.1061/9780784413401.021
10.1016/j.cma.2020.113358
10.1007/s11440-011-0135-6
10.2136/vzj2012.0049
10.1007/BF02882762
10.1016/j.enggeo.2009.08.009
10.1016/j.coldregions.2015.06.010
10.1139/t80-005
10.1016/j.compgeo.2019.103155
10.1016/j.ijheatmasstransfer.2018.05.059
10.1016/j.sandf.2016.08.014
10.1016/0165-232X(80)90015-4
10.1139/t82-053
10.1016/j.compgeo.2019.103382
10.1016/j.ijheatmasstransfer.2017.12.065
10.1016/j.coldregions.2018.11.003
10.1680/geot.9.P.120
10.1016/0165-232X(89)90004-9
10.1088/0034-4885/58/1/003
10.1103/PhysRevE.81.031604
10.1017/S0022112003006761
10.1016/j.coldregions.2019.03.004
10.1002/nag.2184
10.1016/j.advwatres.2006.08.008
10.1139/t91-102
10.1139/t02-077
10.1139/t04-080
10.1103/PhysRevLett.87.088501
10.1137/S0036139993252554
10.1016/j.tust.2015.07.008
10.1007/s00526-007-0133-6
10.1016/j.coldregions.2018.10.004
10.1086/623720
10.1680/geot.2009.59.3.173
10.1155/2019/1670820
10.1016/j.coldregions.2005.03.003
10.1139/t94-001
10.1039/tf9615701541
10.1007/s12205-018-0049-z
10.1139/t81-059
10.1139/t82-059
10.1016/S0895-7177(03)00053-0
10.1016/j.enggeo.2015.03.002
10.1016/j.coldregions.2015.12.015
10.1016/j.ijheatmasstransfer.2014.07.035
10.1103/PhysRevE.87.032404
10.1016/j.tust.2020.103534
10.1029/WR021i003p00281
10.1061/41108(381)33
10.1126/science.246.4937.1591
10.1061/(ASCE)CR.1943-5495.0000089
10.1002/nag.497
10.1016/j.compgeo.2019.103416
10.1016/j.ijplas.2018.04.007
10.1139/t80-056
10.1029/2006JF000525
10.1016/j.compgeo.2015.11.014
10.1029/WR002i002p00241
10.1680/envgeo.14.00004
10.1016/j.coldregions.2015.04.005
10.1007/s00603-019-01786-9
10.1007/s12205-019-1599-4
10.1016/j.coldregions.2011.11.006
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jan 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2021
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1016/j.tust.2020.103647
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-4364
ExternalDocumentID 10_1016_j_tust_2020_103647
S0886779820306015
Genre Feature
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-a351t-f294da0112abce85044b25f90413dfd0fb15d60e1fc1ae6e05dfda51076837803
IEDL.DBID .~1
ISSN 0886-7798
IngestDate Mon Jul 14 08:29:00 EDT 2025
Thu Apr 24 22:58:27 EDT 2025
Tue Jul 01 01:06:28 EDT 2025
Fri Feb 23 02:46:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Artificial ground freezing
Freezing effects
Multi-layer deformation
Field experiment
Segregation potential model
Practical frost heave prediction model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a351t-f294da0112abce85044b25f90413dfd0fb15d60e1fc1ae6e05dfda51076837803
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 2480299627
PQPubID 2045384
ParticipantIDs proquest_journals_2480299627
crossref_primary_10_1016_j_tust_2020_103647
crossref_citationtrail_10_1016_j_tust_2020_103647
elsevier_sciencedirect_doi_10_1016_j_tust_2020_103647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Tunnelling and underground space technology
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hu, Wang (b0120) 2011
Liu, Lai, Wong, Feng (b0200) 2018; 107
Konrad (b0180) 2002; 39
Beskow (b0020) 1935; 375
Dash (b0050) 1989; 246
Thomas, Cleall, Li, Harris, Kern-Luetschg (b0365) 2009; 59
Lai, Pei, Zhang, Zhou (b0195) 2014; 78
Tang, Hong, Yang, Wang, Hu (b0350) 2009; 31
Pimentel, Sres, Anagnostou (b0280) 2012; 62
Zhang, Yang (b0430) 2013; 37
Harlan (b0090) 1973; 9
Rouabhi, Jahangir, Tounsi (b0305) 2018; 120
Hoekstra (b0105) 1966; 2
Liu, Yu (b0205) 2011; 6
Tang, Xiao, Zhou (b0355) 2019; 23
Zheng, Kanie (b0440) 2015; 29
Michalowski, Zhu (b0225) 2006; 30
Takashi, Yamamoto, Ohrai, Masuda (b0340) 1978
Anderson, D.M., Tice, A.R., McKim, H.L., 1973. The unfrozen water and the apparent specific heat capacity of frozen soils. In: Second international conference on Permafrost, Yakutsk, USSR. North American Contribution, pp. 289–295.
Wilen, Dash (b0395) 1995; 74
Bronfenbrener, Bronfenbrener (b0025) 2010; 61
Hu (b0115) 2011
Hansen-Goos, Wettlaufer (b0085) 2010; 81
Konrad, Morgenstern (b0150) 1980; 17
Zheng, Kanie, Niu, Akagawa, Li (b0445) 2016; 56
Kim, Zhou, Huang (b0145) 2008; 53
Wang, B., Rong, C. X., Lin, J., Cheng, H., Cai, H. B., 2019. Study on the formation law of the freezing temperature field of freezing shaft sinking under the action of large-flow-rate groundwater. Adv. Mater. Sci. Eng., 2019.
Casini, Gens, Olivella, Viggiani (b0040) 2014; 3
Tounsi, Rouabhi, Jahangir (b0370) 2020; 119
Alzoubi, Nie-Rouquette, Sasmito (b0005) 2018; 126
Saruya, Kurita, Rempel (b0315) 2013; 87
Taylor, Luthin (b0360) 1978; 15
Zhou, Zhou, Hu, Wang, Shang (b0455) 2018; 13
Chen, Cheng, Li, Guo, Zhu (b0045) 2000; 22
Röger, Tonegawa (b0300) 2008; 32
Taber (b0330) 1929; 37
Zhou, Tang (b0470) 2015; 190
Mao, Li, Ma, Mu, Wang, Miao, Wu (b0215) 2019; 161
Zueter, Nie-Rouquette, Alzoubi, Sasmito (b0485) 2020; 120
Lackner, Amon, Lagger (b0190) 2005; 131
Miller (b0230) 1972; 393
Neaupane, Yamabe (b0240) 2001; 28
McKenzie, Voss, Siegel (b0220) 2007; 30
Nixon, J. F., Ellwood, J. R., Slusarchuk, W. A., 1981. In-situ frost heave testing using cold plates. In: Proceedings, 4th Canadian Permafrost Conference, Calgary, NRCC NO. 20124, National Research Council of Canada, Ottawa, Ont.
Xu, Shen, Du (b0420) 2009; 109
Zhen, Xiong (b0435) 2011; 6
Wettlaufer, Worster (b0390) 2006; 38
Nixon (b0255) 1982; 19
Konrad, Morgenstern (b0155) 1981; 18
Hu, Liu, Li, Yao (b0110) 2018; 22
Huang, Bray, Akagawa, Fukuda (b0135) 2004; 18
Fremond, Mikkola (b0075) 1991
Rempel (b0295) 2007; 112
Xu, Deng (b0405) 1991
Ming, Li (b0235) 2016; 124
Rempel, Wettlaufer, Worster (b0290) 2004; 498
Hu, X. D., Guo, W., 2011. Construction methods for cross passage in soft ground tunnels in China. In: 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, pp. 193–196.
Konrad, Morgenstern (b0160) 1982; 19
Mageau, Morgenstern (b0210) 1980; 17
Xu, Wang, Zhang (b0415) 2001
Rempel, Wettlaufer, Worster (b0285) 2001; 87
Konrad, Morgenstern (b0165) 1984; 21
Konrad, Shen (b0175) 1996; 24
Hu, X. D., Zhao, F., Yu, R. Z., 2010. Safety Problem of Freezing Projects in Saline Soils. In: Ground improvement and geosynthetics. Proceedings of sessions of GeoShanghai 2010, Shanghai, China, 3-5 June, 2010. American Society of Civil Engineers (ASCE), pp. 255–262.
Ji, Zhou, Zhou, Vandeginste (b0140) 2019; 158
Zhou, M.M., Meschke, G., 2014. Numerical modeling of artificial ground freezing: multiphase modeling and strength upscaling. In Ground Improvement and Geosynthetics, pp. 209-219.
Konrad (b0170) 1989; 16
Zheng, Kanie, Niu, Li (b0450) 2015; 118
Taber (b0335) 1930; 38
Yang, Chen, Zhang, Wan (b0425) 2017; 39
Zhou, Tang (b0465) 2015; 117
Talamucci (b0345) 2003; 37
Tounsi, Rouabhi, Tijani, Guérin (b0375) 2019; 52
Cai, Li, Liang, Yao, Cheng (b0030) 2019; 115
Konrad (b0185) 2005; 42
Gioda, Locatelli, Gallavresi (b0080) 1994; 31
Canadian Geotechnical Society. Foundations Committee. 1978. Canadian foundation engineering manual. Canadian Geotechnical Society.
Sweidan, Heider, Markert (b0325) 2020; 372
Alzoubi, Xu, Hassani, Poncet, Sasmito (b0010) 2020; 104
Peppin, Style (b0270) 2013; 12
Russo, Corbo, Cavuoto, Autuori (b0310) 2015; 50
Dash, Rempel, Wettlaufer (b0060) 2006; 78
Everett (b0065) 1961; 57
Xu, Li, Lai, Pang, Zhang (b0400) 2019; 157
Hermansson, Guthrie (b0100) 2005; 43
Zhou, Li (b0460) 2012; 72
Nixon (b0245) 1991; 28
Fowler, Krantz (b0070) 1994; 54
O'Neill, Miller (b0260) 1985; 21
Xu, Wang, Zhang, Deng, Chuvilin, Yershov, Ishizaki, Fukuda (b0410) 1997; 42
Zhou, Meschke (b0475) 2013; 37
Penner, E., 1959. The mechanism of frost heaving in soils. Highway Research Board Bulletin, (225).
Vitel, Rouabhi, Tijani, Guérin (b0380) 2016; 73
Dash, Fu, Wettlaufer (b0055) 1995; 58
Perfect, Williams (b0275) 1980; 3
Solomatin, Xu (b0320) 1994; 5
Harris (b0095) 1995
Dash (10.1016/j.tust.2020.103647_b0055) 1995; 58
Michalowski (10.1016/j.tust.2020.103647_b0225) 2006; 30
Ming (10.1016/j.tust.2020.103647_b0235) 2016; 124
Cai (10.1016/j.tust.2020.103647_b0030) 2019; 115
Taylor (10.1016/j.tust.2020.103647_b0360) 1978; 15
Liu (10.1016/j.tust.2020.103647_b0205) 2011; 6
Nixon (10.1016/j.tust.2020.103647_b0245) 1991; 28
Zhou (10.1016/j.tust.2020.103647_b0470) 2015; 190
Rouabhi (10.1016/j.tust.2020.103647_b0305) 2018; 120
Solomatin (10.1016/j.tust.2020.103647_b0320) 1994; 5
Vitel (10.1016/j.tust.2020.103647_b0380) 2016; 73
Wettlaufer (10.1016/j.tust.2020.103647_b0390) 2006; 38
Tounsi (10.1016/j.tust.2020.103647_b0370) 2020; 119
Nixon (10.1016/j.tust.2020.103647_b0255) 1982; 19
Xu (10.1016/j.tust.2020.103647_b0400) 2019; 157
Perfect (10.1016/j.tust.2020.103647_b0275) 1980; 3
Rempel (10.1016/j.tust.2020.103647_b0285) 2001; 87
Huang (10.1016/j.tust.2020.103647_b0135) 2004; 18
Wilen (10.1016/j.tust.2020.103647_b0395) 1995; 74
Zhang (10.1016/j.tust.2020.103647_b0430) 2013; 37
Hu (10.1016/j.tust.2020.103647_b0120) 2011
Harlan (10.1016/j.tust.2020.103647_b0090) 1973; 9
Takashi (10.1016/j.tust.2020.103647_b0340) 1978
Bronfenbrener (10.1016/j.tust.2020.103647_b0025) 2010; 61
Mao (10.1016/j.tust.2020.103647_b0215) 2019; 161
Konrad (10.1016/j.tust.2020.103647_b0155) 1981; 18
Sweidan (10.1016/j.tust.2020.103647_b0325) 2020; 372
Zueter (10.1016/j.tust.2020.103647_b0485) 2020; 120
O'Neill (10.1016/j.tust.2020.103647_b0260) 1985; 21
Zhou (10.1016/j.tust.2020.103647_b0455) 2018; 13
Dash (10.1016/j.tust.2020.103647_b0060) 2006; 78
Thomas (10.1016/j.tust.2020.103647_b0365) 2009; 59
Mageau (10.1016/j.tust.2020.103647_b0210) 1980; 17
Yang (10.1016/j.tust.2020.103647_b0425) 2017; 39
Lai (10.1016/j.tust.2020.103647_b0195) 2014; 78
Xu (10.1016/j.tust.2020.103647_b0405) 1991
Xu (10.1016/j.tust.2020.103647_b0420) 2009; 109
Konrad (10.1016/j.tust.2020.103647_b0165) 1984; 21
10.1016/j.tust.2020.103647_b0480
Taber (10.1016/j.tust.2020.103647_b0330) 1929; 37
Hoekstra (10.1016/j.tust.2020.103647_b0105) 1966; 2
Harris (10.1016/j.tust.2020.103647_b0095) 1995
Ji (10.1016/j.tust.2020.103647_b0140) 2019; 158
Xu (10.1016/j.tust.2020.103647_b0410) 1997; 42
Pimentel (10.1016/j.tust.2020.103647_b0280) 2012; 62
Alzoubi (10.1016/j.tust.2020.103647_b0005) 2018; 126
Alzoubi (10.1016/j.tust.2020.103647_b0010) 2020; 104
10.1016/j.tust.2020.103647_b0125
Saruya (10.1016/j.tust.2020.103647_b0315) 2013; 87
10.1016/j.tust.2020.103647_b0130
Zhen (10.1016/j.tust.2020.103647_b0435) 2011; 6
10.1016/j.tust.2020.103647_b0250
Gioda (10.1016/j.tust.2020.103647_b0080) 1994; 31
Lackner (10.1016/j.tust.2020.103647_b0190) 2005; 131
Zheng (10.1016/j.tust.2020.103647_b0445) 2016; 56
Zheng (10.1016/j.tust.2020.103647_b0440) 2015; 29
Hu (10.1016/j.tust.2020.103647_b0110) 2018; 22
Beskow (10.1016/j.tust.2020.103647_b0020) 1935; 375
10.1016/j.tust.2020.103647_b0015
Röger (10.1016/j.tust.2020.103647_b0300) 2008; 32
10.1016/j.tust.2020.103647_b0265
10.1016/j.tust.2020.103647_b0385
Hu (10.1016/j.tust.2020.103647_b0115) 2011
Hansen-Goos (10.1016/j.tust.2020.103647_b0085) 2010; 81
Zhou (10.1016/j.tust.2020.103647_b0475) 2013; 37
Tang (10.1016/j.tust.2020.103647_b0350) 2009; 31
Xu (10.1016/j.tust.2020.103647_b0415) 2001
Zhou (10.1016/j.tust.2020.103647_b0465) 2015; 117
Hermansson (10.1016/j.tust.2020.103647_b0100) 2005; 43
Zhou (10.1016/j.tust.2020.103647_b0460) 2012; 72
Kim (10.1016/j.tust.2020.103647_b0145) 2008; 53
Russo (10.1016/j.tust.2020.103647_b0310) 2015; 50
Fowler (10.1016/j.tust.2020.103647_b0070) 1994; 54
Rempel (10.1016/j.tust.2020.103647_b0290) 2004; 498
Konrad (10.1016/j.tust.2020.103647_b0150) 1980; 17
Chen (10.1016/j.tust.2020.103647_b0045) 2000; 22
Tang (10.1016/j.tust.2020.103647_b0355) 2019; 23
Miller (10.1016/j.tust.2020.103647_b0230) 1972; 393
Tounsi (10.1016/j.tust.2020.103647_b0375) 2019; 52
Casini (10.1016/j.tust.2020.103647_b0040) 2014; 3
Rempel (10.1016/j.tust.2020.103647_b0295) 2007; 112
Peppin (10.1016/j.tust.2020.103647_b0270) 2013; 12
Neaupane (10.1016/j.tust.2020.103647_b0240) 2001; 28
Everett (10.1016/j.tust.2020.103647_b0065) 1961; 57
McKenzie (10.1016/j.tust.2020.103647_b0220) 2007; 30
10.1016/j.tust.2020.103647_b0035
Dash (10.1016/j.tust.2020.103647_b0050) 1989; 246
Talamucci (10.1016/j.tust.2020.103647_b0345) 2003; 37
Konrad (10.1016/j.tust.2020.103647_b0180) 2002; 39
Zheng (10.1016/j.tust.2020.103647_b0450) 2015; 118
Konrad (10.1016/j.tust.2020.103647_b0185) 2005; 42
Konrad (10.1016/j.tust.2020.103647_b0175) 1996; 24
Fremond (10.1016/j.tust.2020.103647_b0075) 1991
Konrad (10.1016/j.tust.2020.103647_b0170) 1989; 16
Konrad (10.1016/j.tust.2020.103647_b0160) 1982; 19
Liu (10.1016/j.tust.2020.103647_b0200) 2018; 107
Taber (10.1016/j.tust.2020.103647_b0335) 1930; 38
References_xml – volume: 53
  start-page: 382
  year: 2008
  end-page: 396
  ident: b0145
  article-title: Frost heave predictions of buried chilled gas pipelines with the effect of permafrost
  publication-title: Cold Reg. Sci. Technol.
– volume: 21
  start-page: 100
  year: 1984
  end-page: 115
  ident: b0165
  article-title: Frost heave prediction of chilled pipelines buried in unfrozen soils
  publication-title: Can. Geotech. J.
– volume: 57
  start-page: 1541
  year: 1961
  end-page: 1551
  ident: b0065
  article-title: The thermodynamics of frost damage to porous solids
  publication-title: Trans. Faraday Soc.
– volume: 124
  start-page: 87
  year: 2016
  end-page: 94
  ident: b0235
  article-title: A model of migration potential for moisture migration during soil freezing
  publication-title: Cold Reg. Sci. Technol.
– volume: 161
  start-page: 43
  year: 2019
  end-page: 50
  ident: b0215
  article-title: Field observation of permafrost degradation under Mo'he airport, Northeastern China from 2007 to 2016
  publication-title: Cold Reg. Sci. Technol.
– volume: 498
  start-page: 227
  year: 2004
  end-page: 244
  ident: b0290
  article-title: Premelting dynamics in a continuum model of frost heave
  publication-title: J. Fluid Mech.
– volume: 6
  start-page: 51
  year: 2011
  end-page: 65
  ident: b0435
  article-title: Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation
  publication-title: Acta Geotech.
– volume: 81
  year: 2010
  ident: b0085
  article-title: Theory of ice premelting in porous media
  publication-title: Phys. Rev. E
– volume: 16
  start-page: 25
  year: 1989
  end-page: 36
  ident: b0170
  article-title: Influence of cooling rate on the temperature of ice lens formation in clayey silts
  publication-title: Cold Reg. Sci. Technol.
– volume: 2
  start-page: 241
  year: 1966
  end-page: 250
  ident: b0105
  article-title: Moisture movement in soils under temperature gradients with the cold-side temperature below freezing
  publication-title: Water Resour. Res.
– volume: 87
  year: 2013
  ident: b0315
  article-title: Experimental constraints on the kinetics of ice lens initiation and growth
  publication-title: Phys. Rev. E
– volume: 117
  start-page: 1
  year: 2015
  end-page: 11
  ident: b0465
  article-title: Artificial ground freezing of fully saturated mucky clay: Thawing problem by centrifuge modeling
  publication-title: Cold Reg. Sci. Technol.
– reference: Hu, X. D., Guo, W., 2011. Construction methods for cross passage in soft ground tunnels in China. In: 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, pp. 193–196.
– volume: 13
  start-page: 207
  year: 2018
  end-page: 217
  ident: b0455
  article-title: Separate-ice frost heave model for one-dimensional soil freezing process
  publication-title: Acta Geotech.
– volume: 28
  start-page: 613
  year: 2001
  end-page: 637
  ident: b0240
  article-title: A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium
  publication-title: Comput. Geotech.
– volume: 23
  start-page: 1064
  year: 2019
  end-page: 1076
  ident: b0355
  article-title: Deformation Prediction and Deformation Characteristics of Multilayers of Mucky Clay under Artificial Freezing Condition
  publication-title: KSCE J. Civ. Eng.
– start-page: 6
  year: 1978
  ident: b0340
  article-title: Effect of penetration rate of freezing and confining stress on the frost heave ratio of soil
  publication-title: 3rd International Conference Permafrost
– volume: 74
  start-page: 5076
  year: 1995
  ident: b0395
  article-title: Frost heave dynamics at a single crystal interface
  publication-title: Phys. Rev. Lett.
– volume: 37
  start-page: 428
  year: 1929
  end-page: 461
  ident: b0330
  article-title: Frost heaving
  publication-title: J. Geol.
– reference: Anderson, D.M., Tice, A.R., McKim, H.L., 1973. The unfrozen water and the apparent specific heat capacity of frozen soils. In: Second international conference on Permafrost, Yakutsk, USSR. North American Contribution, pp. 289–295.
– reference: Zhou, M.M., Meschke, G., 2014. Numerical modeling of artificial ground freezing: multiphase modeling and strength upscaling. In Ground Improvement and Geosynthetics, pp. 209-219.
– volume: 157
  start-page: 110
  year: 2019
  end-page: 118
  ident: b0400
  article-title: Effect of moisture content on mechanical and damage behavior of frozen loess under triaxial condition along with different confining pressures
  publication-title: Cold Reg. Sci. Technol.
– volume: 18
  start-page: 2
  year: 2004
  end-page: 34
  ident: b0135
  article-title: Field investigation of soil heave by a large diameter chilled gas pipeline experiment, Fairbanks, Alaska
  publication-title: J. Cold Regions Eng.
– volume: 115
  year: 2019
  ident: b0030
  article-title: Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique
  publication-title: Comput. Geotech.
– volume: 17
  start-page: 54
  year: 1980
  end-page: 60
  ident: b0210
  article-title: Observations on moisture migration in frozen soils
  publication-title: Can. Geotech. J.
– volume: 19
  start-page: 526
  year: 1982
  end-page: 529
  ident: b0255
  article-title: Field frost heave predictions using the segregation potential concept
  publication-title: Can. Geotech. J.
– volume: 17
  start-page: 473
  year: 1980
  end-page: 486
  ident: b0150
  article-title: A mechanistic theory of ice lens formation in fine-grained soils
  publication-title: Can. Geotech. J.
– volume: 30
  start-page: 966
  year: 2007
  end-page: 983
  ident: b0220
  article-title: Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs
  publication-title: Adv. Water Resour.
– year: 1991
  ident: b0405
  article-title: Experimental study on water migration in freezing and frozen soils
– volume: 22
  start-page: 4136
  year: 2018
  end-page: 4142
  ident: b0110
  article-title: Artificial ground freezing in tunnelling through aquifer soil layers: a case study in Nanjing Metro Line 2
  publication-title: KSCE J. Civ. Eng.
– volume: 5
  start-page: 185
  year: 1994
  end-page: 190
  ident: b0320
  article-title: Water migration and ice segregation in the transition zone between thawed and frozen soil
  publication-title: Permafrost Periglac. Process.
– volume: 38
  start-page: 303
  year: 1930
  end-page: 317
  ident: b0335
  article-title: The mechanics of frost heaving
  publication-title: J. Geol.
– volume: 3
  start-page: 101
  year: 1980
  end-page: 109
  ident: b0275
  article-title: Thermally induced water migration in frozen soils
  publication-title: Cold Reg. Sci. Technol.
– volume: 39
  start-page: 2226
  year: 2017
  end-page: 2234
  ident: b0425
  article-title: Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF
  publication-title: Chin. J. Geotech. Eng.
– volume: 52
  start-page: 3889
  year: 2019
  end-page: 3907
  ident: b0375
  article-title: Thermo-hydro-mechanical modeling of artificial ground freezing: application in mining engineering
  publication-title: Rock Mech. Rock Eng.
– volume: 62
  start-page: 227
  year: 2012
  end-page: 241
  ident: b0280
  article-title: Large-scale laboratory tests on artificial ground freezing under seepage-flow conditions
  publication-title: Geotechnique
– volume: 56
  start-page: 904
  year: 2016
  end-page: 914
  ident: b0445
  article-title: Application of practical one-dimensional frost heave estimation method in two-dimensional situation
  publication-title: Soils Found.
– volume: 32
  start-page: 111
  year: 2008
  end-page: 136
  ident: b0300
  article-title: Convergence of phase-field approximations to the Gibbs-Thomson law
  publication-title: Calc. Var. Partial. Differ. Equ.
– volume: 59
  start-page: 173
  year: 2009
  end-page: 184
  ident: b0365
  article-title: Modelling of cryogenic processes in permafrost and seasonally frozen soils
  publication-title: Geotechnique
– volume: 190
  start-page: 98
  year: 2015
  end-page: 108
  ident: b0470
  article-title: Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing
  publication-title: Eng. Geol.
– volume: 37
  start-page: 3173
  year: 2013
  end-page: 3193
  ident: b0475
  article-title: A three-phase thermo-hydro-mechanical finite element model for freezing soils
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 39
  start-page: 1231
  year: 2002
  end-page: 1242
  ident: b0180
  article-title: Prediction of freezing-induced movements for an underground construction project in Japan
  publication-title: Can. Geotech. J.
– volume: 87
  year: 2001
  ident: b0285
  article-title: Interfacial premelting and the thermomolecular force: thermodynamic buoyancy
  publication-title: Phys. Rev. Lett.
– volume: 131
  start-page: 211
  year: 2005
  end-page: 220
  ident: b0190
  article-title: Artificial ground freezing of fully saturated soil: thermal problem
  publication-title: J. Eng. Mech.
– start-page: 17
  year: 1991
  end-page: 24
  ident: b0075
  article-title: Thermomechanical modeling of freezing soil
  publication-title: Proceedings of 6th International Symposium on Ground Freezing
– volume: 43
  start-page: 128
  year: 2005
  end-page: 139
  ident: b0100
  article-title: Frost heave and water uptake rates in silty soil subject to variable water table height during freezing
  publication-title: Cold Reg. Sci. Technol.
– volume: 58
  start-page: 115
  year: 1995
  ident: b0055
  article-title: The premelting of ice and its environmental consequences
  publication-title: Rep. Prog. Phys.
– volume: 12
  start-page: 1
  year: 2013
  end-page: 12
  ident: b0270
  article-title: The physics of frost heave and ice-lens growth
  publication-title: Vadose Zone J.
– volume: 246
  start-page: 1591
  year: 1989
  end-page: 1593
  ident: b0050
  article-title: Thermomolecular pressure in surface melting: motivation for frost heave
  publication-title: Science
– volume: 104
  year: 2020
  ident: b0010
  article-title: Artificial ground freezing: A review of thermal and hydraulic aspects
  publication-title: Tunn. Undergr. Space Technol.
– volume: 393
  start-page: 1
  year: 1972
  end-page: 11
  ident: b0230
  article-title: Freezing and heaving of saturated and unsaturated soils
  publication-title: Highway Res. Rec.
– volume: 28
  start-page: 843
  year: 1991
  end-page: 859
  ident: b0245
  article-title: Discrete ice lens theory for frost heave in soils
  publication-title: Can. Geotech. J.
– year: 2001
  ident: b0415
  article-title: Physics of frozen soil
– volume: 73
  start-page: 1
  year: 2016
  end-page: 15
  ident: b0380
  article-title: Modeling heat and mass transfer during ground freezing subjected to high seepage velocities
  publication-title: Comput. Geotech.
– volume: 15
  start-page: 548
  year: 1978
  end-page: 555
  ident: b0360
  article-title: A model for coupled heat and moisture transfer during soil freezing
  publication-title: Can. Geotech. J.
– reference: Canadian Geotechnical Society. Foundations Committee. 1978. Canadian foundation engineering manual. Canadian Geotechnical Society.
– volume: 6
  start-page: 51
  year: 2011
  end-page: 65
  ident: b0205
  article-title: Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation
  publication-title: Acta Geotech.
– reference: Nixon, J. F., Ellwood, J. R., Slusarchuk, W. A., 1981. In-situ frost heave testing using cold plates. In: Proceedings, 4th Canadian Permafrost Conference, Calgary, NRCC NO. 20124, National Research Council of Canada, Ottawa, Ont.
– reference: Penner, E., 1959. The mechanism of frost heaving in soils. Highway Research Board Bulletin, (225).
– volume: 29
  start-page: 04014019
  year: 2015
  ident: b0440
  article-title: Combined thermal-hydraulic-mechanical frost heave model based on Takashi’s equation
  publication-title: J. Cold Reg. Eng.
– volume: 118
  start-page: 30
  year: 2015
  end-page: 37
  ident: b0450
  article-title: Three-dimensional frost heave evaluation based on practical Takashi's equation
  publication-title: Cold Reg. Sci. Technol.
– volume: 372
  year: 2020
  ident: b0325
  article-title: A unified water/ice kinematics approach for phase-field thermo-hydro-mechanical modeling of frost action in porous media
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 37
  start-page: 117
  year: 2013
  end-page: 121
  ident: b0430
  article-title: Effects of unilateralist freezing on the moisture migration of soil
  publication-title: J. Nanjing Forest. Univ. (Nat. Sci. Ed.)
– volume: 107
  start-page: 246
  year: 2018
  end-page: 285
  ident: b0200
  article-title: An elastoplastic model for saturated freezing soils based on thermo-poromechanics
  publication-title: Int. J. Plast.
– reference: Wang, B., Rong, C. X., Lin, J., Cheng, H., Cai, H. B., 2019. Study on the formation law of the freezing temperature field of freezing shaft sinking under the action of large-flow-rate groundwater. Adv. Mater. Sci. Eng., 2019.
– volume: 42
  start-page: 38
  year: 2005
  end-page: 50
  ident: b0185
  article-title: Estimation of the segregation potential of fine-grained soils using the frost heave response of two reference soils
  publication-title: Can. Geotech. J.
– volume: 78
  start-page: 695
  year: 2006
  ident: b0060
  article-title: The physics of premelted ice and its geophysical consequences
  publication-title: Rev. Mod. Phys.
– volume: 42
  start-page: 1290
  year: 1997
  end-page: 1294
  ident: b0410
  article-title: Mechanism of frost heave by film water migration under temperature gradient
  publication-title: Chin. Sci. Bull.
– volume: 54
  start-page: 1650
  year: 1994
  end-page: 1675
  ident: b0070
  article-title: A generalized secondary frost heave model
  publication-title: SIAM J. Appl. Math.
– volume: 112
  year: 2007
  ident: b0295
  article-title: Formation of ice lenses and frost heave
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 61
  start-page: 43
  year: 2010
  end-page: 64
  ident: b0025
  article-title: Modeling frost heave in freezing soils
  publication-title: Cold Reg. Sci. Technol.
– volume: 30
  start-page: 703
  year: 2006
  end-page: 722
  ident: b0225
  article-title: Frost heave modelling using porosity rate function
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 158
  start-page: 10
  year: 2019
  end-page: 17
  ident: b0140
  article-title: Frost heave in freezing soils: A quasi-static model for ice lens growth
  publication-title: Cold Reg. Sci. Technol.
– volume: 50
  start-page: 226
  year: 2015
  end-page: 238
  ident: b0310
  article-title: Artificial ground freezing to excavate a tunnel in sandy soil. Measurements and back analysis
  publication-title: Tunn. Undergr. Space Technol.
– volume: 120
  year: 2020
  ident: b0485
  article-title: Thermal and hydraulic analysis of selective artificial ground freezing using air insulation: Experiment and modeling
  publication-title: Comput. Geotech.
– volume: 72
  start-page: 43
  year: 2012
  end-page: 49
  ident: b0460
  article-title: Numerical analysis of coupled water, heat and stress in saturated freezing soil
  publication-title: Cold Reg. Sci. Technol.
– volume: 109
  start-page: 241
  year: 2009
  end-page: 254
  ident: b0420
  article-title: Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures
  publication-title: Eng. Geol.
– volume: 3
  start-page: 141
  year: 2014
  end-page: 154
  ident: b0040
  article-title: Artificial ground freezing of a volcanic ash: laboratory tests and modelling
  publication-title: Environ. Geotech.
– volume: 78
  start-page: 805
  year: 2014
  end-page: 819
  ident: b0195
  article-title: Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil
  publication-title: Int. J. Heat Mass Transf.
– volume: 22
  start-page: 43
  year: 2000
  end-page: 47
  ident: b0045
  article-title: Development and prospect of research on application of artificial ground freezing
  publication-title: Chin. J. Geotech. Eng.
– volume: 18
  start-page: 482
  year: 1981
  end-page: 491
  ident: b0155
  article-title: The segregation potential of a freezing soil
  publication-title: Can. Geotech. J.
– start-page: 5735
  year: 2011
  end-page: 5738
  ident: b0120
  article-title: Analysis of salt-induced influence on frozen soil structure in artificial ground freezing
  publication-title: 2011 International Conference on Electric Technology and Civil Engineering (ICETCE)
– volume: 126
  start-page: 740
  year: 2018
  end-page: 752
  ident: b0005
  article-title: Conjugate heat transfer in artificial ground freezing using enthalpy-porosity method: experiments and model validation
  publication-title: Int. J. Heat Mass Transf.
– volume: 31
  start-page: 772
  year: 2009
  end-page: 776
  ident: b0350
  article-title: Frost-heaving behaviors of mucky clay by artificial horizontal freezing method
  publication-title: Chin. J. Geotech. Eng.
– reference: Hu, X. D., Zhao, F., Yu, R. Z., 2010. Safety Problem of Freezing Projects in Saline Soils. In: Ground improvement and geosynthetics. Proceedings of sessions of GeoShanghai 2010, Shanghai, China, 3-5 June, 2010. American Society of Civil Engineers (ASCE), pp. 255–262.
– volume: 31
  start-page: 1
  year: 1994
  end-page: 11
  ident: b0080
  article-title: A numerical and experimental study of the artificial freezing of sand
  publication-title: Can. Geotech. J.
– volume: 19
  start-page: 494
  year: 1982
  end-page: 505
  ident: b0160
  article-title: Effects of applied pressure on freezing soils
  publication-title: Can. Geotech. J.
– volume: 119
  year: 2020
  ident: b0370
  article-title: Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid
  publication-title: Comput. Geotech.
– year: 2011
  ident: b0115
  article-title: Development of the separate-ice frost heave model for the soil freezing process
– volume: 38
  start-page: 427
  year: 2006
  end-page: 452
  ident: b0390
  article-title: Premelting dynamics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 375
  start-page: 14
  year: 1935
  end-page: 21
  ident: b0020
  article-title: Soil freezing and frost heaving with special application to roads and railroads
  publication-title: Swedich Geol. Soc., Ser. C
– volume: 24
  start-page: 263
  year: 1996
  end-page: 278
  ident: b0175
  article-title: 2-D frost action modeling using the segregation potential of soil
  publication-title: Cold Reg. Sci. Technol.
– year: 1995
  ident: b0095
  article-title: Ground freezing in practice
– volume: 9
  start-page: 1314
  year: 1973
  end-page: 1323
  ident: b0090
  article-title: Analysis of coupled heat-fluid transport in partially frozen soil
  publication-title: Water Resour. Res.
– volume: 37
  start-page: 595
  year: 2003
  end-page: 602
  ident: b0345
  article-title: Freezing processes in porous media: Formation of ice lenses, swelling of the soil
  publication-title: Math. Comput. Modell.
– volume: 120
  start-page: 523
  year: 2018
  end-page: 533
  ident: b0305
  article-title: Modeling heat and mass transfer during ground freezing taking into account the salinity of the saturating fluid
  publication-title: Int. J. Heat Mass Transf.
– volume: 21
  start-page: 281
  year: 1985
  end-page: 296
  ident: b0260
  article-title: Exploration of a rigid ice model of frost heave
  publication-title: Water Resour. Res.
– ident: 10.1016/j.tust.2020.103647_b0265
– volume: 15
  start-page: 548
  issue: 4
  year: 1978
  ident: 10.1016/j.tust.2020.103647_b0360
  article-title: A model for coupled heat and moisture transfer during soil freezing
  publication-title: Can. Geotech. J.
  doi: 10.1139/t78-058
– volume: 18
  start-page: 2
  issue: 1
  year: 2004
  ident: 10.1016/j.tust.2020.103647_b0135
  article-title: Field investigation of soil heave by a large diameter chilled gas pipeline experiment, Fairbanks, Alaska
  publication-title: J. Cold Regions Eng.
  doi: 10.1061/(ASCE)0887-381X(2004)18:1(2)
– start-page: 6
  year: 1978
  ident: 10.1016/j.tust.2020.103647_b0340
  article-title: Effect of penetration rate of freezing and confining stress on the frost heave ratio of soil
– volume: 393
  start-page: 1
  issue: 1
  year: 1972
  ident: 10.1016/j.tust.2020.103647_b0230
  article-title: Freezing and heaving of saturated and unsaturated soils
  publication-title: Highway Res. Rec.
– volume: 61
  start-page: 43
  issue: 1
  year: 2010
  ident: 10.1016/j.tust.2020.103647_b0025
  article-title: Modeling frost heave in freezing soils
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2009.12.007
– volume: 37
  start-page: 428
  issue: 5
  year: 1929
  ident: 10.1016/j.tust.2020.103647_b0330
  article-title: Frost heaving
  publication-title: J. Geol.
  doi: 10.1086/623637
– volume: 28
  start-page: 613
  issue: 8
  year: 2001
  ident: 10.1016/j.tust.2020.103647_b0240
  article-title: A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium
  publication-title: Comput. Geotech.
  doi: 10.1016/S0266-352X(01)00015-5
– volume: 78
  start-page: 695
  issue: 3
  year: 2006
  ident: 10.1016/j.tust.2020.103647_b0060
  article-title: The physics of premelted ice and its geophysical consequences
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.78.695
– volume: 21
  start-page: 100
  issue: 1
  year: 1984
  ident: 10.1016/j.tust.2020.103647_b0165
  article-title: Frost heave prediction of chilled pipelines buried in unfrozen soils
  publication-title: Can. Geotech. J.
  doi: 10.1139/t84-008
– start-page: 5735
  year: 2011
  ident: 10.1016/j.tust.2020.103647_b0120
  article-title: Analysis of salt-induced influence on frozen soil structure in artificial ground freezing
– volume: 5
  start-page: 185
  issue: 3
  year: 1994
  ident: 10.1016/j.tust.2020.103647_b0320
  article-title: Water migration and ice segregation in the transition zone between thawed and frozen soil
  publication-title: Permafrost Periglac. Process.
  doi: 10.1002/ppp.3430050307
– volume: 38
  start-page: 427
  year: 2006
  ident: 10.1016/j.tust.2020.103647_b0390
  article-title: Premelting dynamics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.37.061903.175758
– volume: 74
  start-page: 5076
  issue: 25
  year: 1995
  ident: 10.1016/j.tust.2020.103647_b0395
  article-title: Frost heave dynamics at a single crystal interface
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.5076
– volume: 24
  start-page: 263
  issue: 3
  year: 1996
  ident: 10.1016/j.tust.2020.103647_b0175
  article-title: 2-D frost action modeling using the segregation potential of soil
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/0165-232X(95)00028-A
– volume: 131
  start-page: 211
  issue: 2
  year: 2005
  ident: 10.1016/j.tust.2020.103647_b0190
  article-title: Artificial ground freezing of fully saturated soil: thermal problem
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2005)131:2(211)
– volume: 9
  start-page: 1314
  issue: 5
  year: 1973
  ident: 10.1016/j.tust.2020.103647_b0090
  article-title: Analysis of coupled heat-fluid transport in partially frozen soil
  publication-title: Water Resour. Res.
  doi: 10.1029/WR009i005p01314
– volume: 53
  start-page: 382
  issue: 3
  year: 2008
  ident: 10.1016/j.tust.2020.103647_b0145
  article-title: Frost heave predictions of buried chilled gas pipelines with the effect of permafrost
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2008.01.002
– volume: 13
  start-page: 207
  issue: 1
  year: 2018
  ident: 10.1016/j.tust.2020.103647_b0455
  article-title: Separate-ice frost heave model for one-dimensional soil freezing process
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-017-0579-4
– ident: 10.1016/j.tust.2020.103647_b0480
  doi: 10.1061/9780784413401.021
– volume: 372
  year: 2020
  ident: 10.1016/j.tust.2020.103647_b0325
  article-title: A unified water/ice kinematics approach for phase-field thermo-hydro-mechanical modeling of frost action in porous media
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113358
– year: 1991
  ident: 10.1016/j.tust.2020.103647_b0405
– ident: 10.1016/j.tust.2020.103647_b0015
– volume: 6
  start-page: 51
  issue: 2
  year: 2011
  ident: 10.1016/j.tust.2020.103647_b0435
  article-title: Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-011-0135-6
– volume: 12
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.tust.2020.103647_b0270
  article-title: The physics of frost heave and ice-lens growth
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2012.0049
– volume: 42
  start-page: 1290
  issue: 15
  year: 1997
  ident: 10.1016/j.tust.2020.103647_b0410
  article-title: Mechanism of frost heave by film water migration under temperature gradient
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/BF02882762
– volume: 109
  start-page: 241
  issue: 3–4
  year: 2009
  ident: 10.1016/j.tust.2020.103647_b0420
  article-title: Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2009.08.009
– volume: 118
  start-page: 30
  year: 2015
  ident: 10.1016/j.tust.2020.103647_b0450
  article-title: Three-dimensional frost heave evaluation based on practical Takashi's equation
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2015.06.010
– volume: 37
  start-page: 117
  issue: 1
  year: 2013
  ident: 10.1016/j.tust.2020.103647_b0430
  article-title: Effects of unilateralist freezing on the moisture migration of soil
  publication-title: J. Nanjing Forest. Univ. (Nat. Sci. Ed.)
– volume: 17
  start-page: 54
  issue: 1
  year: 1980
  ident: 10.1016/j.tust.2020.103647_b0210
  article-title: Observations on moisture migration in frozen soils
  publication-title: Can. Geotech. J.
  doi: 10.1139/t80-005
– volume: 115
  year: 2019
  ident: 10.1016/j.tust.2020.103647_b0030
  article-title: Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2019.103155
– volume: 126
  start-page: 740
  year: 2018
  ident: 10.1016/j.tust.2020.103647_b0005
  article-title: Conjugate heat transfer in artificial ground freezing using enthalpy-porosity method: experiments and model validation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.05.059
– volume: 56
  start-page: 904
  issue: 5
  year: 2016
  ident: 10.1016/j.tust.2020.103647_b0445
  article-title: Application of practical one-dimensional frost heave estimation method in two-dimensional situation
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2016.08.014
– volume: 3
  start-page: 101
  issue: 2–3
  year: 1980
  ident: 10.1016/j.tust.2020.103647_b0275
  article-title: Thermally induced water migration in frozen soils
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/0165-232X(80)90015-4
– volume: 19
  start-page: 494
  issue: 4
  year: 1982
  ident: 10.1016/j.tust.2020.103647_b0160
  article-title: Effects of applied pressure on freezing soils
  publication-title: Can. Geotech. J.
  doi: 10.1139/t82-053
– volume: 119
  year: 2020
  ident: 10.1016/j.tust.2020.103647_b0370
  article-title: Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2019.103382
– ident: 10.1016/j.tust.2020.103647_b0125
– volume: 120
  start-page: 523
  year: 2018
  ident: 10.1016/j.tust.2020.103647_b0305
  article-title: Modeling heat and mass transfer during ground freezing taking into account the salinity of the saturating fluid
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.12.065
– volume: 158
  start-page: 10
  year: 2019
  ident: 10.1016/j.tust.2020.103647_b0140
  article-title: Frost heave in freezing soils: A quasi-static model for ice lens growth
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2018.11.003
– volume: 62
  start-page: 227
  issue: 3
  year: 2012
  ident: 10.1016/j.tust.2020.103647_b0280
  article-title: Large-scale laboratory tests on artificial ground freezing under seepage-flow conditions
  publication-title: Geotechnique
  doi: 10.1680/geot.9.P.120
– volume: 16
  start-page: 25
  issue: 1
  year: 1989
  ident: 10.1016/j.tust.2020.103647_b0170
  article-title: Influence of cooling rate on the temperature of ice lens formation in clayey silts
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/0165-232X(89)90004-9
– volume: 58
  start-page: 115
  issue: 1
  year: 1995
  ident: 10.1016/j.tust.2020.103647_b0055
  article-title: The premelting of ice and its environmental consequences
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/58/1/003
– volume: 81
  issue: 3
  year: 2010
  ident: 10.1016/j.tust.2020.103647_b0085
  article-title: Theory of ice premelting in porous media
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.031604
– volume: 498
  start-page: 227
  year: 2004
  ident: 10.1016/j.tust.2020.103647_b0290
  article-title: Premelting dynamics in a continuum model of frost heave
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003006761
– volume: 375
  start-page: 14
  year: 1935
  ident: 10.1016/j.tust.2020.103647_b0020
  article-title: Soil freezing and frost heaving with special application to roads and railroads
  publication-title: Swedich Geol. Soc., Ser. C
– year: 1995
  ident: 10.1016/j.tust.2020.103647_b0095
– volume: 161
  start-page: 43
  year: 2019
  ident: 10.1016/j.tust.2020.103647_b0215
  article-title: Field observation of permafrost degradation under Mo'he airport, Northeastern China from 2007 to 2016
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2019.03.004
– volume: 37
  start-page: 3173
  issue: 18
  year: 2013
  ident: 10.1016/j.tust.2020.103647_b0475
  article-title: A three-phase thermo-hydro-mechanical finite element model for freezing soils
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.2184
– volume: 30
  start-page: 966
  issue: 4
  year: 2007
  ident: 10.1016/j.tust.2020.103647_b0220
  article-title: Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2006.08.008
– volume: 28
  start-page: 843
  issue: 6
  year: 1991
  ident: 10.1016/j.tust.2020.103647_b0245
  article-title: Discrete ice lens theory for frost heave in soils
  publication-title: Can. Geotech. J.
  doi: 10.1139/t91-102
– volume: 39
  start-page: 1231
  issue: 6
  year: 2002
  ident: 10.1016/j.tust.2020.103647_b0180
  article-title: Prediction of freezing-induced movements for an underground construction project in Japan
  publication-title: Can. Geotech. J.
  doi: 10.1139/t02-077
– volume: 22
  start-page: 43
  issue: 1
  year: 2000
  ident: 10.1016/j.tust.2020.103647_b0045
  article-title: Development and prospect of research on application of artificial ground freezing
  publication-title: Chin. J. Geotech. Eng.
– volume: 42
  start-page: 38
  issue: 1
  year: 2005
  ident: 10.1016/j.tust.2020.103647_b0185
  article-title: Estimation of the segregation potential of fine-grained soils using the frost heave response of two reference soils
  publication-title: Can. Geotech. J.
  doi: 10.1139/t04-080
– volume: 87
  issue: 8
  year: 2001
  ident: 10.1016/j.tust.2020.103647_b0285
  article-title: Interfacial premelting and the thermomolecular force: thermodynamic buoyancy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.088501
– volume: 6
  start-page: 51
  issue: 2
  year: 2011
  ident: 10.1016/j.tust.2020.103647_b0205
  article-title: Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-011-0135-6
– volume: 54
  start-page: 1650
  issue: 6
  year: 1994
  ident: 10.1016/j.tust.2020.103647_b0070
  article-title: A generalized secondary frost heave model
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139993252554
– volume: 50
  start-page: 226
  year: 2015
  ident: 10.1016/j.tust.2020.103647_b0310
  article-title: Artificial ground freezing to excavate a tunnel in sandy soil. Measurements and back analysis
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2015.07.008
– volume: 32
  start-page: 111
  issue: 1
  year: 2008
  ident: 10.1016/j.tust.2020.103647_b0300
  article-title: Convergence of phase-field approximations to the Gibbs-Thomson law
  publication-title: Calc. Var. Partial. Differ. Equ.
  doi: 10.1007/s00526-007-0133-6
– volume: 157
  start-page: 110
  year: 2019
  ident: 10.1016/j.tust.2020.103647_b0400
  article-title: Effect of moisture content on mechanical and damage behavior of frozen loess under triaxial condition along with different confining pressures
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2018.10.004
– volume: 38
  start-page: 303
  issue: 4
  year: 1930
  ident: 10.1016/j.tust.2020.103647_b0335
  article-title: The mechanics of frost heaving
  publication-title: J. Geol.
  doi: 10.1086/623720
– volume: 59
  start-page: 173
  issue: 3
  year: 2009
  ident: 10.1016/j.tust.2020.103647_b0365
  article-title: Modelling of cryogenic processes in permafrost and seasonally frozen soils
  publication-title: Geotechnique
  doi: 10.1680/geot.2009.59.3.173
– volume: 39
  start-page: 2226
  issue: 12
  year: 2017
  ident: 10.1016/j.tust.2020.103647_b0425
  article-title: Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF
  publication-title: Chin. J. Geotech. Eng.
– ident: 10.1016/j.tust.2020.103647_b0385
  doi: 10.1155/2019/1670820
– volume: 43
  start-page: 128
  issue: 3
  year: 2005
  ident: 10.1016/j.tust.2020.103647_b0100
  article-title: Frost heave and water uptake rates in silty soil subject to variable water table height during freezing
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2005.03.003
– volume: 31
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.tust.2020.103647_b0080
  article-title: A numerical and experimental study of the artificial freezing of sand
  publication-title: Can. Geotech. J.
  doi: 10.1139/t94-001
– volume: 57
  start-page: 1541
  year: 1961
  ident: 10.1016/j.tust.2020.103647_b0065
  article-title: The thermodynamics of frost damage to porous solids
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9615701541
– volume: 22
  start-page: 4136
  issue: 10
  year: 2018
  ident: 10.1016/j.tust.2020.103647_b0110
  article-title: Artificial ground freezing in tunnelling through aquifer soil layers: a case study in Nanjing Metro Line 2
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-018-0049-z
– volume: 18
  start-page: 482
  issue: 4
  year: 1981
  ident: 10.1016/j.tust.2020.103647_b0155
  article-title: The segregation potential of a freezing soil
  publication-title: Can. Geotech. J.
  doi: 10.1139/t81-059
– volume: 19
  start-page: 526
  issue: 4
  year: 1982
  ident: 10.1016/j.tust.2020.103647_b0255
  article-title: Field frost heave predictions using the segregation potential concept
  publication-title: Can. Geotech. J.
  doi: 10.1139/t82-059
– volume: 37
  start-page: 595
  issue: 5–6
  year: 2003
  ident: 10.1016/j.tust.2020.103647_b0345
  article-title: Freezing processes in porous media: Formation of ice lenses, swelling of the soil
  publication-title: Math. Comput. Modell.
  doi: 10.1016/S0895-7177(03)00053-0
– volume: 31
  start-page: 772
  issue: 5
  year: 2009
  ident: 10.1016/j.tust.2020.103647_b0350
  article-title: Frost-heaving behaviors of mucky clay by artificial horizontal freezing method
  publication-title: Chin. J. Geotech. Eng.
– volume: 190
  start-page: 98
  year: 2015
  ident: 10.1016/j.tust.2020.103647_b0470
  article-title: Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.03.002
– volume: 124
  start-page: 87
  year: 2016
  ident: 10.1016/j.tust.2020.103647_b0235
  article-title: A model of migration potential for moisture migration during soil freezing
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2015.12.015
– volume: 78
  start-page: 805
  year: 2014
  ident: 10.1016/j.tust.2020.103647_b0195
  article-title: Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.07.035
– volume: 87
  issue: 3
  year: 2013
  ident: 10.1016/j.tust.2020.103647_b0315
  article-title: Experimental constraints on the kinetics of ice lens initiation and growth
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.032404
– volume: 104
  year: 2020
  ident: 10.1016/j.tust.2020.103647_b0010
  article-title: Artificial ground freezing: A review of thermal and hydraulic aspects
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103534
– volume: 21
  start-page: 281
  issue: 3
  year: 1985
  ident: 10.1016/j.tust.2020.103647_b0260
  article-title: Exploration of a rigid ice model of frost heave
  publication-title: Water Resour. Res.
  doi: 10.1029/WR021i003p00281
– ident: 10.1016/j.tust.2020.103647_b0130
  doi: 10.1061/41108(381)33
– ident: 10.1016/j.tust.2020.103647_b0250
– volume: 246
  start-page: 1591
  issue: 4937
  year: 1989
  ident: 10.1016/j.tust.2020.103647_b0050
  article-title: Thermomolecular pressure in surface melting: motivation for frost heave
  publication-title: Science
  doi: 10.1126/science.246.4937.1591
– volume: 29
  start-page: 04014019
  issue: 4
  year: 2015
  ident: 10.1016/j.tust.2020.103647_b0440
  article-title: Combined thermal-hydraulic-mechanical frost heave model based on Takashi’s equation
  publication-title: J. Cold Reg. Eng.
  doi: 10.1061/(ASCE)CR.1943-5495.0000089
– ident: 10.1016/j.tust.2020.103647_b0035
– volume: 30
  start-page: 703
  issue: 8
  year: 2006
  ident: 10.1016/j.tust.2020.103647_b0225
  article-title: Frost heave modelling using porosity rate function
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.497
– volume: 120
  year: 2020
  ident: 10.1016/j.tust.2020.103647_b0485
  article-title: Thermal and hydraulic analysis of selective artificial ground freezing using air insulation: Experiment and modeling
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2019.103416
– volume: 107
  start-page: 246
  year: 2018
  ident: 10.1016/j.tust.2020.103647_b0200
  article-title: An elastoplastic model for saturated freezing soils based on thermo-poromechanics
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.04.007
– volume: 17
  start-page: 473
  issue: 4
  year: 1980
  ident: 10.1016/j.tust.2020.103647_b0150
  article-title: A mechanistic theory of ice lens formation in fine-grained soils
  publication-title: Can. Geotech. J.
  doi: 10.1139/t80-056
– year: 2001
  ident: 10.1016/j.tust.2020.103647_b0415
– volume: 112
  issue: F2
  year: 2007
  ident: 10.1016/j.tust.2020.103647_b0295
  article-title: Formation of ice lenses and frost heave
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1029/2006JF000525
– volume: 73
  start-page: 1
  year: 2016
  ident: 10.1016/j.tust.2020.103647_b0380
  article-title: Modeling heat and mass transfer during ground freezing subjected to high seepage velocities
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2015.11.014
– volume: 2
  start-page: 241
  issue: 2
  year: 1966
  ident: 10.1016/j.tust.2020.103647_b0105
  article-title: Moisture movement in soils under temperature gradients with the cold-side temperature below freezing
  publication-title: Water Resour. Res.
  doi: 10.1029/WR002i002p00241
– volume: 3
  start-page: 141
  issue: 3
  year: 2014
  ident: 10.1016/j.tust.2020.103647_b0040
  article-title: Artificial ground freezing of a volcanic ash: laboratory tests and modelling
  publication-title: Environ. Geotech.
  doi: 10.1680/envgeo.14.00004
– volume: 117
  start-page: 1
  year: 2015
  ident: 10.1016/j.tust.2020.103647_b0465
  article-title: Artificial ground freezing of fully saturated mucky clay: Thawing problem by centrifuge modeling
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2015.04.005
– volume: 52
  start-page: 3889
  issue: 10
  year: 2019
  ident: 10.1016/j.tust.2020.103647_b0375
  article-title: Thermo-hydro-mechanical modeling of artificial ground freezing: application in mining engineering
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-019-01786-9
– volume: 23
  start-page: 1064
  issue: 3
  year: 2019
  ident: 10.1016/j.tust.2020.103647_b0355
  article-title: Deformation Prediction and Deformation Characteristics of Multilayers of Mucky Clay under Artificial Freezing Condition
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-019-1599-4
– volume: 72
  start-page: 43
  year: 2012
  ident: 10.1016/j.tust.2020.103647_b0460
  article-title: Numerical analysis of coupled water, heat and stress in saturated freezing soil
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2011.11.006
– year: 2011
  ident: 10.1016/j.tust.2020.103647_b0115
– start-page: 17
  year: 1991
  ident: 10.1016/j.tust.2020.103647_b0075
  article-title: Thermomechanical modeling of freezing soil
SSID ssj0005229
Score 2.4681108
Snippet •The water migration mainly occurred along depth during active freezing stage.•The quantity of freezing tubes can be optimized by controlling boundary...
Artificial ground freezing (AGF) is a method of paramount importance for underground construction in soft soil area. There were numerous studies concerned on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103647
SubjectTerms Airport construction
Airports
Artificial ground freezing
Clay
Cooling rate
Deformation effects
Experiments
Field experiment
Freezing
Freezing effects
Frost heaving
Ground freezing
Mathematical analysis
Multi-layer deformation
Multilayers
Practical frost heave prediction model
Prediction models
Predictions
Segregation potential model
Soft clay
Tubes
Underground construction
Title Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment
URI https://dx.doi.org/10.1016/j.tust.2020.103647
https://www.proquest.com/docview/2480299627
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuLHHDl4k7omTZr2OIZjKuyig91C2iYwHd3YpqAH_3bf64dOkR28lfAS2veZpO_3HiGXPGIy4ykob6bggKIy5plMBZ6MObMMHCBLiyzfYTgYibuxHDdIr8bCYFpl5ftLn15462qkU3GzM59MOg9gH6FSMYSwAIuKINBcCIVafv2xnuZRdCpDYg-pK-BMmeO1QlgDHP8L7HmILVb-Dk6_3HQRe_p7ZLfaNNJu-V77pGHzA7KzVkrwkDyXhYeA43S-wJ8vyHBa9oem8OQQ3UHB875aOnN0Cd6XplPzRic5xe8tC0lQBHnkGVBb-w7rUrympUWWG_3uBXBERv2bx97AqxopeCaQbOU5HovMgCVzk2CbUl-IhEsX-xDBMpf5LgGBhb5lLmXGhtaXMGrAWuEsEqjID45JM5_l9oRQI0Vq48SERhjBIhO5kFkey1j4jnGnTgmrOajTqso4NruY6jqd7Ekj1zVyXZdcPyVXX3PmZY2NjdSyFoz-oSkagsDGea1airqy06XmIvIhIIdcnf1z2XOyzTHNpbiVaZHmavFiL2CfskrahSK2yVb39n4w_AR3Bee-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8Ylvc_AmZZs06eO4LMr62osK3kLaJrC61EVXQX-9M23qC_HgrYRMaCeZmST95huAQ5FyVYoCF2-Z4AElKXlgyiQKVCa45egAeVGjfIfx4Eae3arbGei3uTAEq_S-v_Hptbf2LV2vze5kNOpeoX3ESZJhCIuIVETNwhyxU6kOzPVOzwfDL0iPulgZ9Q9IwOfONDCvKWU2CNw0Ufp5TFVWfo9PPzx1HX5OlmHJ7xtZr3m1FZix1SosfmETXIP7hnsIlc4mj_T_hXTOmhLRDJ8cJXgwdL4vlj049oQOmBVj88pGFaNPbrgkGOV5VCX2tvYNx2V0U8tqoBv7LAewDjcnx9f9QeBrKQQmUnwaOJHJ0qAxC5NTpdJQylwol4UYxEpXhi7HOYtDy13BjY1tqLDVoMHicSRK0jDagE71UNlNYEbJwma5iY00kqcmdTG3IlOZDB0XLtkC3mpQF55onOpdjHWLKLvTpHVNWteN1rfg6ENm0tBs_NlbtROjvy0WjXHgT7nddha1N9UnLWQaYkyORbL9z2EPYH5wfXmhL06H5zuwIAj1Ul_S7EJn-vhs93DbMs33_bJ8B2um6m8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+prediction+method+on+frost+heave+of+soft+clay+in+artificial+ground+freezing+with+field+experiment&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Zhou%2C+Jie&rft.au=Zhao%2C+Wenqiang&rft.au=Tang%2C+Yiqun&rft.date=2021-01-01&rft.pub=Elsevier+BV&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=107&rft.spage=1&rft_id=info:doi/10.1016%2Fj.tust.2020.103647&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon