Bispidine Chelators for Radiopharmaceutical Applications with Lanthanide, Actinide, and Main Group Metal Ions
Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L 2 (wit...
Saved in:
Published in | Inorganic chemistry Vol. 62; no. 50; pp. 20754 - 20768 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.12.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L 2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L 3 , in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L 3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L 2 , Lu3+ and La3+ show very slow and inefficient complexation with L 3 in contrast to L 2 , and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L 3 ] = 10–4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L 2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue. |
---|---|
AbstractList | Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L3, in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L2, Lu3+ and La3+ show very slow and inefficient complexation with L3 in contrast to L2, and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L3] = 10-4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue. Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for In , Lu , and Ac , nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative , in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. did not fulfill the hopes because complexation is much less efficient. While for Bi and Pb the ligand is an excellent chelator with properties similar to those of , Lu and La show very slow and inefficient complexation with in contrast to , and Ac is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [ ] = 10 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of has been extended to Bi , La , and Pb , including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La , Ac , Lu , Bi , In , and Pb ), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with Ac, the daughter nuclides Bi and Pb also form stable complexes, and this is important for reducing damage to healthy tissue. Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L 2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L 3 , in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L 3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L 2 , Lu3+ and La3+ show very slow and inefficient complexation with L 3 in contrast to L 2 , and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L 3 ] = 10–4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L 2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue. |
Author | Wadepohl, Hubert Brühlmann, Santiago Andrés Cieslik, Patrick Kopp, Ina Josephy, Thomas Anger, Karl Velmurugan, Gunasekaran Kopka, Klaus Comba, Peter Kubeil, Manja Bachmann, Michael Walther, Martin Gast, Michael Stephan, Holger Neupert, Lucca |
AuthorAffiliation | Universität Heidelberg Universität Heidelberg, Interdisciplinary Center for Scientific Computing Technische Universität Dresden National Center for Tumor Diseases (NCT) Dresden Medical Faculty Carl Gustav Carus Faculty of Chemistry and Food Chemistry, School of Science German Cancer Consortium (DKTK) University Hospital Carl Gustav Carus Anorganisch-Chemisches Institut |
AuthorAffiliation_xml | – name: Universität Heidelberg – name: Faculty of Chemistry and Food Chemistry, School of Science – name: Universität Heidelberg, Interdisciplinary Center for Scientific Computing – name: Anorganisch-Chemisches Institut – name: National Center for Tumor Diseases (NCT) Dresden – name: University Hospital Carl Gustav Carus – name: Technische Universität Dresden – name: German Cancer Consortium (DKTK) – name: Medical Faculty Carl Gustav Carus |
Author_xml | – sequence: 1 givenname: Ina surname: Kopp fullname: Kopp, Ina – sequence: 2 givenname: Patrick orcidid: 0000-0002-9709-3711 surname: Cieslik fullname: Cieslik, Patrick organization: Anorganisch-Chemisches Institut – sequence: 3 givenname: Karl surname: Anger fullname: Anger, Karl – sequence: 4 givenname: Thomas surname: Josephy fullname: Josephy, Thomas organization: Anorganisch-Chemisches Institut – sequence: 5 givenname: Lucca surname: Neupert fullname: Neupert, Lucca organization: Anorganisch-Chemisches Institut – sequence: 6 givenname: Gunasekaran orcidid: 0000-0003-3244-2690 surname: Velmurugan fullname: Velmurugan, Gunasekaran organization: Anorganisch-Chemisches Institut – sequence: 7 givenname: Michael surname: Gast fullname: Gast, Michael organization: Anorganisch-Chemisches Institut – sequence: 8 givenname: Hubert surname: Wadepohl fullname: Wadepohl, Hubert organization: Anorganisch-Chemisches Institut – sequence: 9 givenname: Santiago Andrés orcidid: 0000-0002-7840-6858 surname: Brühlmann fullname: Brühlmann, Santiago Andrés – sequence: 10 givenname: Martin orcidid: 0000-0002-0474-8492 surname: Walther fullname: Walther, Martin – sequence: 11 givenname: Klaus surname: Kopka fullname: Kopka, Klaus organization: German Cancer Consortium (DKTK) – sequence: 12 givenname: Michael surname: Bachmann fullname: Bachmann, Michael organization: Medical Faculty Carl Gustav Carus – sequence: 13 givenname: Holger orcidid: 0000-0002-2972-2803 surname: Stephan fullname: Stephan, Holger – sequence: 14 givenname: Manja orcidid: 0000-0001-8857-5922 surname: Kubeil fullname: Kubeil, Manja email: m.kubeil@hzdr.de – sequence: 15 givenname: Peter orcidid: 0000-0001-7796-3532 surname: Comba fullname: Comba, Peter email: peter.comba@aci.uni-heidelberg.de organization: Universität Heidelberg, Interdisciplinary Center for Scientific Computing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37707798$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1v1DAQhi3Uim4LPwHkIwd2Gcf5cI7Lin5IWyEhkLhFE3uWuErsYDtC_fd1tUuvPc17eJ8ZzXPJzpx3xNgHARsBhfiCOm6s8-GPHmjaSA2FLOENW4mqgHUl4PcZWwHkLOq6vWCXMT4AQCvL-i27kE0DTdOqFZu-2jhbYx3x3UAjJh8iP_jAf6Cxfh4wTKhpSVbjyLfzPOaQrHeR_7Np4Ht0aUBnDX3mW53sMaEz_B6t4zfBLzO_p5Thuwy9Y-cHHCO9P80r9uv628_d7Xr__eZut92vUVYirbUgoWvVaK1NXbZFSfKg-oJUAyW2pNEgmr5UoPpGFhKNqHVfUQ8VSQOikVfs03HvHPzfhWLqJhs1jSM68kvsClWXqq0rVeRqdazq4GMMdOjmYCcMj52A7tl0l013L6a7k-nMfTydWPqJzAv1X20uiGPhmX_wS3D541eWPgFuJJIt |
CitedBy_id | crossref_primary_10_1007_s11172_024_4266_y crossref_primary_10_1021_acs_inorgchem_3c03731 crossref_primary_10_1039_D3SC06854D |
Cites_doi | 10.1016/S0010-8545(02)00294-1 10.1021/acs.inorgchem.1c03670 10.1002/chem.201702284 10.1002/9780470144428.ch9 10.1063/1.464913 10.1093/acprof:oso/9780198570769.001.0001 10.1107/S0108767307043930 10.1016/0009-2614(93)89068-S 10.1021/ic061501+ 10.1107/S0365110X57000584 10.1107/S0108767389011189 10.1039/C8DT01108G 10.1107/S0108767394005726 10.1021/acs.inorgchem.2c00636 10.1016/S0020-1693(02)00922-2 10.1021/jacs.2c08438 10.1107/S2053229614024929 10.1016/0039-9140(96)01958-3 10.1039/c3cc41554f 10.1021/ic101378s 10.1002/chem.202301880 10.1002/(SICI)1096-987X(199906)20:8<781::AID-JCC4>3.0.CO;2-T 10.1107/S2053229614024218 10.1021/acs.bioconjchem.2c00038 10.1021/acsomega.2c00387 10.1021/acs.bioconjchem.0c00171 10.1039/a805944f 10.1007/s002140050331 10.1002/chem.202005459 10.1002/anie.201709532 10.1107/S0567739476001551 10.1016/j.ccr.2021.214130 10.1016/S0360-3016(01)01585-1 10.1089/cbr.2018.2494 10.1021/acs.inorgchem.2c01114 10.1186/s41181-021-00121-4 10.1107/S2053273314026370 10.1107/S0108767312014535 10.1107/S0021889807029238 10.2967/jnumed.121.262459 10.2174/1568026615666150915111434 10.1002/anie.202115580 10.2174/1874471011104040306 10.1002/cmdc.202000361 10.1021/ic200182e 10.1021/ic0513383 10.1021/ja808534w 10.1107/S0021889802022112 10.1080/00268979300103121 10.1039/C9DT03480C 10.1021/ic4008685 10.1107/S0021889808007279 10.3390/ph15101167 10.1515/ract-2019-0005 10.1002/hlca.19950780812 10.3390/pharmaceutics13060906 10.1021/jacs.2c10108 10.1186/s13550-018-0431-3 10.1002/cmdc.202100135 10.1071/CH21184 10.1021/ac50048a040 10.1080/08893118708081678 10.1107/S2052519212051366 10.1002/chem.201904654 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acs.inorgchem.3c02340 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 20768 |
ExternalDocumentID | 10_1021_acs_inorgchem_3c02340 37707798 c012651619 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABPTK ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH2 IH9 IHE JG~ LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YZZ ~02 53G AGXLV CUPRZ NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a351t-c1e1c687cccd64924e3f8b2e8704a9ecadaadb4808b7323ad16cb5eb05e3d0173 |
IEDL.DBID | ACS |
ISSN | 0020-1669 |
IngestDate | Fri Aug 16 03:51:48 EDT 2024 Fri Aug 23 01:19:29 EDT 2024 Tue Oct 29 09:30:14 EDT 2024 Tue Dec 19 03:13:29 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a351t-c1e1c687cccd64924e3f8b2e8704a9ecadaadb4808b7323ad16cb5eb05e3d0173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7796-3532 0000-0002-2972-2803 0000-0002-7840-6858 0000-0001-8857-5922 0000-0003-3244-2690 0000-0002-0474-8492 0000-0002-9709-3711 |
PMID | 37707798 |
PQID | 2864896582 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2864896582 crossref_primary_10_1021_acs_inorgchem_3c02340 pubmed_primary_37707798 acs_journals_10_1021_acs_inorgchem_3c02340 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-18 |
PublicationDateYYYYMMDD | 2023-12-18 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Kabsch K. (ref52/cit52) 2001 Frisch M. J. (ref78/cit78) 2019 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref85/cit85 ref2/cit2 (ref57/cit57) 2004 ref77/cit77 Robinson W. (ref66/cit66) 1988 ref34/cit34 (ref37/cit37) 2004 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 Carbo-Bague I. (ref7/cit7) 2023 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 (ref54/cit54) 2015 ref61/cit61 ref75/cit75 ref67/cit67 (ref60/cit60) 2014 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 (ref59/cit59) 2010 (ref56/cit56) 2011 ref79/cit79 ref11/cit11 ref25/cit25 Müller P. (ref72/cit72) 2006 ref29/cit29 ref76/cit76 ref32/cit32 (ref64/cit64) 2007 ref39/cit39 ref14/cit14 ref5/cit5 Martell A. E. (ref83/cit83) 1992 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 (ref65/cit65) 2012 ref26/cit26 ref55/cit55 (ref35/cit35) 2013 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 (ref53/cit53) 2011 ref58/cit58 ref22/cit22 Watkin D. (ref70/cit70) 1988 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 |
References_xml | – ident: ref19/cit19 doi: 10.1016/S0010-8545(02)00294-1 – ident: ref44/cit44 doi: 10.1021/acs.inorgchem.1c03670 – volume-title: Rigaku Oxford Diffraction year: 2015 ident: ref54/cit54 – ident: ref31/cit31 doi: 10.1002/chem.201702284 – ident: ref22/cit22 doi: 10.1002/9780470144428.ch9 – volume-title: PLATON ident: ref76/cit76 – volume-title: NIST Standard Reference Database 46 year: 2004 ident: ref37/cit37 – volume-title: Crystallographics Computing 4 year: 1988 ident: ref70/cit70 contributor: fullname: Watkin D. – ident: ref79/cit79 doi: 10.1063/1.464913 – volume-title: Crystal Structure Refinement year: 2006 ident: ref72/cit72 doi: 10.1093/acprof:oso/9780198570769.001.0001 contributor: fullname: Müller P. – ident: ref67/cit67 doi: 10.1107/S0108767307043930 – ident: ref80/cit80 doi: 10.1016/0009-2614(93)89068-S – ident: ref20/cit20 doi: 10.1021/ic061501+ – ident: ref69/cit69 – ident: ref58/cit58 doi: 10.1107/S0365110X57000584 – ident: ref74/cit74 doi: 10.1107/S0108767389011189 – ident: ref23/cit23 doi: 10.1039/C8DT01108G – ident: ref55/cit55 doi: 10.1107/S0108767394005726 – ident: ref18/cit18 doi: 10.1021/acs.inorgchem.2c00636 – ident: ref43/cit43 doi: 10.1016/S0020-1693(02)00922-2 – ident: ref34/cit34 doi: 10.1021/jacs.2c08438 – ident: ref29/cit29 – volume-title: Gaussian 16 year: 2019 ident: ref78/cit78 contributor: fullname: Frisch M. J. – volume-title: Crystallographic Computing 4 year: 1988 ident: ref66/cit66 contributor: fullname: Robinson W. – ident: ref75/cit75 doi: 10.1107/S2053229614024929 – ident: ref84/cit84 doi: 10.1016/0039-9140(96)01958-3 – ident: ref2/cit2 doi: 10.1039/c3cc41554f – ident: ref5/cit5 doi: 10.1021/ic101378s – ident: ref36/cit36 doi: 10.1002/chem.202301880 – ident: ref28/cit28 doi: 10.1002/(SICI)1096-987X(199906)20:8<781::AID-JCC4>3.0.CO;2-T – ident: ref61/cit61 doi: 10.1107/S2053229614024218 – ident: ref17/cit17 doi: 10.1021/acs.bioconjchem.2c00038 – ident: ref38/cit38 doi: 10.1021/acsomega.2c00387 – ident: ref16/cit16 doi: 10.1021/acs.bioconjchem.0c00171 – volume-title: SADABS year: 2004 ident: ref57/cit57 – ident: ref42/cit42 doi: 10.1039/a805944f – ident: ref82/cit82 doi: 10.1007/s002140050331 – ident: ref26/cit26 doi: 10.1002/chem.202005459 – ident: ref13/cit13 doi: 10.1002/anie.201709532 – ident: ref15/cit15 doi: 10.1107/S0567739476001551 – ident: ref11/cit11 doi: 10.1016/j.ccr.2021.214130 – ident: ref12/cit12 doi: 10.1016/S0360-3016(01)01585-1 – ident: ref10/cit10 doi: 10.1089/cbr.2018.2494 – volume-title: International Tables for Crystallography year: 2001 ident: ref52/cit52 contributor: fullname: Kabsch K. – ident: ref4/cit4 doi: 10.1021/acs.inorgchem.2c01114 – volume-title: Application Note SC-XRD 503 year: 2014 ident: ref60/cit60 – ident: ref46/cit46 doi: 10.1186/s41181-021-00121-4 – ident: ref68/cit68 doi: 10.1107/S2053273314026370 – ident: ref73/cit73 doi: 10.1107/S0108767312014535 – volume-title: Determination and use of stability constants year: 1992 ident: ref83/cit83 contributor: fullname: Martell A. E. – ident: ref62/cit62 doi: 10.1107/S0021889807029238 – ident: ref6/cit6 doi: 10.2967/jnumed.121.262459 – ident: ref24/cit24 doi: 10.2174/1568026615666150915111434 – ident: ref32/cit32 doi: 10.1002/anie.202115580 – volume-title: CrysAlisPro year: 2011 ident: ref53/cit53 – volume-title: SCALE3 ABSPACK CrysAlisPro year: 2011 ident: ref56/cit56 – ident: ref8/cit8 doi: 10.2174/1874471011104040306 – ident: ref33/cit33 doi: 10.1002/cmdc.202000361 – ident: ref40/cit40 doi: 10.1021/ic200182e – volume-title: SHELXT year: 2010 ident: ref59/cit59 – ident: ref21/cit21 doi: 10.1021/ic0513383 – ident: ref39/cit39 doi: 10.1021/ja808534w – ident: ref77/cit77 doi: 10.1107/S0021889802022112 – ident: ref81/cit81 doi: 10.1080/00268979300103121 – ident: ref25/cit25 doi: 10.1039/C9DT03480C – volume-title: SHELXT-20xx year: 2012 ident: ref65/cit65 – ident: ref48/cit48 doi: 10.1186/s41181-021-00121-4 – ident: ref49/cit49 doi: 10.1021/ic4008685 – volume-title: SUPERFLIP year: 2007 ident: ref64/cit64 – ident: ref71/cit71 doi: 10.1107/S0021889808007279 – ident: ref14/cit14 doi: 10.3390/ph15101167 – ident: ref9/cit9 doi: 10.1515/ract-2019-0005 – volume-title: SHAPE 2.1 year: 2013 ident: ref35/cit35 – volume-title: Encyclopedia of Inorganic and Bioinorganic Chemistry year: 2023 ident: ref7/cit7 contributor: fullname: Carbo-Bague I. – ident: ref30/cit30 doi: 10.1002/hlca.19950780812 – ident: ref3/cit3 doi: 10.3390/pharmaceutics13060906 – ident: ref27/cit27 doi: 10.1021/jacs.2c10108 – ident: ref45/cit45 doi: 10.1186/s13550-018-0431-3 – ident: ref1/cit1 doi: 10.1002/cmdc.202100135 – ident: ref47/cit47 doi: 10.1071/CH21184 – ident: ref85/cit85 doi: 10.1021/ac50048a040 – ident: ref51/cit51 doi: 10.1080/08893118708081678 – ident: ref63/cit63 doi: 10.1107/S2052519212051366 – ident: ref50/cit50 doi: 10.1002/chem.201904654 |
SSID | ssj0009346 |
Score | 2.519263 |
Snippet | Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range... Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 20754 |
Title | Bispidine Chelators for Radiopharmaceutical Applications with Lanthanide, Actinide, and Main Group Metal Ions |
URI | http://dx.doi.org/10.1021/acs.inorgchem.3c02340 https://www.ncbi.nlm.nih.gov/pubmed/37707798 https://search.proquest.com/docview/2864896582 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB734fqwvIngSuzZNm6THdVFUVMQHeCt5skXtLnb34q930m59IIt6K1MSmplMZ76ZZAahfSc4vACQw6RLgxgMbCCotIETJHYutI7q6oDsNTt7iC8ek8cpdDQhgx-RI6lL8EGBAot4aVMNRiYGjD4T8TD1vRo63bvPKru0vpnjMRFhLG2u7EyaxpskXX43SRP8zMrenC6gm-bWTn3M5Kk9Gqq2fvtZxPGvS1lE82PfE3fqzbKEpmyxjGa7Tcu3FfRynJeDHKyZxUB99ni8xODV4ltp8v6g9zX8jTtfUt_Yh3PxJUipJ4vc2EPcgf9o_SQLg69kXuAqzIWvLLj7-BwGraKH05P77lkw7scQSJqQYaCJJZoJrrU2LAbgZqkTKrKg8rFMrZZGSqNiEQrFaUSlIUyrxKowsdSA5tM1NF30C7uBMElUypyTPDSAMAXA-1SZxBjmuFEiSVvoAJiVjfWpzKpUeUQyT_zgYDbmYAu1G_llg7pGx28D9hopZ8BhnyKRhe2PyiwSLBa-Hk7UQuu1-D-mpJyHnKdi8z_ftoXmfIN6fwCGiG00PXwd2R1wY4Zqt9q678VM8Sg |
link.rule.ids | 315,783,787,2774,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heoBLH_S1bQFX4oTINo4T2zkuq6IFdjnwENwiP0XUkl01u5f--o6TzUKREOIWTWTLHo89883YMwB7Xgr8gSCHK59HKSrYSDLlIi9p6n3sPDPNBdkzPrpKT26ymzXg3VsYHESNPdVNEP8-uwD9EWhlhVScy12fGdQ1KUL1V5mIRahcMBhe3CfbZe0DnQCNKOd593LnqW6CZjL1_5rpCXOzUTtHb-B6NeDmtsmv_mKu--bvo1yOL5_RW3i9tETJoBWdd7Dmqi3YGHYF4N7D3WFZz0rUbY4g9XdA5zVBG5ecK1tOZ7cPneFk8CAQToJzl4xxzW5VVVp3QAZ4qrZfqrJkosqKNE4vMnFo_JNjbPQBro5-Xg5H0bI6Q6RYRueRoY4aLoUxxvIUYZxjXurE4QGQqtwZZZWyOpWx1IIlTFnKjc6cjjPHLJ4D7COsV9PKfQZCM51z75WILeJNiWA_1zazlnthtczyHuwjs4rl7qqLJnCe0CIQVxwslhzsQb9bxmLWZux4rsH3brEL5HAImKjKTRd1kUieypAdJ-nBp1YKVl0ygYIncvnlJWPbhY3R5WRcjI_PTr_CZihdH67GUPkN1ud_Fm4bDZy53mmk-R_1dvmR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejg3Uv7dZ9pd2HBnsqc2pZtiQ_ZtlC0iWhrA0E9mD0SU0bJ9TJy_76nmwnywphbG9CQkI6fdz97k53CH1ygkMDgBwmXRrEwGADQaUNnCCxc6F1VFcOsmPWn8Tn02TaeFX6vzAwiRJGKisjvr_VC-OaCAPkzNfnBbTAemZtqoHfxADXHyecRD57Qad7-TvgLq0_6Xh4RBhL1793dg3juZMu_-ROO0TOivX0DtHPzaQrj5Ob9mqp2vrXg3iO_7eqZ-igkUhxpz5Cz9EjWxyh_e46EdwLNPuSl4sceJzFUHvrUXqJQdbFP6TJ54vrbaU47mwZxLFX8uIh7N21LHJjP-MOvK51SRYGj2Re4Er5hUcWQAAeQKeXaNL7dtXtB02WhkDShCwDTSzRTHCttWExwDlLnVCRhYcglqnV0khpVCxCoTiNqDSEaZVYFSaWGngP6Cu0V8wL-wZhkqiUOSd5aAB3CgD9qTKJMcxxo0SSttApECtrblmZVQb0iGS-ckPBrKFgC7XXW5kt6sgdf-vwcb3hGVDYG05kYeerMosEi4WPkhO10Ov6JGyGpJyHnKfi-F_m9gE9ufjay4aD8fcT9NRnsPceMkS8RXvLu5V9B3LOUr2vDvQ92g38Cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bispidine+Chelators+for+Radiopharmaceutical+Applications+with+Lanthanide%2C+Actinide%2C+and+Main+Group+Metal+Ions&rft.jtitle=Inorganic+chemistry&rft.au=Kopp%2C+Ina&rft.au=Cieslik%2C+Patrick&rft.au=Anger%2C+Karl&rft.au=Josephy%2C+Thomas&rft.date=2023-12-18&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=62&rft.issue=50&rft.spage=20754&rft.epage=20768&rft_id=info:doi/10.1021%2Facs.inorgchem.3c02340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_inorgchem_3c02340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |