Theoretical Insights into the Selective Extraction of Americium(III) over Europium(III) with Dithioamide-Based Ligands
Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An(III)/Ln(III) separation with various ligands through theoretical calculations beca...
Saved in:
Published in | Inorganic chemistry Vol. 58; no. 15; pp. 10047 - 10056 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.08.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An(III)/Ln(III) separation with various ligands through theoretical calculations because of their radiotoxicity and experimental difficulties. In this work, we have investigated three dithioamide-based ligands and their extraction behaviors with Am(III) and Eu(III) ions using the scalar-relativistic density functional theory. The results show that the dithioamide-based ligands have stronger electron donating ability than do the corresponding diamide-based ones. All analyses including geometry, Mulliken population, QTAIM (quantum theory of atoms in molecules), and NBO (natural bond orbital) suggest that the Am–S/N bonds possess more covalency compared to the Eu–S/N bonds, and the M–S bonds have more covalent character than the M–N bonds. Thermodynamic results reveal that N 2,N 9-diethyl-N 2,N 9-di-p-tolyl-1,10-phenanthroline-2,9-bis(carbothioamide) (L 1 ) has a stronger complexing ability with metal ions owing to its rigid structure and that N 6,N 6′-diethyl-N 6,N 6′-di-p-tolyl-[2,2′-bipyridine]-6,6′-bis(carbothioamide) (L 2 ) shows a higher selectivity for the Am(III)/Eu(III) separation. In addition, these dithioamide-based ligands possess Am(III)/Eu(III) selectivity higher than those of the corresponding diamide-based ones, although the former have weaker complexing ability with metal ions, probably due to the greater covalency of the M–S bonds. This theoretical evaluation provides valuable insights into the nature of the selectivity for the Am(III)/Eu(III) separation and information on designing of efficient An(III)/Ln(III) separation with dithioamide-based ligands. |
---|---|
AbstractList | Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An(III)/Ln(III) separation with various ligands through theoretical calculations because of their radiotoxicity and experimental difficulties. In this work, we have investigated three dithioamide-based ligands and their extraction behaviors with Am(III) and Eu(III) ions using the scalar-relativistic density functional theory. The results show that the dithioamide-based ligands have stronger electron donating ability than do the corresponding diamide-based ones. All analyses including geometry, Mulliken population, QTAIM (quantum theory of atoms in molecules), and NBO (natural bond orbital) suggest that the Am-S/N bonds possess more covalency compared to the Eu-S/N bonds, and the M-S bonds have more covalent character than the M-N bonds. Thermodynamic results reveal that N2,N9-diethyl-N2,N9-di-p-tolyl-1,10-phenanthroline-2,9-bis(carbothioamide) (L1) has a stronger complexing ability with metal ions owing to its rigid structure and that N6,N6'-diethyl-N6,N6'-di-p-tolyl-[2,2'-bipyridine]-6,6'-bis(carbothioamide) (L2) shows a higher selectivity for the Am(III)/Eu(III) separation. In addition, these dithioamide-based ligands possess Am(III)/Eu(III) selectivity higher than those of the corresponding diamide-based ones, although the former have weaker complexing ability with metal ions, probably due to the greater covalency of the M-S bonds. This theoretical evaluation provides valuable insights into the nature of the selectivity for the Am(III)/Eu(III) separation and information on designing of efficient An(III)/Ln(III) separation with dithioamide-based ligands.Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An(III)/Ln(III) separation with various ligands through theoretical calculations because of their radiotoxicity and experimental difficulties. In this work, we have investigated three dithioamide-based ligands and their extraction behaviors with Am(III) and Eu(III) ions using the scalar-relativistic density functional theory. The results show that the dithioamide-based ligands have stronger electron donating ability than do the corresponding diamide-based ones. All analyses including geometry, Mulliken population, QTAIM (quantum theory of atoms in molecules), and NBO (natural bond orbital) suggest that the Am-S/N bonds possess more covalency compared to the Eu-S/N bonds, and the M-S bonds have more covalent character than the M-N bonds. Thermodynamic results reveal that N2,N9-diethyl-N2,N9-di-p-tolyl-1,10-phenanthroline-2,9-bis(carbothioamide) (L1) has a stronger complexing ability with metal ions owing to its rigid structure and that N6,N6'-diethyl-N6,N6'-di-p-tolyl-[2,2'-bipyridine]-6,6'-bis(carbothioamide) (L2) shows a higher selectivity for the Am(III)/Eu(III) separation. In addition, these dithioamide-based ligands possess Am(III)/Eu(III) selectivity higher than those of the corresponding diamide-based ones, although the former have weaker complexing ability with metal ions, probably due to the greater covalency of the M-S bonds. This theoretical evaluation provides valuable insights into the nature of the selectivity for the Am(III)/Eu(III) separation and information on designing of efficient An(III)/Ln(III) separation with dithioamide-based ligands. Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An(III)/Ln(III) separation with various ligands through theoretical calculations because of their radiotoxicity and experimental difficulties. In this work, we have investigated three dithioamide-based ligands and their extraction behaviors with Am(III) and Eu(III) ions using the scalar-relativistic density functional theory. The results show that the dithioamide-based ligands have stronger electron donating ability than do the corresponding diamide-based ones. All analyses including geometry, Mulliken population, QTAIM (quantum theory of atoms in molecules), and NBO (natural bond orbital) suggest that the Am–S/N bonds possess more covalency compared to the Eu–S/N bonds, and the M–S bonds have more covalent character than the M–N bonds. Thermodynamic results reveal that N 2,N 9-diethyl-N 2,N 9-di-p-tolyl-1,10-phenanthroline-2,9-bis(carbothioamide) (L 1 ) has a stronger complexing ability with metal ions owing to its rigid structure and that N 6,N 6′-diethyl-N 6,N 6′-di-p-tolyl-[2,2′-bipyridine]-6,6′-bis(carbothioamide) (L 2 ) shows a higher selectivity for the Am(III)/Eu(III) separation. In addition, these dithioamide-based ligands possess Am(III)/Eu(III) selectivity higher than those of the corresponding diamide-based ones, although the former have weaker complexing ability with metal ions, probably due to the greater covalency of the M–S bonds. This theoretical evaluation provides valuable insights into the nature of the selectivity for the Am(III)/Eu(III) separation and information on designing of efficient An(III)/Ln(III) separation with dithioamide-based ligands. Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An(III)/Ln(III) separation with various ligands through theoretical calculations because of their radiotoxicity and experimental difficulties. In this work, we have investigated three dithioamide-based ligands and their extraction behaviors with Am(III) and Eu(III) ions using the scalar-relativistic density functional theory. The results show that the dithioamide-based ligands have stronger electron donating ability than do the corresponding diamide-based ones. All analyses including geometry, Mulliken population, QTAIM (quantum theory of atoms in molecules), and NBO (natural bond orbital) suggest that the Am-S/N bonds possess more covalency compared to the Eu-S/N bonds, and the M-S bonds have more covalent character than the M-N bonds. Thermodynamic results reveal that , -diethyl- , -di- -tolyl-1,10-phenanthroline-2,9-bis(carbothioamide) ( ) has a stronger complexing ability with metal ions owing to its rigid structure and that , -diethyl- , -di- -tolyl-[2,2'-bipyridine]-6,6'-bis(carbothioamide) ( ) shows a higher selectivity for the Am(III)/Eu(III) separation. In addition, these dithioamide-based ligands possess Am(III)/Eu(III) selectivity higher than those of the corresponding diamide-based ones, although the former have weaker complexing ability with metal ions, probably due to the greater covalency of the M-S bonds. This theoretical evaluation provides valuable insights into the nature of the selectivity for the Am(III)/Eu(III) separation and information on designing of efficient An(III)/Ln(III) separation with dithioamide-based ligands. |
Author | Nie, Chang-Ming Wu, Qun-Yan Kong, Xiang-He Chai, Zhi-Fang Wang, Cong-Zhi Lan, Jian-Hui Shi, Wei-Qun Wang, Cui |
AuthorAffiliation | Laboratory of Nuclear Energy Chemistry Ningbo Institute of Industrial Technology, Chinese Academy of Sciences School of Chemistry and Chemical Engineering Engineering Laboratory of Advanced Energy Materials |
AuthorAffiliation_xml | – name: Laboratory of Nuclear Energy Chemistry – name: School of Chemistry and Chemical Engineering – name: Ningbo Institute of Industrial Technology, Chinese Academy of Sciences – name: Engineering Laboratory of Advanced Energy Materials |
Author_xml | – sequence: 1 givenname: Cui surname: Wang fullname: Wang, Cui organization: School of Chemistry and Chemical Engineering – sequence: 2 givenname: Qun-Yan surname: Wu fullname: Wu, Qun-Yan organization: Laboratory of Nuclear Energy Chemistry – sequence: 3 givenname: Xiang-He surname: Kong fullname: Kong, Xiang-He organization: School of Chemistry and Chemical Engineering – sequence: 4 givenname: Cong-Zhi surname: Wang fullname: Wang, Cong-Zhi organization: Laboratory of Nuclear Energy Chemistry – sequence: 5 givenname: Jian-Hui surname: Lan fullname: Lan, Jian-Hui organization: Laboratory of Nuclear Energy Chemistry – sequence: 6 givenname: Chang-Ming surname: Nie fullname: Nie, Chang-Ming organization: School of Chemistry and Chemical Engineering – sequence: 7 givenname: Zhi-Fang surname: Chai fullname: Chai, Zhi-Fang organization: Ningbo Institute of Industrial Technology, Chinese Academy of Sciences – sequence: 8 givenname: Wei-Qun orcidid: 0000-0001-9929-9732 surname: Shi fullname: Shi, Wei-Qun email: shiwq@ihep.ac.cn organization: Laboratory of Nuclear Energy Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31287677$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v0zAYhy20iXUbHwHk4zik-F-cRJzGViBSpR02JG6RY79pPCVxsZ3Cvj2uWnrgsov9yn6e9_D7XaKzyU2A0HtKlpQw-knpsLST8xvdw7isWkIZIW_QguaMZDklP8_QgpA0UymrC3QZwjMhpOJCvkUXnLKykEWxQLunHpyHaLUacD0Fu-ljwHaKDsce8CMMoKPdAV79iV6l0U3Ydfh2BG-1ncebuq4_YrcDj1ezd9vT028be3yfDuvUaA1kX1QAg9d2oyYTrtF5p4YA7473FfrxdfV09z1bP3yr727XmeI5jZlSgrd5ywsFgndUkJIRw4UBpaAECqzk2hjTVkpIVmjJ8rwDCVUppOiY0vwK3Rz2br37NUOIzWiDhmFQE7g5NCwZQual4An9cETndgTTbL0dlX9p_mWVgPwAaO9C8NCdEEqafSdN6qQ5ddIcO0ne5_88baPaJ5kStcOrNj3Y--9nN_sp5fWK8xfHD6ln |
CitedBy_id | crossref_primary_10_1016_j_molliq_2019_112287 crossref_primary_10_1039_D2QI00803C crossref_primary_10_1007_s10967_021_07653_8 crossref_primary_10_1021_acs_jpca_4c02777 crossref_primary_10_1016_j_cej_2024_150138 crossref_primary_10_1021_acsearthspacechem_1c00117 crossref_primary_10_1016_j_molliq_2021_117151 crossref_primary_10_1016_j_molliq_2024_124124 crossref_primary_10_1021_acs_inorgchem_9b03604 crossref_primary_10_1016_j_enmm_2022_100749 crossref_primary_10_1021_acs_iecr_4c01250 crossref_primary_10_1002_slct_202203535 crossref_primary_10_1021_acs_inorgchem_4c04570 crossref_primary_10_1021_acs_inorgchem_1c02916 crossref_primary_10_1016_j_molliq_2022_120924 crossref_primary_10_1016_j_seppur_2024_126442 crossref_primary_10_1080_01496395_2023_2212858 crossref_primary_10_1016_j_molliq_2023_123108 crossref_primary_10_3390_molecules27175527 crossref_primary_10_1016_j_molstruc_2021_131875 crossref_primary_10_1021_acs_jpca_3c01629 crossref_primary_10_1016_j_molliq_2021_115819 crossref_primary_10_1039_D1QI00097G crossref_primary_10_1002_aoc_6999 crossref_primary_10_1039_D2CC03352F crossref_primary_10_1016_j_cclet_2023_109402 crossref_primary_10_1080_02603594_2024_2305884 crossref_primary_10_1016_j_poly_2022_115832 crossref_primary_10_1155_2022_3528170 crossref_primary_10_1039_D0NJ06296K crossref_primary_10_1080_09593330_2021_1921055 crossref_primary_10_1002_slct_202200956 crossref_primary_10_1016_j_poly_2021_115533 crossref_primary_10_1002_slct_202102543 crossref_primary_10_1016_j_molstruc_2022_133524 crossref_primary_10_1021_acs_jpcb_0c09562 crossref_primary_10_1039_D0NJ01014F crossref_primary_10_1021_acs_inorgchem_0c01271 crossref_primary_10_1002_aoc_6686 crossref_primary_10_1016_j_comptc_2019_112643 crossref_primary_10_1002_slct_202200446 crossref_primary_10_1039_D1NJ06029E crossref_primary_10_1080_07366299_2023_2239866 crossref_primary_10_1021_acs_inorgchem_2c00232 crossref_primary_10_1021_acs_inorgchem_2c04476 crossref_primary_10_1002_aoc_7428 crossref_primary_10_1002_qua_27220 crossref_primary_10_1002_aoc_6331 crossref_primary_10_1021_acs_inorgchem_0c03002 crossref_primary_10_1016_j_comptc_2025_115100 crossref_primary_10_1039_D2RA07660H |
Cites_doi | 10.1039/B603847F 10.1021/acscentsci.6b00066 10.1021/jacs.6b03106 10.1080/07366290600761936 10.1021/acs.jpca.8b01335 10.1039/C7CP05381A 10.1080/07366299.2014.985912 10.1021/acs.inorgchem.8b03358 10.1002/chem.201001471 10.1063/1.456066 10.1021/jo982382l 10.1021/acs.jpca.8b00177 10.1039/C4DT02402H 10.1021/acs.inorgchem.8b02550 10.1080/07366299.2011.539127 10.1039/C7CP04625A 10.1039/P29930000799 10.1016/j.crci.2006.12.011 10.1039/C8DT00134K 10.1039/C8CC07683A 10.1021/acs.organomet.8b00391 10.1016/j.anucene.2007.02.009 10.1007/s10967-018-6263-9 10.1002/jcc.22885 10.1021/jp980017s 10.1080/07360299908934598 10.1021/jp053522f 10.1021/ic991316e 10.1039/B511321K 10.1080/07366299.2013.833783 10.1021/ic100844t 10.1021/acs.inorgchem.8b00345 10.1063/1.1521431 10.1021/ic102238c 10.1021/ic7015403 10.1002/wcms.19 10.1021/ja203378m 10.1103/PhysRev.136.B864 10.1063/1.1501133 10.1016/j.theochem.2006.03.021 10.1021/ic3008848 10.1021/ic3026842 10.1039/b901724k 10.1007/s10953-012-9826-3 10.1080/07366290500388459 10.1021/ic402784c 10.1007/s11224-014-0430-6 10.1021/ic301599y 10.1107/S0567739476001551 10.1063/1.449486 10.1039/C5CP03100A 10.1021/jp512950j 10.1021/acs.inorgchem.8b01635 10.1080/07366299308918184 10.1021/cr3003399 10.1021/ic501006p 10.1680/nuen.42.5.263.37622 10.1016/S0166-1280(01)00751-5 10.1016/j.theochem.2003.12.015 10.1021/acs.inorgchem.5b01452 10.1039/C8DT02702A 10.1021/jp906341r 10.1016/S0925-8388(98)00064-4 10.1039/c2dt31503c 10.1002/anie.201606367 10.1039/c3dt52104d 10.1039/C6DT00296J 10.1080/07366299908934641 10.1039/c3cp54478h 10.1063/1.466847 10.1021/jp5065819 10.1002/jcc.10228 10.1103/PhysRev.140.A1133 10.1063/1.445134 10.1016/j.seppur.2017.02.043 10.1021/acs.inorgchem.5b00483 10.1021/ic010165o 10.1016/j.anucene.2007.12.007 10.1039/c2sc21806b |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.inorgchem.9b01200 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 10056 |
ExternalDocumentID | 31287677 10_1021_acs_inorgchem_9b01200 b133800683 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -~X 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ~02 NPM YIN 7X8 |
ID | FETCH-LOGICAL-a351t-aa43b5b37ae43f140820d34deaae8e1e283cdddb9a4627c6255fe6e98464f2ac3 |
IEDL.DBID | ACS |
ISSN | 0020-1669 1520-510X |
IngestDate | Fri Jul 11 05:16:49 EDT 2025 Wed Feb 19 02:34:08 EST 2025 Thu Apr 24 22:57:20 EDT 2025 Tue Jul 01 01:38:49 EDT 2025 Thu Aug 27 13:44:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a351t-aa43b5b37ae43f140820d34deaae8e1e283cdddb9a4627c6255fe6e98464f2ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9929-9732 |
PMID | 31287677 |
PQID | 2255465843 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2255465843 pubmed_primary_31287677 crossref_primary_10_1021_acs_inorgchem_9b01200 crossref_citationtrail_10_1021_acs_inorgchem_9b01200 acs_journals_10_1021_acs_inorgchem_9b01200 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190805 2019-08-05 2019-Aug-05 |
PublicationDateYYYYMMDD | 2019-08-05 |
PublicationDate_xml | – month: 08 year: 2019 text: 20190805 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref36/cit2016 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1039/B603847F – ident: ref2/cit2 doi: 10.1021/acscentsci.6b00066 – ident: ref3/cit3 doi: 10.1021/jacs.6b03106 – ident: ref21/cit21 doi: 10.1080/07366290600761936 – ident: ref76/cit76 doi: 10.1021/acs.jpca.8b01335 – ident: ref72/cit72 doi: 10.1039/C7CP05381A – ident: ref24/cit24 doi: 10.1080/07366299.2014.985912 – ident: ref25/cit25 doi: 10.1021/acs.inorgchem.8b03358 – ident: ref74/cit74 doi: 10.1002/chem.201001471 – ident: ref43/cit43 doi: 10.1063/1.456066 – ident: ref56/cit56 doi: 10.1021/jo982382l – ident: ref33/cit33 doi: 10.1021/acs.jpca.8b00177 – ident: ref29/cit29 doi: 10.1039/C4DT02402H – ident: ref68/cit68 doi: 10.1021/acs.inorgchem.8b02550 – ident: ref7/cit7 doi: 10.1080/07366299.2011.539127 – ident: ref13/cit13 doi: 10.1039/C7CP04625A – ident: ref52/cit52 doi: 10.1039/P29930000799 – ident: ref73/cit73 doi: 10.1016/j.crci.2006.12.011 – ident: ref32/cit32 doi: 10.1039/C8DT00134K – ident: ref31/cit31 doi: 10.1039/C8CC07683A – ident: ref70/cit70 doi: 10.1021/acs.organomet.8b00391 – ident: ref5/cit5 doi: 10.1016/j.anucene.2007.02.009 – ident: ref34/cit34 doi: 10.1007/s10967-018-6263-9 – ident: ref48/cit48 doi: 10.1002/jcc.22885 – ident: ref53/cit53 doi: 10.1021/jp980017s – ident: ref19/cit19 doi: 10.1080/07360299908934598 – ident: ref36/cit2016 – ident: ref54/cit54 doi: 10.1021/jp053522f – ident: ref80/cit80 doi: 10.1021/ic991316e – ident: ref20/cit20 doi: 10.1039/B511321K – ident: ref17/cit17 doi: 10.1080/07366299.2013.833783 – ident: ref26/cit26 doi: 10.1021/ic100844t – ident: ref78/cit78 doi: 10.1021/acs.inorgchem.8b00345 – ident: ref46/cit46 doi: 10.1063/1.1521431 – ident: ref69/cit69 doi: 10.1021/ic102238c – ident: ref55/cit55 doi: 10.1021/ic7015403 – ident: ref58/cit58 doi: 10.1002/wcms.19 – ident: ref22/cit22 doi: 10.1021/ja203378m – ident: ref37/cit37 doi: 10.1103/PhysRev.136.B864 – ident: ref51/cit51 doi: 10.1063/1.1501133 – ident: ref71/cit71 doi: 10.1016/j.theochem.2006.03.021 – ident: ref1/cit1 doi: 10.1021/ic3008848 – ident: ref23/cit23 doi: 10.1021/ic3026842 – ident: ref40/cit40 doi: 10.1039/b901724k – ident: ref60/cit60 doi: 10.1007/s10953-012-9826-3 – ident: ref9/cit9 doi: 10.1080/07366290500388459 – ident: ref18/cit18 doi: 10.1021/ic402784c – ident: ref59/cit59 doi: 10.1007/s11224-014-0430-6 – ident: ref14/cit14 doi: 10.1021/ic301599y – ident: ref57/cit57 doi: 10.1107/S0567739476001551 – ident: ref67/cit67 doi: 10.1063/1.449486 – ident: ref27/cit27 doi: 10.1039/C5CP03100A – ident: ref64/cit64 doi: 10.1021/jp512950j – ident: ref30/cit30 doi: 10.1021/acs.inorgchem.8b01635 – ident: ref63/cit63 doi: 10.1080/07366299308918184 – ident: ref12/cit12 doi: 10.1021/cr3003399 – ident: ref65/cit65 doi: 10.1021/ic501006p – ident: ref4/cit4 doi: 10.1680/nuen.42.5.263.37622 – ident: ref45/cit45 doi: 10.1016/S0166-1280(01)00751-5 – ident: ref47/cit47 doi: 10.1016/j.theochem.2003.12.015 – ident: ref15/cit15 doi: 10.1021/acs.inorgchem.5b01452 – ident: ref42/cit42 doi: 10.1039/C8DT02702A – ident: ref49/cit49 doi: 10.1021/jp906341r – ident: ref8/cit8 doi: 10.1016/S0925-8388(98)00064-4 – ident: ref35/cit35 doi: 10.1039/c2dt31503c – ident: ref62/cit62 doi: 10.1002/anie.201606367 – ident: ref28/cit28 doi: 10.1039/c3dt52104d – ident: ref41/cit41 doi: 10.1039/C6DT00296J – ident: ref16/cit16 doi: 10.1080/07366299908934641 – ident: ref77/cit77 doi: 10.1039/c3cp54478h – ident: ref44/cit44 doi: 10.1063/1.466847 – ident: ref61/cit61 doi: 10.1021/jp5065819 – ident: ref39/cit39 doi: 10.1002/jcc.10228 – ident: ref38/cit38 doi: 10.1103/PhysRev.140.A1133 – ident: ref66/cit66 doi: 10.1063/1.445134 – ident: ref10/cit10 doi: 10.1016/j.seppur.2017.02.043 – ident: ref79/cit79 doi: 10.1021/acs.inorgchem.5b00483 – ident: ref50/cit50 doi: 10.1021/ic010165o – ident: ref6/cit6 doi: 10.1016/j.anucene.2007.12.007 – ident: ref75/cit75 doi: 10.1039/c2sc21806b |
SSID | ssj0009346 |
Score | 2.5086765 |
Snippet | Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly... Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10047 |
Title | Theoretical Insights into the Selective Extraction of Americium(III) over Europium(III) with Dithioamide-Based Ligands |
URI | http://dx.doi.org/10.1021/acs.inorgchem.9b01200 https://www.ncbi.nlm.nih.gov/pubmed/31287677 https://www.proquest.com/docview/2255465843 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB734fqwvInhQoeumebQ96rriioqggreSJqkU3VZsV8Rf76SPXUQW9dJDIKFJJplvMvPNILQvhDYC_tDRMe04YH8ZRyppHOLK2NW-ooxbvvP1jbh4YJeP_HEKHU_w4LvkWKocMCi0wCQG7SCybE-w0Wdc4XvW2jrp3o2z7NKKmWNtIiJE0FB2Jg1jVZLKv6ukCTiz1DfnC-i2Ye1UYSbP7WERtdXnzySOf53KIpqvsSc-qYRlCU2ZdBnNdpuSbyvo_X5Ma8T9NLeGe46TtMgw4ER8V9bMgesR9z6Kt4oRgbMYV16fZDg46Pf7h9gGheLylX_UZF978Rl8kkwOEm2cU1CeGl8lT5ZpvIoeznv33QunLszgSMpJ4UjJaMQj6knDaExszeqOpkwbKY1viAHIorTWUSCZcD0FJhaPQSICwDosdqWia2g6zVKzgTDVNm6lQ40JAmZ8ImMutYLROCMdxeMWOoJVC-uDlYelz9wloW0cLWVYL2ULsWYjQ1WnOLeVNl5-69YedXutcnz81mGvkZIQdsi6WGRqsmEewu1oq8v7jLbQeiU-oyEpQAFPeN7mf6a0heYAogVlyCHfRtPF29DsAAwqot1S9L8AHnkHig |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB615dBeyptueRkJJEDKEsd2sjlwKNtWG7rtpVupt-DYDopgk2qT5fWD-Cv8LcZ5rUCqKg6VuOQwki2Px85843kBPPd9bXxcoaNT5jpofxlHKmkc6snU0yPFuLD5zscn_uSMvz8X52vws8uFwUWUOFNZO_FX1QXoG0vLcqQiL_NhmNikT7cNpjwy37-iqVa-jfZRri887_BgNp44bTcBRzJBK0dKzhKRsEAazlJqGy27mnFtpDQjQw3qWaW1TkLJfS9QaBeIFNkIUUHz1JOK4bzrcAMBkGeNvL3x6aq4L2sSgqwpRn0_7DKFLlu21YSq_FMTXgJvazV3eBN-9RtUR7d8Gi6rZKh-_FU78v_fwVuw3SJtstdcjduwZvI7sDnuGtzdhS-zVRInifLSPlOUJMurgiAqJqd1hyBUBuTgW7Vo8j9IkZLGx5Ut5y-jKHpFbAgsqX0aPcm-bZN9_GSFnGfaOO8QKmgyzT7avOp7cHYtbN-HjbzIzQ4Qpm2UjsuMCUNuRlSmQmqFswlOXSXSAbxGKcXtb6SM6wgBj8aW2IsubkU3AN6dn1i1Bd1tX5HPVw0b9sMumoomVw141h3OGCVkHUoyN8WyjFEXCG4hLBvAg-bU9lMyBD6BHwS7_8LSU9iczI6n8TQ6OXoIWwhOwzrYUjyCjWqxNI8RAFbJk_r2Efhw3Yf1N7K7a-U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIkEvvB_L00ggQaUscWwnmwOHsttVQ0uF1FbqLTh-VBFsUjVZXj-Jv8KfYpxXBVJVceiBSw6OPLIz48yMZ74ZgOdhqE2IK_S0Zb6H_pfxpJLGo4G0gZ4oxoXDO7_fDbcO-LtDcbgCP3ssDC6iQkpVE8R3p_pY267CAH3txvMC3-B-FuM4c8BPv0uo3Dbfv6K7Vr1JZsjbF0Ew39yfbnldRwFPMkFrT0rOMpGxSBrOLHXNln3NuDZSmomhBnWt0lpnseRhECn0DYTFrcSopLkNpGJI9xJcdqFC5-htTPdOC_yyFhTk3DEahnGPFjpr2U4bqupPbXiGiduouvl1-DV8pCbD5dN4WWdj9eOv-pH_x1e8Adc6i5tstEfkJqyY4hZcnfaN7m7Dl_1TMCdJispdV1QkL-qSoHVM9ppOQagUyOa3-qTFgZDSkjbWlS8XL5MkeUVcKixpYhvDkLvjJjN85KVc5Np4b9Fk0GQnP3L46jtwcCHbvgurRVmY-0CYdtk6PjMmjrmZUGmF1AqpCU59JewI1pFLafc7qdImUyCgqRscWJd2rBsB72UoVV1hd9df5PN508bDtOO2ssl5E571Apoih1xgSRamXFYp6gTBnSnLRnCvldyBJEMDKAqj6MG_bOkpXPkwm6c7ye72Q1hDGzVuci7FI1itT5bmMdqBdfakOYAEPl60rP4GdXJuaA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Insights+into+the+Selective+Extraction+of+Americium%28III%29+over+Europium%28III%29+with+Dithioamide-Based+Ligands&rft.jtitle=Inorganic+chemistry&rft.au=Wang%2C+Cui&rft.au=Wu%2C+Qun-Yan&rft.au=Kong%2C+Xiang-He&rft.au=Wang%2C+Cong-Zhi&rft.date=2019-08-05&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=58&rft.issue=15&rft.spage=10047&rft.epage=10056&rft_id=info:doi/10.1021%2Facs.inorgchem.9b01200&rft.externalDocID=b133800683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |