The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables

Three estimation methods with robust corrections-maximum likelihood (ML) using the sample covariance matrix, unweighted least squares (ULS) using a polychoric correlation matrix, and diagonally weighted least squares (DWLS) using a polychoric correlation matrix-have been proposed in the literature,...

Full description

Saved in:
Bibliographic Details
Published inPsychological methods Vol. 21; no. 3; p. 369
Main Author Li, Cheng-Hsien
Format Journal Article
LanguageEnglish
Published United States 01.09.2016
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Three estimation methods with robust corrections-maximum likelihood (ML) using the sample covariance matrix, unweighted least squares (ULS) using a polychoric correlation matrix, and diagonally weighted least squares (DWLS) using a polychoric correlation matrix-have been proposed in the literature, and are considered to be superior to normal theory-based maximum likelihood when observed variables in latent variable models are ordinal. A Monte Carlo simulation study was carried out to compare the performance of ML, DWLS, and ULS in estimating model parameters, and their robust corrections to standard errors, and chi-square statistics in a structural equation model with ordinal observed variables. Eighty-four conditions, characterized by different ordinal observed distribution shapes, numbers of response categories, and sample sizes were investigated. Results reveal that (a) DWLS and ULS yield more accurate factor loading estimates than ML across all conditions; (b) DWLS and ULS produce more accurate interfactor correlation estimates than ML in almost every condition; (c) structural coefficient estimates from DWLS and ULS outperform ML estimates in nearly all asymmetric data conditions; (d) robust standard errors of parameter estimates obtained with robust ML are more accurate than those produced by DWLS and ULS across most conditions; and (e) regarding robust chi-square statistics, robust ML is inferior to DWLS and ULS in controlling for Type I error in almost every condition, unless a large sample is used (N = 1,000). Finally, implications of the findings are discussed, as are the limitations of this study as well as potential directions for future research. (PsycINFO Database Record
AbstractList Three estimation methods with robust corrections-maximum likelihood (ML) using the sample covariance matrix, unweighted least squares (ULS) using a polychoric correlation matrix, and diagonally weighted least squares (DWLS) using a polychoric correlation matrix-have been proposed in the literature, and are considered to be superior to normal theory-based maximum likelihood when observed variables in latent variable models are ordinal. A Monte Carlo simulation study was carried out to compare the performance of ML, DWLS, and ULS in estimating model parameters, and their robust corrections to standard errors, and chi-square statistics in a structural equation model with ordinal observed variables. Eighty-four conditions, characterized by different ordinal observed distribution shapes, numbers of response categories, and sample sizes were investigated. Results reveal that (a) DWLS and ULS yield more accurate factor loading estimates than ML across all conditions; (b) DWLS and ULS produce more accurate interfactor correlation estimates than ML in almost every condition; (c) structural coefficient estimates from DWLS and ULS outperform ML estimates in nearly all asymmetric data conditions; (d) robust standard errors of parameter estimates obtained with robust ML are more accurate than those produced by DWLS and ULS across most conditions; and (e) regarding robust chi-square statistics, robust ML is inferior to DWLS and ULS in controlling for Type I error in almost every condition, unless a large sample is used (N = 1,000). Finally, implications of the findings are discussed, as are the limitations of this study as well as potential directions for future research. (PsycINFO Database Record
Author Li, Cheng-Hsien
Author_xml – sequence: 1
  givenname: Cheng-Hsien
  surname: Li
  fullname: Li, Cheng-Hsien
  organization: National Sun Yat-sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27571021$$D View this record in MEDLINE/PubMed
BookMark eNo1UMtKAzEUDaJYW934AZIP6GgeM5NmKfUJIy7a4rLkcUNHZpKaZBTBj7elejYHzuPCPWN07IMHhC4puaaEi5seMtlD8iN0RiWXBS1rPkLjlN4JoSWfladoxEQlKGH0DP0sN4C3EF2IvfIGcHD4pZniu7dmMcXKW7xqFhhSbnuV2-DxV5s3OAY9pIxNiBHMXk649TjlOJg8RNVh-BgO8T5Y6NKhFaJt_c78VLFVuoN0jk6c6hJc_PEErR7ul_Ononl9fJ7fNoXiFc2F1iUIYFCXwlTEcVqzmTNV5RyAtoRLazWIspJGl9QyA9qAFDvNOCsrVrMJujrc3Q66B7vext038Xv9PwP7BT_VYbU
CitedBy_id crossref_primary_10_3390_ijerph17155604
crossref_primary_10_1177_10731911211020075
crossref_primary_10_3389_fpsyg_2023_1217129
crossref_primary_10_37226_rcp_v8i1_7699
crossref_primary_10_1007_s10862_022_09951_1
crossref_primary_10_5507_dvp_2022_002
crossref_primary_10_1002_pits_22412
crossref_primary_10_1007_s10802_023_01146_w
crossref_primary_10_1007_s41542_022_00109_9
crossref_primary_10_1080_08039488_2020_1850858
crossref_primary_10_1016_j_ijedro_2024_100394
crossref_primary_10_1371_journal_pone_0199820
crossref_primary_10_1016_j_foodqual_2022_104707
crossref_primary_10_3389_fonc_2020_01052
crossref_primary_10_1002_eat_22891
crossref_primary_10_3389_fpsyg_2017_01670
crossref_primary_10_3389_fpsyg_2023_1158992
crossref_primary_10_1080_10705511_2023_2247567
crossref_primary_10_30773_pi_2023_0313
crossref_primary_10_1186_s40337_024_01151_4
crossref_primary_10_1177_0305735620927474
crossref_primary_10_1186_s12955_024_02303_5
crossref_primary_10_1080_13683500_2024_2398064
crossref_primary_10_1080_00050067_2023_2217326
crossref_primary_10_1080_08957347_2019_1660349
crossref_primary_10_3758_s13428_020_01415_2
crossref_primary_10_3389_fclim_2023_1158386
crossref_primary_10_1007_s11469_022_00844_8
crossref_primary_10_1016_j_trd_2020_102611
crossref_primary_10_1177_1073191119860910
crossref_primary_10_1007_s11136_023_03437_7
crossref_primary_10_1108_AJIM_02_2019_0045
crossref_primary_10_1016_j_chbr_2024_100504
crossref_primary_10_3390_ijerph19105886
crossref_primary_10_1007_s10803_018_3678_7
crossref_primary_10_3390_ijerph19073979
crossref_primary_10_1186_s12955_020_01497_8
crossref_primary_10_1016_j_tra_2020_09_001
crossref_primary_10_1027_2698_1866_a000035
crossref_primary_10_1080_13607863_2021_1913472
crossref_primary_10_1080_10705511_2021_1988609
crossref_primary_10_1016_j_paid_2023_112377
crossref_primary_10_1186_s42409_021_00028_5
crossref_primary_10_1007_s11031_018_9704_4
crossref_primary_10_1007_s00127_024_02624_2
crossref_primary_10_1002_gepi_22519
crossref_primary_10_1080_00220973_2019_1709036
crossref_primary_10_3758_s13428_018_1187_4
crossref_primary_10_1016_j_ejtd_2025_100508
crossref_primary_10_1016_j_jbtep_2023_101926
crossref_primary_10_14718_ACP_2022_25_2_9
crossref_primary_10_1027_2698_1866_a000042
crossref_primary_10_1080_01443410_2020_1828832
crossref_primary_10_1016_j_ejtd_2024_100428
crossref_primary_10_3389_fpsyg_2024_1441561
crossref_primary_10_1016_j_jrp_2022_104242
crossref_primary_10_1016_j_jad_2024_04_089
crossref_primary_10_1080_0092623X_2024_2357129
crossref_primary_10_1111_bjop_12772
crossref_primary_10_1080_10705511_2019_1687302
crossref_primary_10_1186_s40359_024_01859_7
crossref_primary_10_1080_08853134_2019_1592685
crossref_primary_10_1186_s41687_020_00197_7
crossref_primary_10_14718_ACP_2022_25_1_3
crossref_primary_10_1038_s41598_023_33355_0
crossref_primary_10_24315_tred_747075
crossref_primary_10_1007_s10209_025_01211_9
crossref_primary_10_1016_j_system_2024_103334
crossref_primary_10_1177_1352458519852722
crossref_primary_10_1016_j_sciaf_2022_e01182
crossref_primary_10_3390_stats7030060
crossref_primary_10_1111_jcal_12749
crossref_primary_10_1027_1015_5759_a000683
crossref_primary_10_1007_s44202_024_00153_2
crossref_primary_10_3390_app13063379
crossref_primary_10_1080_07481187_2022_2039812
crossref_primary_10_1016_j_jcrimjus_2023_102065
crossref_primary_10_1080_23794925_2024_2324760
crossref_primary_10_1590_1808_057x20221470_en
crossref_primary_10_3389_fpubh_2022_873463
crossref_primary_10_1027_2698_1866_a000019
crossref_primary_10_3390_ijerph18178978
crossref_primary_10_3390_ijerph20032166
crossref_primary_10_1080_11356405_2022_2102295
crossref_primary_10_1016_j_jdmm_2021_100665
crossref_primary_10_1177_00131644251319047
crossref_primary_10_1080_09500693_2021_1923080
crossref_primary_10_1371_journal_pone_0287404
crossref_primary_10_1111_sode_12645
crossref_primary_10_3389_feduc_2020_589965
crossref_primary_10_1016_j_heliyon_2022_e11483
crossref_primary_10_1027_1015_5759_a000690
crossref_primary_10_3390_children8090799
crossref_primary_10_1007_s12144_019_00532_2
crossref_primary_10_1371_journal_pone_0261271
crossref_primary_10_1177_07342829221113654
crossref_primary_10_1016_j_jocm_2021_100267
crossref_primary_10_1186_s12889_024_20052_4
crossref_primary_10_1080_19477503_2023_2224653
crossref_primary_10_3389_fpsyg_2021_626084
crossref_primary_10_3917_bupsy_563_0379
crossref_primary_10_15446_rcp_v31n1_96718
crossref_primary_10_15285_maruaebd_853905
crossref_primary_10_3389_fpubh_2021_797838
crossref_primary_10_1080_08039488_2022_2128409
crossref_primary_10_1016_j_ssmmh_2024_100326
crossref_primary_10_1093_socpro_spaf014
crossref_primary_10_1590_1413_82712023280305
crossref_primary_10_1016_j_chb_2021_107148
crossref_primary_10_1177_19485506231151759
crossref_primary_10_1007_s12671_025_02545_4
crossref_primary_10_1007_s11135_023_01790_w
crossref_primary_10_1007_s41782_023_00229_4
crossref_primary_10_1057_s41599_024_03297_7
crossref_primary_10_3389_fpsyt_2022_832934
crossref_primary_10_1371_journal_pone_0299854
crossref_primary_10_1080_03069885_2023_2174951
crossref_primary_10_1111_bmsp_12098
crossref_primary_10_3389_fpsyg_2021_642084
crossref_primary_10_1016_j_jpsychores_2024_111983
crossref_primary_10_7454_jsgs_v6i1_1118
crossref_primary_10_1111_josh_13352
crossref_primary_10_1007_s41603_023_00203_y
crossref_primary_10_1525_mp_2025_2326557
crossref_primary_10_3389_fnhum_2023_1213156
crossref_primary_10_4081_ripppo_2023_708
crossref_primary_10_1108_IJWHM_05_2024_0093
crossref_primary_10_2298_PSI200702034R
crossref_primary_10_1027_2512_8442_a000028
crossref_primary_10_1002_ijop_13090
crossref_primary_10_3390_ijerph18020494
crossref_primary_10_3390_ijerph16244893
crossref_primary_10_1016_j_heliyon_2024_e32841
crossref_primary_10_1186_s12911_023_02201_8
crossref_primary_10_3390_rel13100879
crossref_primary_10_1080_10705511_2020_1763802
crossref_primary_10_1016_j_erap_2019_06_001
crossref_primary_10_3389_fpsyg_2023_1150757
crossref_primary_10_1080_00223891_2023_2220403
crossref_primary_10_1177_10731911231198207
crossref_primary_10_1525_collabra_248
crossref_primary_10_1177_17423953221102630
crossref_primary_10_3390_axioms11040162
crossref_primary_10_1108_JRIM_02_2020_0041
crossref_primary_10_1177_00332941241301360
crossref_primary_10_3389_fpsyg_2018_00580
crossref_primary_10_3390_healthcare10122466
crossref_primary_10_3389_fpsyg_2022_993663
crossref_primary_10_1007_s11336_021_09771_4
crossref_primary_10_1177_01461672241273285
crossref_primary_10_19052_eq_vol1_iss43_7
crossref_primary_10_2139_ssrn_4187652
crossref_primary_10_1027_1015_5759_a000882
crossref_primary_10_1371_journal_pone_0286081
crossref_primary_10_1027_1015_5759_a000645
crossref_primary_10_3390_psych4020022
crossref_primary_10_1007_s11469_019_00200_3
crossref_primary_10_13060_csr_2021_021
crossref_primary_10_34056_aujef_1484626
crossref_primary_10_1177_10731911231176449
crossref_primary_10_1371_journal_pone_0246064
crossref_primary_10_3389_fpsyg_2020_00029
crossref_primary_10_3389_fpsyg_2019_01467
crossref_primary_10_3389_fenrg_2023_1239710
crossref_primary_10_1016_j_chiabu_2023_106492
crossref_primary_10_3389_fpsyg_2018_01006
crossref_primary_10_3758_s13428_021_01547_z
crossref_primary_10_1007_s12671_022_02029_9
crossref_primary_10_3390_nu14214517
crossref_primary_10_1080_28324765_2023_2267590
crossref_primary_10_1007_s10578_018_0811_y
crossref_primary_10_1371_journal_pone_0288012
crossref_primary_10_3389_fpsyg_2021_717116
crossref_primary_10_1080_02791072_2023_2272832
crossref_primary_10_1080_10705511_2020_1716770
crossref_primary_10_1080_10705511_2024_2372028
crossref_primary_10_3389_fpsyg_2025_1467174
crossref_primary_10_3390_su14063338
crossref_primary_10_3389_fpubh_2024_1504642
crossref_primary_10_1016_j_foodqual_2022_104772
crossref_primary_10_56712_latam_v6i2_3650
crossref_primary_10_3390_bs13090712
crossref_primary_10_1186_s13023_024_03022_2
crossref_primary_10_1016_j_jbusres_2023_114472
crossref_primary_10_1186_s40359_022_01023_z
crossref_primary_10_1371_journal_pone_0305477
crossref_primary_10_1186_s41687_021_00382_2
crossref_primary_10_1016_j_jpsychores_2020_109991
crossref_primary_10_1177_0734371X231162045
crossref_primary_10_3390_stats7010015
crossref_primary_10_1080_10705511_2020_1803073
crossref_primary_10_1038_s41598_022_23056_5
crossref_primary_10_3389_fpsyg_2018_02461
crossref_primary_10_1016_j_schres_2024_06_055
crossref_primary_10_1177_23294965241228874
crossref_primary_10_1007_s11469_023_01159_y
crossref_primary_10_1007_s41811_023_00171_3
crossref_primary_10_1177_2515245919882903
crossref_primary_10_1556_0016_2022_00003
crossref_primary_10_3390_ijerph19020935
crossref_primary_10_1007_s11618_021_01020_9
crossref_primary_10_1093_nop_npac027
crossref_primary_10_1038_s41598_024_78236_2
crossref_primary_10_1007_s11121_025_01795_x
crossref_primary_10_1016_j_agsy_2025_104294
crossref_primary_10_1080_10705511_2022_2122978
crossref_primary_10_3390_healthcare12202082
crossref_primary_10_1016_j_socscimed_2021_114038
crossref_primary_10_1027_1015_5759_a000509
crossref_primary_10_1186_s40359_025_02437_1
crossref_primary_10_52965_001c_39652
crossref_primary_10_1080_00273171_2020_1820309
crossref_primary_10_3390_ani14071021
crossref_primary_10_1007_s10775_023_09594_y
crossref_primary_10_1186_s12955_024_02269_4
crossref_primary_10_1080_10705511_2019_1673168
crossref_primary_10_1177_1354816620912062
crossref_primary_10_1016_j_jval_2024_03_2195
crossref_primary_10_1080_10705511_2024_2308005
crossref_primary_10_1007_s12671_022_01834_6
crossref_primary_10_1590_1413_81232024295_16892022
crossref_primary_10_1002_cpp_2815
crossref_primary_10_1111_aphw_12542
crossref_primary_10_1108_MRR_10_2021_0750
crossref_primary_10_1111_joop_12289
crossref_primary_10_1002_jad_12226
crossref_primary_10_17759_cpse_2022110108
crossref_primary_10_1027_1015_5759_a000517
crossref_primary_10_1111_jcal_12478
crossref_primary_10_48166_ejaes_1357828
crossref_primary_10_1590_1808_057x20221470_pt
crossref_primary_10_2147_PRBM_S363757
crossref_primary_10_1007_s12144_021_01792_7
crossref_primary_10_1002_pits_23015
crossref_primary_10_1016_j_mhpa_2023_100503
crossref_primary_10_1080_09500693_2017_1328620
crossref_primary_10_1016_j_actpsy_2025_104692
crossref_primary_10_1177_14613557231167695
crossref_primary_10_1002_hpm_3489
crossref_primary_10_1024_2673_8627_a000041
crossref_primary_10_3389_fpsyg_2023_1297782
crossref_primary_10_1061__ASCE_UP_1943_5444_0000710
crossref_primary_10_1038_s41598_024_68814_9
crossref_primary_10_2139_ssrn_3534463
crossref_primary_10_1080_10705511_2021_1894940
crossref_primary_10_3758_s13428_024_02375_7
crossref_primary_10_1080_14779757_2022_2028664
crossref_primary_10_29333_pr_8235
crossref_primary_10_3389_fpsyg_2021_663834
crossref_primary_10_1080_10508422_2022_2122466
crossref_primary_10_1177_10731911211068178
crossref_primary_10_1177_00131644241282982
crossref_primary_10_3389_fpsyg_2024_1265303
crossref_primary_10_3390_psych3020011
crossref_primary_10_1016_j_cogdev_2022_101261
crossref_primary_10_1177_1557988318820396
crossref_primary_10_1371_journal_pone_0255777
crossref_primary_10_26828_cannabis_2020_02_002
crossref_primary_10_17645_si_v11i4_7017
crossref_primary_10_1007_s10597_023_01168_0
crossref_primary_10_1016_j_chb_2020_106589
crossref_primary_10_1371_journal_pone_0312382
crossref_primary_10_1002_bse_4144
crossref_primary_10_2139_ssrn_4137007
crossref_primary_10_1016_j_teler_2023_100080
crossref_primary_10_3389_feduc_2023_1275951
crossref_primary_10_1080_00221309_2021_1922346
crossref_primary_10_1002_capr_12789
crossref_primary_10_3390_cli12050076
crossref_primary_10_1080_10705511_2023_2222229
crossref_primary_10_4236_psych_2024_151004
crossref_primary_10_1016_j_jrtpm_2024_100485
crossref_primary_10_1080_15309576_2021_2018717
crossref_primary_10_1186_s41155_023_00263_1
crossref_primary_10_3389_fspor_2023_1205716
crossref_primary_10_1007_s12144_022_03456_6
crossref_primary_10_1007_s40653_022_00503_z
crossref_primary_10_21697_sp_2023_23_1_02
crossref_primary_10_3390_ijerph19137970
crossref_primary_10_1007_s12144_022_03852_y
crossref_primary_10_1080_02671522_2020_1723679
crossref_primary_10_3389_fpsyg_2022_835433
crossref_primary_10_3758_s13428_022_02024_x
crossref_primary_10_1080_00273171_2019_1608799
crossref_primary_10_2196_30637
crossref_primary_10_3389_fpsyg_2022_1075031
crossref_primary_10_1024_2673_8627_a000064
crossref_primary_10_1080_10705511_2022_2141246
crossref_primary_10_1371_journal_pone_0262635
crossref_primary_10_1016_j_tra_2023_103689
crossref_primary_10_1016_j_trf_2021_02_021
crossref_primary_10_1080_07481756_2021_1906158
crossref_primary_10_17759_pse_2022270306
crossref_primary_10_1007_s11162_020_09612_w
crossref_primary_10_1177_00332941241239592
crossref_primary_10_4102_ajopa_v4i0_95
crossref_primary_10_1027_1015_5759_a000704
crossref_primary_10_3390_educsci14050542
crossref_primary_10_1016_j_smrv_2021_101531
crossref_primary_10_3390_ijerph18062925
crossref_primary_10_1177_00131644241261271
crossref_primary_10_1177_00224871221105799
crossref_primary_10_1080_13546783_2022_2088618
crossref_primary_10_1177_07342829211047677
crossref_primary_10_3390_healthcare10112142
crossref_primary_10_1590_1518_8345_7073_4254
crossref_primary_10_3389_fpsyg_2023_940961
crossref_primary_10_1136_bmjopen_2023_080058
crossref_primary_10_1590_1518_8345_7073_4253
crossref_primary_10_1590_1518_8345_7073_4255
crossref_primary_10_1007_s10961_025_10197_8
crossref_primary_10_21449_ijate_880914
crossref_primary_10_1027_2698_1866_a000081
crossref_primary_10_1016_j_bodyim_2023_08_003
crossref_primary_10_1016_j_chiabu_2022_105826
crossref_primary_10_1186_s12874_020_01156_y
crossref_primary_10_1007_s11218_023_09871_2
crossref_primary_10_1016_j_actpsy_2024_104626
crossref_primary_10_1080_02673037_2023_2189230
crossref_primary_10_1007_s42380_024_00215_y
crossref_primary_10_1080_10705511_2023_2300079
crossref_primary_10_1080_10705511_2024_2414392
crossref_primary_10_1017_S147895152300161X
crossref_primary_10_1080_08927936_2022_2121048
crossref_primary_10_1111_imig_13297
crossref_primary_10_3758_s13428_022_01873_w
crossref_primary_10_21449_ijate_660353
crossref_primary_10_1155_2020_4181426
crossref_primary_10_1177_08862605241285879
crossref_primary_10_1080_10447318_2023_2267919
crossref_primary_10_1080_00220973_2022_2100731
crossref_primary_10_1080_10447318_2022_2049142
crossref_primary_10_1177_15347354241249935
crossref_primary_10_1016_j_clrc_2024_100207
crossref_primary_10_1016_j_jsp_2023_01_001
crossref_primary_10_1080_20473869_2024_2397635
crossref_primary_10_1007_s41347_023_00340_3
crossref_primary_10_1177_1073191118773875
crossref_primary_10_1590_2526_8910_ctoao390637732
ContentType Journal Article
Copyright (c) 2016 APA, all rights reserved).
Copyright_xml – notice: (c) 2016 APA, all rights reserved).
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1037/met0000093
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Psychology
EISSN 1939-1463
ExternalDocumentID 27571021
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-~X
.-4
07C
0R~
123
29P
354
53G
5VS
7RZ
ABIVO
ABNCP
ABVOZ
ACHQT
ACPQG
AEHFB
AETEA
ALMA_UNASSIGNED_HOLDINGS
AWKKM
AZXWR
CGNQK
CGR
CS3
CUY
CVF
ECM
EIF
EPA
F5P
FTD
HVGLF
HZ~
ISO
LW5
NPM
O9-
OHT
OPA
OVD
P2P
PHGZT
ROL
SES
SPA
TEORI
TN5
UHS
XJT
YNT
ZPI
ID FETCH-LOGICAL-a351t-bb4e7e2e647c50f31628fc55ffeebd039ddbe7459cb41d2cebce97dbecfd95262
IngestDate Thu Apr 03 06:57:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License (c) 2016 APA, all rights reserved).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a351t-bb4e7e2e647c50f31628fc55ffeebd039ddbe7459cb41d2cebce97dbecfd95262
PMID 27571021
ParticipantIDs pubmed_primary_27571021
PublicationCentury 2000
PublicationDate 2016-09-00
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Psychological methods
PublicationTitleAlternate Psychol Methods
PublicationYear 2016
SSID ssj0014384
Score 2.6256363
Snippet Three estimation methods with robust corrections-maximum likelihood (ML) using the sample covariance matrix, unweighted least squares (ULS) using a polychoric...
SourceID pubmed
SourceType Index Database
StartPage 369
SubjectTerms Humans
Least-Squares Analysis
Likelihood Functions
Models, Theoretical
Monte Carlo Method
Sample Size
Title The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables
URI https://www.ncbi.nlm.nih.gov/pubmed/27571021
Volume 21
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMctNl72gsb4ubHpHnjbDE1sJ_XjNA1VU8cLq9jbVF9s1AfSjhYkEH8855ybhAHa2EtU2U0V-ZOeffZ974R4PXAlhgJRGiys1GitHAadS-2tRxVoChlEgfP5-2I00WeX5rLTnjTqkpV7gz_-qiu5D1VqI65RJfsfZNsfpQb6THzpSoTpemfGi17kfwxnGTdW5COH5MVd8cn4w2FMpcEaRd54_TJ3X5erQ4ylObCNJudcsk0eDn_NKcC5Uk6SwJGf2tTQ-kb-dVRcLfsr298tKRembtfr4xkf7fv6kxwtZ0l-ljYbsqKNpqK5gg2kVVaSdVV9C8oa5_SmqJ45VFyG5Q8zzUJ_epTGR-ESiT1ei88NsLw0cf2T3d57I2X2umtDbJDzEKuhxi2cdLSk1VCv89Sq8m33EDEvdLrxho_RrDUutsWj5CTAMRN_LB74ekdstSP8_Yn4Seihhx7mAc7HRxDBHwFhB8IOHXaIAIGxQw87zGrosMMaOzB2vithhxb7UzF5d3pxMpKpkIacKpOtpHPalz73hS7RDILKinwY0JgQvHfVQNmqcr7UxqLTWZWjd-htSW0YKmvyIn8mNut57V8IUPGc2pvCo8k1fd2Sg4AKh5WimWFaTl-K5zxyVwvOlnK1HtPdf_bsia3uXXslHgb6e_p9Wuut3EHD7heBr1mP
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+performance+of+ML%2C+DWLS%2C+and+ULS+estimation+with+robust+corrections+in+structural+equation+models+with+ordinal+variables&rft.jtitle=Psychological+methods&rft.au=Li%2C+Cheng-Hsien&rft.date=2016-09-01&rft.eissn=1939-1463&rft.volume=21&rft.issue=3&rft.spage=369&rft_id=info:doi/10.1037%2Fmet0000093&rft_id=info%3Apmid%2F27571021&rft_id=info%3Apmid%2F27571021&rft.externalDocID=27571021