The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables
Three estimation methods with robust corrections-maximum likelihood (ML) using the sample covariance matrix, unweighted least squares (ULS) using a polychoric correlation matrix, and diagonally weighted least squares (DWLS) using a polychoric correlation matrix-have been proposed in the literature,...
Saved in:
Published in | Psychological methods Vol. 21; no. 3; p. 369 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2016
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Three estimation methods with robust corrections-maximum likelihood (ML) using the sample covariance matrix, unweighted least squares (ULS) using a polychoric correlation matrix, and diagonally weighted least squares (DWLS) using a polychoric correlation matrix-have been proposed in the literature, and are considered to be superior to normal theory-based maximum likelihood when observed variables in latent variable models are ordinal. A Monte Carlo simulation study was carried out to compare the performance of ML, DWLS, and ULS in estimating model parameters, and their robust corrections to standard errors, and chi-square statistics in a structural equation model with ordinal observed variables. Eighty-four conditions, characterized by different ordinal observed distribution shapes, numbers of response categories, and sample sizes were investigated. Results reveal that (a) DWLS and ULS yield more accurate factor loading estimates than ML across all conditions; (b) DWLS and ULS produce more accurate interfactor correlation estimates than ML in almost every condition; (c) structural coefficient estimates from DWLS and ULS outperform ML estimates in nearly all asymmetric data conditions; (d) robust standard errors of parameter estimates obtained with robust ML are more accurate than those produced by DWLS and ULS across most conditions; and (e) regarding robust chi-square statistics, robust ML is inferior to DWLS and ULS in controlling for Type I error in almost every condition, unless a large sample is used (N = 1,000). Finally, implications of the findings are discussed, as are the limitations of this study as well as potential directions for future research. (PsycINFO Database Record |
---|---|
AbstractList | Three estimation methods with robust corrections-maximum likelihood (ML) using the sample covariance matrix, unweighted least squares (ULS) using a polychoric correlation matrix, and diagonally weighted least squares (DWLS) using a polychoric correlation matrix-have been proposed in the literature, and are considered to be superior to normal theory-based maximum likelihood when observed variables in latent variable models are ordinal. A Monte Carlo simulation study was carried out to compare the performance of ML, DWLS, and ULS in estimating model parameters, and their robust corrections to standard errors, and chi-square statistics in a structural equation model with ordinal observed variables. Eighty-four conditions, characterized by different ordinal observed distribution shapes, numbers of response categories, and sample sizes were investigated. Results reveal that (a) DWLS and ULS yield more accurate factor loading estimates than ML across all conditions; (b) DWLS and ULS produce more accurate interfactor correlation estimates than ML in almost every condition; (c) structural coefficient estimates from DWLS and ULS outperform ML estimates in nearly all asymmetric data conditions; (d) robust standard errors of parameter estimates obtained with robust ML are more accurate than those produced by DWLS and ULS across most conditions; and (e) regarding robust chi-square statistics, robust ML is inferior to DWLS and ULS in controlling for Type I error in almost every condition, unless a large sample is used (N = 1,000). Finally, implications of the findings are discussed, as are the limitations of this study as well as potential directions for future research. (PsycINFO Database Record |
Author | Li, Cheng-Hsien |
Author_xml | – sequence: 1 givenname: Cheng-Hsien surname: Li fullname: Li, Cheng-Hsien organization: National Sun Yat-sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27571021$$D View this record in MEDLINE/PubMed |
BookMark | eNo1UMtKAzEUDaJYW934AZIP6GgeM5NmKfUJIy7a4rLkcUNHZpKaZBTBj7elejYHzuPCPWN07IMHhC4puaaEi5seMtlD8iN0RiWXBS1rPkLjlN4JoSWfladoxEQlKGH0DP0sN4C3EF2IvfIGcHD4pZniu7dmMcXKW7xqFhhSbnuV2-DxV5s3OAY9pIxNiBHMXk649TjlOJg8RNVh-BgO8T5Y6NKhFaJt_c78VLFVuoN0jk6c6hJc_PEErR7ul_Ononl9fJ7fNoXiFc2F1iUIYFCXwlTEcVqzmTNV5RyAtoRLazWIspJGl9QyA9qAFDvNOCsrVrMJujrc3Q66B7vext038Xv9PwP7BT_VYbU |
CitedBy_id | crossref_primary_10_3390_ijerph17155604 crossref_primary_10_1177_10731911211020075 crossref_primary_10_3389_fpsyg_2023_1217129 crossref_primary_10_37226_rcp_v8i1_7699 crossref_primary_10_1007_s10862_022_09951_1 crossref_primary_10_5507_dvp_2022_002 crossref_primary_10_1002_pits_22412 crossref_primary_10_1007_s10802_023_01146_w crossref_primary_10_1007_s41542_022_00109_9 crossref_primary_10_1080_08039488_2020_1850858 crossref_primary_10_1016_j_ijedro_2024_100394 crossref_primary_10_1371_journal_pone_0199820 crossref_primary_10_1016_j_foodqual_2022_104707 crossref_primary_10_3389_fonc_2020_01052 crossref_primary_10_1002_eat_22891 crossref_primary_10_3389_fpsyg_2017_01670 crossref_primary_10_3389_fpsyg_2023_1158992 crossref_primary_10_1080_10705511_2023_2247567 crossref_primary_10_30773_pi_2023_0313 crossref_primary_10_1186_s40337_024_01151_4 crossref_primary_10_1177_0305735620927474 crossref_primary_10_1186_s12955_024_02303_5 crossref_primary_10_1080_13683500_2024_2398064 crossref_primary_10_1080_00050067_2023_2217326 crossref_primary_10_1080_08957347_2019_1660349 crossref_primary_10_3758_s13428_020_01415_2 crossref_primary_10_3389_fclim_2023_1158386 crossref_primary_10_1007_s11469_022_00844_8 crossref_primary_10_1016_j_trd_2020_102611 crossref_primary_10_1177_1073191119860910 crossref_primary_10_1007_s11136_023_03437_7 crossref_primary_10_1108_AJIM_02_2019_0045 crossref_primary_10_1016_j_chbr_2024_100504 crossref_primary_10_3390_ijerph19105886 crossref_primary_10_1007_s10803_018_3678_7 crossref_primary_10_3390_ijerph19073979 crossref_primary_10_1186_s12955_020_01497_8 crossref_primary_10_1016_j_tra_2020_09_001 crossref_primary_10_1027_2698_1866_a000035 crossref_primary_10_1080_13607863_2021_1913472 crossref_primary_10_1080_10705511_2021_1988609 crossref_primary_10_1016_j_paid_2023_112377 crossref_primary_10_1186_s42409_021_00028_5 crossref_primary_10_1007_s11031_018_9704_4 crossref_primary_10_1007_s00127_024_02624_2 crossref_primary_10_1002_gepi_22519 crossref_primary_10_1080_00220973_2019_1709036 crossref_primary_10_3758_s13428_018_1187_4 crossref_primary_10_1016_j_ejtd_2025_100508 crossref_primary_10_1016_j_jbtep_2023_101926 crossref_primary_10_14718_ACP_2022_25_2_9 crossref_primary_10_1027_2698_1866_a000042 crossref_primary_10_1080_01443410_2020_1828832 crossref_primary_10_1016_j_ejtd_2024_100428 crossref_primary_10_3389_fpsyg_2024_1441561 crossref_primary_10_1016_j_jrp_2022_104242 crossref_primary_10_1016_j_jad_2024_04_089 crossref_primary_10_1080_0092623X_2024_2357129 crossref_primary_10_1111_bjop_12772 crossref_primary_10_1080_10705511_2019_1687302 crossref_primary_10_1186_s40359_024_01859_7 crossref_primary_10_1080_08853134_2019_1592685 crossref_primary_10_1186_s41687_020_00197_7 crossref_primary_10_14718_ACP_2022_25_1_3 crossref_primary_10_1038_s41598_023_33355_0 crossref_primary_10_24315_tred_747075 crossref_primary_10_1007_s10209_025_01211_9 crossref_primary_10_1016_j_system_2024_103334 crossref_primary_10_1177_1352458519852722 crossref_primary_10_1016_j_sciaf_2022_e01182 crossref_primary_10_3390_stats7030060 crossref_primary_10_1111_jcal_12749 crossref_primary_10_1027_1015_5759_a000683 crossref_primary_10_1007_s44202_024_00153_2 crossref_primary_10_3390_app13063379 crossref_primary_10_1080_07481187_2022_2039812 crossref_primary_10_1016_j_jcrimjus_2023_102065 crossref_primary_10_1080_23794925_2024_2324760 crossref_primary_10_1590_1808_057x20221470_en crossref_primary_10_3389_fpubh_2022_873463 crossref_primary_10_1027_2698_1866_a000019 crossref_primary_10_3390_ijerph18178978 crossref_primary_10_3390_ijerph20032166 crossref_primary_10_1080_11356405_2022_2102295 crossref_primary_10_1016_j_jdmm_2021_100665 crossref_primary_10_1177_00131644251319047 crossref_primary_10_1080_09500693_2021_1923080 crossref_primary_10_1371_journal_pone_0287404 crossref_primary_10_1111_sode_12645 crossref_primary_10_3389_feduc_2020_589965 crossref_primary_10_1016_j_heliyon_2022_e11483 crossref_primary_10_1027_1015_5759_a000690 crossref_primary_10_3390_children8090799 crossref_primary_10_1007_s12144_019_00532_2 crossref_primary_10_1371_journal_pone_0261271 crossref_primary_10_1177_07342829221113654 crossref_primary_10_1016_j_jocm_2021_100267 crossref_primary_10_1186_s12889_024_20052_4 crossref_primary_10_1080_19477503_2023_2224653 crossref_primary_10_3389_fpsyg_2021_626084 crossref_primary_10_3917_bupsy_563_0379 crossref_primary_10_15446_rcp_v31n1_96718 crossref_primary_10_15285_maruaebd_853905 crossref_primary_10_3389_fpubh_2021_797838 crossref_primary_10_1080_08039488_2022_2128409 crossref_primary_10_1016_j_ssmmh_2024_100326 crossref_primary_10_1093_socpro_spaf014 crossref_primary_10_1590_1413_82712023280305 crossref_primary_10_1016_j_chb_2021_107148 crossref_primary_10_1177_19485506231151759 crossref_primary_10_1007_s12671_025_02545_4 crossref_primary_10_1007_s11135_023_01790_w crossref_primary_10_1007_s41782_023_00229_4 crossref_primary_10_1057_s41599_024_03297_7 crossref_primary_10_3389_fpsyt_2022_832934 crossref_primary_10_1371_journal_pone_0299854 crossref_primary_10_1080_03069885_2023_2174951 crossref_primary_10_1111_bmsp_12098 crossref_primary_10_3389_fpsyg_2021_642084 crossref_primary_10_1016_j_jpsychores_2024_111983 crossref_primary_10_7454_jsgs_v6i1_1118 crossref_primary_10_1111_josh_13352 crossref_primary_10_1007_s41603_023_00203_y crossref_primary_10_1525_mp_2025_2326557 crossref_primary_10_3389_fnhum_2023_1213156 crossref_primary_10_4081_ripppo_2023_708 crossref_primary_10_1108_IJWHM_05_2024_0093 crossref_primary_10_2298_PSI200702034R crossref_primary_10_1027_2512_8442_a000028 crossref_primary_10_1002_ijop_13090 crossref_primary_10_3390_ijerph18020494 crossref_primary_10_3390_ijerph16244893 crossref_primary_10_1016_j_heliyon_2024_e32841 crossref_primary_10_1186_s12911_023_02201_8 crossref_primary_10_3390_rel13100879 crossref_primary_10_1080_10705511_2020_1763802 crossref_primary_10_1016_j_erap_2019_06_001 crossref_primary_10_3389_fpsyg_2023_1150757 crossref_primary_10_1080_00223891_2023_2220403 crossref_primary_10_1177_10731911231198207 crossref_primary_10_1525_collabra_248 crossref_primary_10_1177_17423953221102630 crossref_primary_10_3390_axioms11040162 crossref_primary_10_1108_JRIM_02_2020_0041 crossref_primary_10_1177_00332941241301360 crossref_primary_10_3389_fpsyg_2018_00580 crossref_primary_10_3390_healthcare10122466 crossref_primary_10_3389_fpsyg_2022_993663 crossref_primary_10_1007_s11336_021_09771_4 crossref_primary_10_1177_01461672241273285 crossref_primary_10_19052_eq_vol1_iss43_7 crossref_primary_10_2139_ssrn_4187652 crossref_primary_10_1027_1015_5759_a000882 crossref_primary_10_1371_journal_pone_0286081 crossref_primary_10_1027_1015_5759_a000645 crossref_primary_10_3390_psych4020022 crossref_primary_10_1007_s11469_019_00200_3 crossref_primary_10_13060_csr_2021_021 crossref_primary_10_34056_aujef_1484626 crossref_primary_10_1177_10731911231176449 crossref_primary_10_1371_journal_pone_0246064 crossref_primary_10_3389_fpsyg_2020_00029 crossref_primary_10_3389_fpsyg_2019_01467 crossref_primary_10_3389_fenrg_2023_1239710 crossref_primary_10_1016_j_chiabu_2023_106492 crossref_primary_10_3389_fpsyg_2018_01006 crossref_primary_10_3758_s13428_021_01547_z crossref_primary_10_1007_s12671_022_02029_9 crossref_primary_10_3390_nu14214517 crossref_primary_10_1080_28324765_2023_2267590 crossref_primary_10_1007_s10578_018_0811_y crossref_primary_10_1371_journal_pone_0288012 crossref_primary_10_3389_fpsyg_2021_717116 crossref_primary_10_1080_02791072_2023_2272832 crossref_primary_10_1080_10705511_2020_1716770 crossref_primary_10_1080_10705511_2024_2372028 crossref_primary_10_3389_fpsyg_2025_1467174 crossref_primary_10_3390_su14063338 crossref_primary_10_3389_fpubh_2024_1504642 crossref_primary_10_1016_j_foodqual_2022_104772 crossref_primary_10_56712_latam_v6i2_3650 crossref_primary_10_3390_bs13090712 crossref_primary_10_1186_s13023_024_03022_2 crossref_primary_10_1016_j_jbusres_2023_114472 crossref_primary_10_1186_s40359_022_01023_z crossref_primary_10_1371_journal_pone_0305477 crossref_primary_10_1186_s41687_021_00382_2 crossref_primary_10_1016_j_jpsychores_2020_109991 crossref_primary_10_1177_0734371X231162045 crossref_primary_10_3390_stats7010015 crossref_primary_10_1080_10705511_2020_1803073 crossref_primary_10_1038_s41598_022_23056_5 crossref_primary_10_3389_fpsyg_2018_02461 crossref_primary_10_1016_j_schres_2024_06_055 crossref_primary_10_1177_23294965241228874 crossref_primary_10_1007_s11469_023_01159_y crossref_primary_10_1007_s41811_023_00171_3 crossref_primary_10_1177_2515245919882903 crossref_primary_10_1556_0016_2022_00003 crossref_primary_10_3390_ijerph19020935 crossref_primary_10_1007_s11618_021_01020_9 crossref_primary_10_1093_nop_npac027 crossref_primary_10_1038_s41598_024_78236_2 crossref_primary_10_1007_s11121_025_01795_x crossref_primary_10_1016_j_agsy_2025_104294 crossref_primary_10_1080_10705511_2022_2122978 crossref_primary_10_3390_healthcare12202082 crossref_primary_10_1016_j_socscimed_2021_114038 crossref_primary_10_1027_1015_5759_a000509 crossref_primary_10_1186_s40359_025_02437_1 crossref_primary_10_52965_001c_39652 crossref_primary_10_1080_00273171_2020_1820309 crossref_primary_10_3390_ani14071021 crossref_primary_10_1007_s10775_023_09594_y crossref_primary_10_1186_s12955_024_02269_4 crossref_primary_10_1080_10705511_2019_1673168 crossref_primary_10_1177_1354816620912062 crossref_primary_10_1016_j_jval_2024_03_2195 crossref_primary_10_1080_10705511_2024_2308005 crossref_primary_10_1007_s12671_022_01834_6 crossref_primary_10_1590_1413_81232024295_16892022 crossref_primary_10_1002_cpp_2815 crossref_primary_10_1111_aphw_12542 crossref_primary_10_1108_MRR_10_2021_0750 crossref_primary_10_1111_joop_12289 crossref_primary_10_1002_jad_12226 crossref_primary_10_17759_cpse_2022110108 crossref_primary_10_1027_1015_5759_a000517 crossref_primary_10_1111_jcal_12478 crossref_primary_10_48166_ejaes_1357828 crossref_primary_10_1590_1808_057x20221470_pt crossref_primary_10_2147_PRBM_S363757 crossref_primary_10_1007_s12144_021_01792_7 crossref_primary_10_1002_pits_23015 crossref_primary_10_1016_j_mhpa_2023_100503 crossref_primary_10_1080_09500693_2017_1328620 crossref_primary_10_1016_j_actpsy_2025_104692 crossref_primary_10_1177_14613557231167695 crossref_primary_10_1002_hpm_3489 crossref_primary_10_1024_2673_8627_a000041 crossref_primary_10_3389_fpsyg_2023_1297782 crossref_primary_10_1061__ASCE_UP_1943_5444_0000710 crossref_primary_10_1038_s41598_024_68814_9 crossref_primary_10_2139_ssrn_3534463 crossref_primary_10_1080_10705511_2021_1894940 crossref_primary_10_3758_s13428_024_02375_7 crossref_primary_10_1080_14779757_2022_2028664 crossref_primary_10_29333_pr_8235 crossref_primary_10_3389_fpsyg_2021_663834 crossref_primary_10_1080_10508422_2022_2122466 crossref_primary_10_1177_10731911211068178 crossref_primary_10_1177_00131644241282982 crossref_primary_10_3389_fpsyg_2024_1265303 crossref_primary_10_3390_psych3020011 crossref_primary_10_1016_j_cogdev_2022_101261 crossref_primary_10_1177_1557988318820396 crossref_primary_10_1371_journal_pone_0255777 crossref_primary_10_26828_cannabis_2020_02_002 crossref_primary_10_17645_si_v11i4_7017 crossref_primary_10_1007_s10597_023_01168_0 crossref_primary_10_1016_j_chb_2020_106589 crossref_primary_10_1371_journal_pone_0312382 crossref_primary_10_1002_bse_4144 crossref_primary_10_2139_ssrn_4137007 crossref_primary_10_1016_j_teler_2023_100080 crossref_primary_10_3389_feduc_2023_1275951 crossref_primary_10_1080_00221309_2021_1922346 crossref_primary_10_1002_capr_12789 crossref_primary_10_3390_cli12050076 crossref_primary_10_1080_10705511_2023_2222229 crossref_primary_10_4236_psych_2024_151004 crossref_primary_10_1016_j_jrtpm_2024_100485 crossref_primary_10_1080_15309576_2021_2018717 crossref_primary_10_1186_s41155_023_00263_1 crossref_primary_10_3389_fspor_2023_1205716 crossref_primary_10_1007_s12144_022_03456_6 crossref_primary_10_1007_s40653_022_00503_z crossref_primary_10_21697_sp_2023_23_1_02 crossref_primary_10_3390_ijerph19137970 crossref_primary_10_1007_s12144_022_03852_y crossref_primary_10_1080_02671522_2020_1723679 crossref_primary_10_3389_fpsyg_2022_835433 crossref_primary_10_3758_s13428_022_02024_x crossref_primary_10_1080_00273171_2019_1608799 crossref_primary_10_2196_30637 crossref_primary_10_3389_fpsyg_2022_1075031 crossref_primary_10_1024_2673_8627_a000064 crossref_primary_10_1080_10705511_2022_2141246 crossref_primary_10_1371_journal_pone_0262635 crossref_primary_10_1016_j_tra_2023_103689 crossref_primary_10_1016_j_trf_2021_02_021 crossref_primary_10_1080_07481756_2021_1906158 crossref_primary_10_17759_pse_2022270306 crossref_primary_10_1007_s11162_020_09612_w crossref_primary_10_1177_00332941241239592 crossref_primary_10_4102_ajopa_v4i0_95 crossref_primary_10_1027_1015_5759_a000704 crossref_primary_10_3390_educsci14050542 crossref_primary_10_1016_j_smrv_2021_101531 crossref_primary_10_3390_ijerph18062925 crossref_primary_10_1177_00131644241261271 crossref_primary_10_1177_00224871221105799 crossref_primary_10_1080_13546783_2022_2088618 crossref_primary_10_1177_07342829211047677 crossref_primary_10_3390_healthcare10112142 crossref_primary_10_1590_1518_8345_7073_4254 crossref_primary_10_3389_fpsyg_2023_940961 crossref_primary_10_1136_bmjopen_2023_080058 crossref_primary_10_1590_1518_8345_7073_4253 crossref_primary_10_1590_1518_8345_7073_4255 crossref_primary_10_1007_s10961_025_10197_8 crossref_primary_10_21449_ijate_880914 crossref_primary_10_1027_2698_1866_a000081 crossref_primary_10_1016_j_bodyim_2023_08_003 crossref_primary_10_1016_j_chiabu_2022_105826 crossref_primary_10_1186_s12874_020_01156_y crossref_primary_10_1007_s11218_023_09871_2 crossref_primary_10_1016_j_actpsy_2024_104626 crossref_primary_10_1080_02673037_2023_2189230 crossref_primary_10_1007_s42380_024_00215_y crossref_primary_10_1080_10705511_2023_2300079 crossref_primary_10_1080_10705511_2024_2414392 crossref_primary_10_1017_S147895152300161X crossref_primary_10_1080_08927936_2022_2121048 crossref_primary_10_1111_imig_13297 crossref_primary_10_3758_s13428_022_01873_w crossref_primary_10_21449_ijate_660353 crossref_primary_10_1155_2020_4181426 crossref_primary_10_1177_08862605241285879 crossref_primary_10_1080_10447318_2023_2267919 crossref_primary_10_1080_00220973_2022_2100731 crossref_primary_10_1080_10447318_2022_2049142 crossref_primary_10_1177_15347354241249935 crossref_primary_10_1016_j_clrc_2024_100207 crossref_primary_10_1016_j_jsp_2023_01_001 crossref_primary_10_1080_20473869_2024_2397635 crossref_primary_10_1007_s41347_023_00340_3 crossref_primary_10_1177_1073191118773875 crossref_primary_10_1590_2526_8910_ctoao390637732 |
ContentType | Journal Article |
Copyright | (c) 2016 APA, all rights reserved). |
Copyright_xml | – notice: (c) 2016 APA, all rights reserved). |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1037/met0000093 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1939-1463 |
ExternalDocumentID | 27571021 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -~X .-4 07C 0R~ 123 29P 354 53G 5VS 7RZ ABIVO ABNCP ABVOZ ACHQT ACPQG AEHFB AETEA ALMA_UNASSIGNED_HOLDINGS AWKKM AZXWR CGNQK CGR CS3 CUY CVF ECM EIF EPA F5P FTD HVGLF HZ~ ISO LW5 NPM O9- OHT OPA OVD P2P PHGZT ROL SES SPA TEORI TN5 UHS XJT YNT ZPI |
ID | FETCH-LOGICAL-a351t-bb4e7e2e647c50f31628fc55ffeebd039ddbe7459cb41d2cebce97dbecfd95262 |
IngestDate | Thu Apr 03 06:57:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | (c) 2016 APA, all rights reserved). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a351t-bb4e7e2e647c50f31628fc55ffeebd039ddbe7459cb41d2cebce97dbecfd95262 |
PMID | 27571021 |
ParticipantIDs | pubmed_primary_27571021 |
PublicationCentury | 2000 |
PublicationDate | 2016-09-00 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Psychological methods |
PublicationTitleAlternate | Psychol Methods |
PublicationYear | 2016 |
SSID | ssj0014384 |
Score | 2.6256363 |
Snippet | Three estimation methods with robust corrections-maximum likelihood (ML) using the sample covariance matrix, unweighted least squares (ULS) using a polychoric... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 369 |
SubjectTerms | Humans Least-Squares Analysis Likelihood Functions Models, Theoretical Monte Carlo Method Sample Size |
Title | The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27571021 |
Volume | 21 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMctNl72gsb4ubHpHnjbDE1sJ_XjNA1VU8cLq9jbVF9s1AfSjhYkEH8855ybhAHa2EtU2U0V-ZOeffZ974R4PXAlhgJRGiys1GitHAadS-2tRxVoChlEgfP5-2I00WeX5rLTnjTqkpV7gz_-qiu5D1VqI65RJfsfZNsfpQb6THzpSoTpemfGi17kfwxnGTdW5COH5MVd8cn4w2FMpcEaRd54_TJ3X5erQ4ylObCNJudcsk0eDn_NKcC5Uk6SwJGf2tTQ-kb-dVRcLfsr298tKRembtfr4xkf7fv6kxwtZ0l-ljYbsqKNpqK5gg2kVVaSdVV9C8oa5_SmqJ45VFyG5Q8zzUJ_epTGR-ESiT1ei88NsLw0cf2T3d57I2X2umtDbJDzEKuhxi2cdLSk1VCv89Sq8m33EDEvdLrxho_RrDUutsWj5CTAMRN_LB74ekdstSP8_Yn4Seihhx7mAc7HRxDBHwFhB8IOHXaIAIGxQw87zGrosMMaOzB2vithhxb7UzF5d3pxMpKpkIacKpOtpHPalz73hS7RDILKinwY0JgQvHfVQNmqcr7UxqLTWZWjd-htSW0YKmvyIn8mNut57V8IUPGc2pvCo8k1fd2Sg4AKh5WimWFaTl-K5zxyVwvOlnK1HtPdf_bsia3uXXslHgb6e_p9Wuut3EHD7heBr1mP |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+performance+of+ML%2C+DWLS%2C+and+ULS+estimation+with+robust+corrections+in+structural+equation+models+with+ordinal+variables&rft.jtitle=Psychological+methods&rft.au=Li%2C+Cheng-Hsien&rft.date=2016-09-01&rft.eissn=1939-1463&rft.volume=21&rft.issue=3&rft.spage=369&rft_id=info:doi/10.1037%2Fmet0000093&rft_id=info%3Apmid%2F27571021&rft_id=info%3Apmid%2F27571021&rft.externalDocID=27571021 |