Bispidine Chelators for Radiopharmaceutical Applications with Lanthanide, Actinide, and Main Group Metal Ions

Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]­nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L 2 (wit...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 62; no. 50; pp. 20754 - 20768
Main Authors Kopp, Ina, Cieslik, Patrick, Anger, Karl, Josephy, Thomas, Neupert, Lucca, Velmurugan, Gunasekaran, Gast, Michael, Wadepohl, Hubert, Brühlmann, Santiago Andrés, Walther, Martin, Kopka, Klaus, Bachmann, Michael, Stephan, Holger, Kubeil, Manja, Comba, Peter
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.12.2023
Online AccessGet full text

Cover

Loading…
Abstract Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]­nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L 2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L 3 , in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L 3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L 2 , Lu3+ and La3+ show very slow and inefficient complexation with L 3 in contrast to L 2 , and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L 3 ] = 10–4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L 2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue.
AbstractList Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L3, in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L2, Lu3+ and La3+ show very slow and inefficient complexation with L3 in contrast to L2, and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L3] = 10-4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue.
Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for In , Lu , and Ac , nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative , in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. did not fulfill the hopes because complexation is much less efficient. While for Bi and Pb the ligand is an excellent chelator with properties similar to those of , Lu and La show very slow and inefficient complexation with in contrast to , and Ac is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [ ] = 10 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of has been extended to Bi , La , and Pb , including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La , Ac , Lu , Bi , In , and Pb ), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with Ac, the daughter nuclides Bi and Pb also form stable complexes, and this is important for reducing damage to healthy tissue.
Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]­nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L 2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L 3 , in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L 3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L 2 , Lu3+ and La3+ show very slow and inefficient complexation with L 3 in contrast to L 2 , and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L 3 ] = 10–4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L 2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue.
Author Wadepohl, Hubert
Brühlmann, Santiago Andrés
Cieslik, Patrick
Kopp, Ina
Josephy, Thomas
Anger, Karl
Velmurugan, Gunasekaran
Kopka, Klaus
Comba, Peter
Kubeil, Manja
Bachmann, Michael
Walther, Martin
Gast, Michael
Stephan, Holger
Neupert, Lucca
AuthorAffiliation Universität Heidelberg
Universität Heidelberg, Interdisciplinary Center for Scientific Computing
Technische Universität Dresden
National Center for Tumor Diseases (NCT) Dresden
Medical Faculty Carl Gustav Carus
Faculty of Chemistry and Food Chemistry, School of Science
German Cancer Consortium (DKTK)
University Hospital Carl Gustav Carus
Anorganisch-Chemisches Institut
AuthorAffiliation_xml – name: Universität Heidelberg
– name: Faculty of Chemistry and Food Chemistry, School of Science
– name: Universität Heidelberg, Interdisciplinary Center for Scientific Computing
– name: Anorganisch-Chemisches Institut
– name: National Center for Tumor Diseases (NCT) Dresden
– name: University Hospital Carl Gustav Carus
– name: Technische Universität Dresden
– name: German Cancer Consortium (DKTK)
– name: Medical Faculty Carl Gustav Carus
Author_xml – sequence: 1
  givenname: Ina
  surname: Kopp
  fullname: Kopp, Ina
– sequence: 2
  givenname: Patrick
  orcidid: 0000-0002-9709-3711
  surname: Cieslik
  fullname: Cieslik, Patrick
  organization: Anorganisch-Chemisches Institut
– sequence: 3
  givenname: Karl
  surname: Anger
  fullname: Anger, Karl
– sequence: 4
  givenname: Thomas
  surname: Josephy
  fullname: Josephy, Thomas
  organization: Anorganisch-Chemisches Institut
– sequence: 5
  givenname: Lucca
  surname: Neupert
  fullname: Neupert, Lucca
  organization: Anorganisch-Chemisches Institut
– sequence: 6
  givenname: Gunasekaran
  orcidid: 0000-0003-3244-2690
  surname: Velmurugan
  fullname: Velmurugan, Gunasekaran
  organization: Anorganisch-Chemisches Institut
– sequence: 7
  givenname: Michael
  surname: Gast
  fullname: Gast, Michael
  organization: Anorganisch-Chemisches Institut
– sequence: 8
  givenname: Hubert
  surname: Wadepohl
  fullname: Wadepohl, Hubert
  organization: Anorganisch-Chemisches Institut
– sequence: 9
  givenname: Santiago Andrés
  orcidid: 0000-0002-7840-6858
  surname: Brühlmann
  fullname: Brühlmann, Santiago Andrés
– sequence: 10
  givenname: Martin
  orcidid: 0000-0002-0474-8492
  surname: Walther
  fullname: Walther, Martin
– sequence: 11
  givenname: Klaus
  surname: Kopka
  fullname: Kopka, Klaus
  organization: German Cancer Consortium (DKTK)
– sequence: 12
  givenname: Michael
  surname: Bachmann
  fullname: Bachmann, Michael
  organization: Medical Faculty Carl Gustav Carus
– sequence: 13
  givenname: Holger
  orcidid: 0000-0002-2972-2803
  surname: Stephan
  fullname: Stephan, Holger
– sequence: 14
  givenname: Manja
  orcidid: 0000-0001-8857-5922
  surname: Kubeil
  fullname: Kubeil, Manja
  email: m.kubeil@hzdr.de
– sequence: 15
  givenname: Peter
  orcidid: 0000-0001-7796-3532
  surname: Comba
  fullname: Comba, Peter
  email: peter.comba@aci.uni-heidelberg.de
  organization: Universität Heidelberg, Interdisciplinary Center for Scientific Computing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37707798$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1v1DAQhi3Uim4LPwHkIwd2Gcf5cI7Lin5IWyEhkLhFE3uWuErsYDtC_fd1tUuvPc17eJ8ZzXPJzpx3xNgHARsBhfiCOm6s8-GPHmjaSA2FLOENW4mqgHUl4PcZWwHkLOq6vWCXMT4AQCvL-i27kE0DTdOqFZu-2jhbYx3x3UAjJh8iP_jAf6Cxfh4wTKhpSVbjyLfzPOaQrHeR_7Np4Ht0aUBnDX3mW53sMaEz_B6t4zfBLzO_p5Thuwy9Y-cHHCO9P80r9uv628_d7Xr__eZut92vUVYirbUgoWvVaK1NXbZFSfKg-oJUAyW2pNEgmr5UoPpGFhKNqHVfUQ8VSQOikVfs03HvHPzfhWLqJhs1jSM68kvsClWXqq0rVeRqdazq4GMMdOjmYCcMj52A7tl0l013L6a7k-nMfTydWPqJzAv1X20uiGPhmX_wS3D541eWPgFuJJIt
CitedBy_id crossref_primary_10_1007_s11172_024_4266_y
crossref_primary_10_1021_acs_inorgchem_3c03731
crossref_primary_10_1039_D3SC06854D
Cites_doi 10.1016/S0010-8545(02)00294-1
10.1021/acs.inorgchem.1c03670
10.1002/chem.201702284
10.1002/9780470144428.ch9
10.1063/1.464913
10.1093/acprof:oso/9780198570769.001.0001
10.1107/S0108767307043930
10.1016/0009-2614(93)89068-S
10.1021/ic061501+
10.1107/S0365110X57000584
10.1107/S0108767389011189
10.1039/C8DT01108G
10.1107/S0108767394005726
10.1021/acs.inorgchem.2c00636
10.1016/S0020-1693(02)00922-2
10.1021/jacs.2c08438
10.1107/S2053229614024929
10.1016/0039-9140(96)01958-3
10.1039/c3cc41554f
10.1021/ic101378s
10.1002/chem.202301880
10.1002/(SICI)1096-987X(199906)20:8<781::AID-JCC4>3.0.CO;2-T
10.1107/S2053229614024218
10.1021/acs.bioconjchem.2c00038
10.1021/acsomega.2c00387
10.1021/acs.bioconjchem.0c00171
10.1039/a805944f
10.1007/s002140050331
10.1002/chem.202005459
10.1002/anie.201709532
10.1107/S0567739476001551
10.1016/j.ccr.2021.214130
10.1016/S0360-3016(01)01585-1
10.1089/cbr.2018.2494
10.1021/acs.inorgchem.2c01114
10.1186/s41181-021-00121-4
10.1107/S2053273314026370
10.1107/S0108767312014535
10.1107/S0021889807029238
10.2967/jnumed.121.262459
10.2174/1568026615666150915111434
10.1002/anie.202115580
10.2174/1874471011104040306
10.1002/cmdc.202000361
10.1021/ic200182e
10.1021/ic0513383
10.1021/ja808534w
10.1107/S0021889802022112
10.1080/00268979300103121
10.1039/C9DT03480C
10.1021/ic4008685
10.1107/S0021889808007279
10.3390/ph15101167
10.1515/ract-2019-0005
10.1002/hlca.19950780812
10.3390/pharmaceutics13060906
10.1021/jacs.2c10108
10.1186/s13550-018-0431-3
10.1002/cmdc.202100135
10.1071/CH21184
10.1021/ac50048a040
10.1080/08893118708081678
10.1107/S2052519212051366
10.1002/chem.201904654
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.inorgchem.3c02340
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 20768
ExternalDocumentID 10_1021_acs_inorgchem_3c02340
37707798
c012651619
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
IHE
JG~
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YZZ
~02
53G
AGXLV
CUPRZ
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a351t-c1e1c687cccd64924e3f8b2e8704a9ecadaadb4808b7323ad16cb5eb05e3d0173
IEDL.DBID ACS
ISSN 0020-1669
IngestDate Fri Aug 16 03:51:48 EDT 2024
Fri Aug 23 01:19:29 EDT 2024
Tue Oct 29 09:30:14 EDT 2024
Tue Dec 19 03:13:29 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a351t-c1e1c687cccd64924e3f8b2e8704a9ecadaadb4808b7323ad16cb5eb05e3d0173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7796-3532
0000-0002-2972-2803
0000-0002-7840-6858
0000-0001-8857-5922
0000-0003-3244-2690
0000-0002-0474-8492
0000-0002-9709-3711
PMID 37707798
PQID 2864896582
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2864896582
crossref_primary_10_1021_acs_inorgchem_3c02340
pubmed_primary_37707798
acs_journals_10_1021_acs_inorgchem_3c02340
PublicationCentury 2000
PublicationDate 2023-12-18
PublicationDateYYYYMMDD 2023-12-18
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Kabsch K. (ref52/cit52) 2001
Frisch M. J. (ref78/cit78) 2019
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref85/cit85
ref2/cit2
(ref57/cit57) 2004
ref77/cit77
Robinson W. (ref66/cit66) 1988
ref34/cit34
(ref37/cit37) 2004
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
Carbo-Bague I. (ref7/cit7) 2023
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
(ref54/cit54) 2015
ref61/cit61
ref75/cit75
ref67/cit67
(ref60/cit60) 2014
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
(ref59/cit59) 2010
(ref56/cit56) 2011
ref79/cit79
ref11/cit11
ref25/cit25
Müller P. (ref72/cit72) 2006
ref29/cit29
ref76/cit76
ref32/cit32
(ref64/cit64) 2007
ref39/cit39
ref14/cit14
ref5/cit5
Martell A. E. (ref83/cit83) 1992
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
(ref65/cit65) 2012
ref26/cit26
ref55/cit55
(ref35/cit35) 2013
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
(ref53/cit53) 2011
ref58/cit58
ref22/cit22
Watkin D. (ref70/cit70) 1988
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
References_xml – ident: ref19/cit19
  doi: 10.1016/S0010-8545(02)00294-1
– ident: ref44/cit44
  doi: 10.1021/acs.inorgchem.1c03670
– volume-title: Rigaku Oxford Diffraction
  year: 2015
  ident: ref54/cit54
– ident: ref31/cit31
  doi: 10.1002/chem.201702284
– ident: ref22/cit22
  doi: 10.1002/9780470144428.ch9
– volume-title: PLATON
  ident: ref76/cit76
– volume-title: NIST Standard Reference Database 46
  year: 2004
  ident: ref37/cit37
– volume-title: Crystallographics Computing 4
  year: 1988
  ident: ref70/cit70
  contributor:
    fullname: Watkin D.
– ident: ref79/cit79
  doi: 10.1063/1.464913
– volume-title: Crystal Structure Refinement
  year: 2006
  ident: ref72/cit72
  doi: 10.1093/acprof:oso/9780198570769.001.0001
  contributor:
    fullname: Müller P.
– ident: ref67/cit67
  doi: 10.1107/S0108767307043930
– ident: ref80/cit80
  doi: 10.1016/0009-2614(93)89068-S
– ident: ref20/cit20
  doi: 10.1021/ic061501+
– ident: ref69/cit69
– ident: ref58/cit58
  doi: 10.1107/S0365110X57000584
– ident: ref74/cit74
  doi: 10.1107/S0108767389011189
– ident: ref23/cit23
  doi: 10.1039/C8DT01108G
– ident: ref55/cit55
  doi: 10.1107/S0108767394005726
– ident: ref18/cit18
  doi: 10.1021/acs.inorgchem.2c00636
– ident: ref43/cit43
  doi: 10.1016/S0020-1693(02)00922-2
– ident: ref34/cit34
  doi: 10.1021/jacs.2c08438
– ident: ref29/cit29
– volume-title: Gaussian 16
  year: 2019
  ident: ref78/cit78
  contributor:
    fullname: Frisch M. J.
– volume-title: Crystallographic Computing 4
  year: 1988
  ident: ref66/cit66
  contributor:
    fullname: Robinson W.
– ident: ref75/cit75
  doi: 10.1107/S2053229614024929
– ident: ref84/cit84
  doi: 10.1016/0039-9140(96)01958-3
– ident: ref2/cit2
  doi: 10.1039/c3cc41554f
– ident: ref5/cit5
  doi: 10.1021/ic101378s
– ident: ref36/cit36
  doi: 10.1002/chem.202301880
– ident: ref28/cit28
  doi: 10.1002/(SICI)1096-987X(199906)20:8<781::AID-JCC4>3.0.CO;2-T
– ident: ref61/cit61
  doi: 10.1107/S2053229614024218
– ident: ref17/cit17
  doi: 10.1021/acs.bioconjchem.2c00038
– ident: ref38/cit38
  doi: 10.1021/acsomega.2c00387
– ident: ref16/cit16
  doi: 10.1021/acs.bioconjchem.0c00171
– volume-title: SADABS
  year: 2004
  ident: ref57/cit57
– ident: ref42/cit42
  doi: 10.1039/a805944f
– ident: ref82/cit82
  doi: 10.1007/s002140050331
– ident: ref26/cit26
  doi: 10.1002/chem.202005459
– ident: ref13/cit13
  doi: 10.1002/anie.201709532
– ident: ref15/cit15
  doi: 10.1107/S0567739476001551
– ident: ref11/cit11
  doi: 10.1016/j.ccr.2021.214130
– ident: ref12/cit12
  doi: 10.1016/S0360-3016(01)01585-1
– ident: ref10/cit10
  doi: 10.1089/cbr.2018.2494
– volume-title: International Tables for Crystallography
  year: 2001
  ident: ref52/cit52
  contributor:
    fullname: Kabsch K.
– ident: ref4/cit4
  doi: 10.1021/acs.inorgchem.2c01114
– volume-title: Application Note SC-XRD 503
  year: 2014
  ident: ref60/cit60
– ident: ref46/cit46
  doi: 10.1186/s41181-021-00121-4
– ident: ref68/cit68
  doi: 10.1107/S2053273314026370
– ident: ref73/cit73
  doi: 10.1107/S0108767312014535
– volume-title: Determination and use of stability constants
  year: 1992
  ident: ref83/cit83
  contributor:
    fullname: Martell A. E.
– ident: ref62/cit62
  doi: 10.1107/S0021889807029238
– ident: ref6/cit6
  doi: 10.2967/jnumed.121.262459
– ident: ref24/cit24
  doi: 10.2174/1568026615666150915111434
– ident: ref32/cit32
  doi: 10.1002/anie.202115580
– volume-title: CrysAlisPro
  year: 2011
  ident: ref53/cit53
– volume-title: SCALE3 ABSPACK CrysAlisPro
  year: 2011
  ident: ref56/cit56
– ident: ref8/cit8
  doi: 10.2174/1874471011104040306
– ident: ref33/cit33
  doi: 10.1002/cmdc.202000361
– ident: ref40/cit40
  doi: 10.1021/ic200182e
– volume-title: SHELXT
  year: 2010
  ident: ref59/cit59
– ident: ref21/cit21
  doi: 10.1021/ic0513383
– ident: ref39/cit39
  doi: 10.1021/ja808534w
– ident: ref77/cit77
  doi: 10.1107/S0021889802022112
– ident: ref81/cit81
  doi: 10.1080/00268979300103121
– ident: ref25/cit25
  doi: 10.1039/C9DT03480C
– volume-title: SHELXT-20xx
  year: 2012
  ident: ref65/cit65
– ident: ref48/cit48
  doi: 10.1186/s41181-021-00121-4
– ident: ref49/cit49
  doi: 10.1021/ic4008685
– volume-title: SUPERFLIP
  year: 2007
  ident: ref64/cit64
– ident: ref71/cit71
  doi: 10.1107/S0021889808007279
– ident: ref14/cit14
  doi: 10.3390/ph15101167
– ident: ref9/cit9
  doi: 10.1515/ract-2019-0005
– volume-title: SHAPE 2.1
  year: 2013
  ident: ref35/cit35
– volume-title: Encyclopedia of Inorganic and Bioinorganic Chemistry
  year: 2023
  ident: ref7/cit7
  contributor:
    fullname: Carbo-Bague I.
– ident: ref30/cit30
  doi: 10.1002/hlca.19950780812
– ident: ref3/cit3
  doi: 10.3390/pharmaceutics13060906
– ident: ref27/cit27
  doi: 10.1021/jacs.2c10108
– ident: ref45/cit45
  doi: 10.1186/s13550-018-0431-3
– ident: ref1/cit1
  doi: 10.1002/cmdc.202100135
– ident: ref47/cit47
  doi: 10.1071/CH21184
– ident: ref85/cit85
  doi: 10.1021/ac50048a040
– ident: ref51/cit51
  doi: 10.1080/08893118708081678
– ident: ref63/cit63
  doi: 10.1107/S2052519212051366
– ident: ref50/cit50
  doi: 10.1002/chem.201904654
SSID ssj0009346
Score 2.519263
Snippet Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]­nonane) are known to be efficiently coordinated to a range...
Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 20754
Title Bispidine Chelators for Radiopharmaceutical Applications with Lanthanide, Actinide, and Main Group Metal Ions
URI http://dx.doi.org/10.1021/acs.inorgchem.3c02340
https://www.ncbi.nlm.nih.gov/pubmed/37707798
https://search.proquest.com/docview/2864896582
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB734fqwvIngSuzZNm6THdVFUVMQHeCt5skXtLnb34q930m59IIt6K1MSmplMZ76ZZAahfSc4vACQw6RLgxgMbCCotIETJHYutI7q6oDsNTt7iC8ek8cpdDQhgx-RI6lL8EGBAot4aVMNRiYGjD4T8TD1vRo63bvPKru0vpnjMRFhLG2u7EyaxpskXX43SRP8zMrenC6gm-bWTn3M5Kk9Gqq2fvtZxPGvS1lE82PfE3fqzbKEpmyxjGa7Tcu3FfRynJeDHKyZxUB99ni8xODV4ltp8v6g9zX8jTtfUt_Yh3PxJUipJ4vc2EPcgf9o_SQLg69kXuAqzIWvLLj7-BwGraKH05P77lkw7scQSJqQYaCJJZoJrrU2LAbgZqkTKrKg8rFMrZZGSqNiEQrFaUSlIUyrxKowsdSA5tM1NF30C7uBMElUypyTPDSAMAXA-1SZxBjmuFEiSVvoAJiVjfWpzKpUeUQyT_zgYDbmYAu1G_llg7pGx28D9hopZ8BhnyKRhe2PyiwSLBa-Hk7UQuu1-D-mpJyHnKdi8z_ftoXmfIN6fwCGiG00PXwd2R1wY4Zqt9q678VM8Sg
link.rule.ids 315,783,787,2774,27090,27938,27939,57072,57122
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heoBLH_S1bQFX4oTINo4T2zkuq6IFdjnwENwiP0XUkl01u5f--o6TzUKREOIWTWTLHo89883YMwB7Xgr8gSCHK59HKSrYSDLlIi9p6n3sPDPNBdkzPrpKT26ymzXg3VsYHESNPdVNEP8-uwD9EWhlhVScy12fGdQ1KUL1V5mIRahcMBhe3CfbZe0DnQCNKOd593LnqW6CZjL1_5rpCXOzUTtHb-B6NeDmtsmv_mKu--bvo1yOL5_RW3i9tETJoBWdd7Dmqi3YGHYF4N7D3WFZz0rUbY4g9XdA5zVBG5ecK1tOZ7cPneFk8CAQToJzl4xxzW5VVVp3QAZ4qrZfqrJkosqKNE4vMnFo_JNjbPQBro5-Xg5H0bI6Q6RYRueRoY4aLoUxxvIUYZxjXurE4QGQqtwZZZWyOpWx1IIlTFnKjc6cjjPHLJ4D7COsV9PKfQZCM51z75WILeJNiWA_1zazlnthtczyHuwjs4rl7qqLJnCe0CIQVxwslhzsQb9bxmLWZux4rsH3brEL5HAImKjKTRd1kUieypAdJ-nBp1YKVl0ygYIncvnlJWPbhY3R5WRcjI_PTr_CZihdH67GUPkN1ud_Fm4bDZy53mmk-R_1dvmR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejg3Uv7dZ9pd2HBnsqc2pZtiQ_ZtlC0iWhrA0E9mD0SU0bJ9TJy_76nmwnywphbG9CQkI6fdz97k53CH1ygkMDgBwmXRrEwGADQaUNnCCxc6F1VFcOsmPWn8Tn02TaeFX6vzAwiRJGKisjvr_VC-OaCAPkzNfnBbTAemZtqoHfxADXHyecRD57Qad7-TvgLq0_6Xh4RBhL1793dg3juZMu_-ROO0TOivX0DtHPzaQrj5Ob9mqp2vrXg3iO_7eqZ-igkUhxpz5Cz9EjWxyh_e46EdwLNPuSl4sceJzFUHvrUXqJQdbFP6TJ54vrbaU47mwZxLFX8uIh7N21LHJjP-MOvK51SRYGj2Re4Er5hUcWQAAeQKeXaNL7dtXtB02WhkDShCwDTSzRTHCttWExwDlLnVCRhYcglqnV0khpVCxCoTiNqDSEaZVYFSaWGngP6Cu0V8wL-wZhkqiUOSd5aAB3CgD9qTKJMcxxo0SSttApECtrblmZVQb0iGS-ckPBrKFgC7XXW5kt6sgdf-vwcb3hGVDYG05kYeerMosEi4WPkhO10Ov6JGyGpJyHnKfi-F_m9gE9ufjay4aD8fcT9NRnsPceMkS8RXvLu5V9B3LOUr2vDvQ92g38Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bispidine+Chelators+for+Radiopharmaceutical+Applications+with+Lanthanide%2C+Actinide%2C+and+Main+Group+Metal+Ions&rft.jtitle=Inorganic+chemistry&rft.au=Kopp%2C+Ina&rft.au=Cieslik%2C+Patrick&rft.au=Anger%2C+Karl&rft.au=Josephy%2C+Thomas&rft.date=2023-12-18&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=62&rft.issue=50&rft.spage=20754&rft.epage=20768&rft_id=info:doi/10.1021%2Facs.inorgchem.3c02340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_inorgchem_3c02340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon