Theoretical Insights into the Selective Extraction of Americium(III) over Europium(III) with Dithioamide-Based Ligands

Separation of trivalent actinides An­(III) from lanthanides Ln­(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An­(III)/Ln­(III) separation with various ligands through theoretical calculations beca...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 58; no. 15; pp. 10047 - 10056
Main Authors Wang, Cui, Wu, Qun-Yan, Kong, Xiang-He, Wang, Cong-Zhi, Lan, Jian-Hui, Nie, Chang-Ming, Chai, Zhi-Fang, Shi, Wei-Qun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.08.2019
Online AccessGet full text

Cover

Loading…
Abstract Separation of trivalent actinides An­(III) from lanthanides Ln­(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An­(III)/Ln­(III) separation with various ligands through theoretical calculations because of their radiotoxicity and experimental difficulties. In this work, we have investigated three dithioamide-based ligands and their extraction behaviors with Am­(III) and Eu­(III) ions using the scalar-relativistic density functional theory. The results show that the dithioamide-based ligands have stronger electron donating ability than do the corresponding diamide-based ones. All analyses including geometry, Mulliken population, QTAIM (quantum theory of atoms in molecules), and NBO (natural bond orbital) suggest that the Am–S/N bonds possess more covalency compared to the Eu–S/N bonds, and the M–S bonds have more covalent character than the M–N bonds. Thermodynamic results reveal that N 2,N 9-diethyl-N 2,N 9-di-p-tolyl-1,10-phenanthroline-2,9-bis­(carbothioamide) (L 1 ) has a stronger complexing ability with metal ions owing to its rigid structure and that N 6,N 6′-diethyl-N 6,N 6′-di-p-tolyl-[2,2′-bipyridine]-6,6′-bis­(carbothioamide) (L 2 ) shows a higher selectivity for the Am­(III)/Eu­(III) separation. In addition, these dithioamide-based ligands possess Am­(III)/Eu­(III) selectivity higher than those of the corresponding diamide-based ones, although the former have weaker complexing ability with metal ions, probably due to the greater covalency of the M–S bonds. This theoretical evaluation provides valuable insights into the nature of the selectivity for the Am­(III)/Eu­(III) separation and information on designing of efficient An­(III)/Ln­(III) separation with dithioamide-based ligands.
AbstractList Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An(III)/Ln(III) separation with various ligands through theoretical calculations because of their radiotoxicity and experimental difficulties. In this work, we have investigated three dithioamide-based ligands and their extraction behaviors with Am(III) and Eu(III) ions using the scalar-relativistic density functional theory. The results show that the dithioamide-based ligands have stronger electron donating ability than do the corresponding diamide-based ones. All analyses including geometry, Mulliken population, QTAIM (quantum theory of atoms in molecules), and NBO (natural bond orbital) suggest that the Am-S/N bonds possess more covalency compared to the Eu-S/N bonds, and the M-S bonds have more covalent character than the M-N bonds. Thermodynamic results reveal that N2,N9-diethyl-N2,N9-di-p-tolyl-1,10-phenanthroline-2,9-bis(carbothioamide) (L1) has a stronger complexing ability with metal ions owing to its rigid structure and that N6,N6'-diethyl-N6,N6'-di-p-tolyl-[2,2'-bipyridine]-6,6'-bis(carbothioamide) (L2) shows a higher selectivity for the Am(III)/Eu(III) separation. In addition, these dithioamide-based ligands possess Am(III)/Eu(III) selectivity higher than those of the corresponding diamide-based ones, although the former have weaker complexing ability with metal ions, probably due to the greater covalency of the M-S bonds. This theoretical evaluation provides valuable insights into the nature of the selectivity for the Am(III)/Eu(III) separation and information on designing of efficient An(III)/Ln(III) separation with dithioamide-based ligands.Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An(III)/Ln(III) separation with various ligands through theoretical calculations because of their radiotoxicity and experimental difficulties. In this work, we have investigated three dithioamide-based ligands and their extraction behaviors with Am(III) and Eu(III) ions using the scalar-relativistic density functional theory. The results show that the dithioamide-based ligands have stronger electron donating ability than do the corresponding diamide-based ones. All analyses including geometry, Mulliken population, QTAIM (quantum theory of atoms in molecules), and NBO (natural bond orbital) suggest that the Am-S/N bonds possess more covalency compared to the Eu-S/N bonds, and the M-S bonds have more covalent character than the M-N bonds. Thermodynamic results reveal that N2,N9-diethyl-N2,N9-di-p-tolyl-1,10-phenanthroline-2,9-bis(carbothioamide) (L1) has a stronger complexing ability with metal ions owing to its rigid structure and that N6,N6'-diethyl-N6,N6'-di-p-tolyl-[2,2'-bipyridine]-6,6'-bis(carbothioamide) (L2) shows a higher selectivity for the Am(III)/Eu(III) separation. In addition, these dithioamide-based ligands possess Am(III)/Eu(III) selectivity higher than those of the corresponding diamide-based ones, although the former have weaker complexing ability with metal ions, probably due to the greater covalency of the M-S bonds. This theoretical evaluation provides valuable insights into the nature of the selectivity for the Am(III)/Eu(III) separation and information on designing of efficient An(III)/Ln(III) separation with dithioamide-based ligands.
Separation of trivalent actinides An­(III) from lanthanides Ln­(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An­(III)/Ln­(III) separation with various ligands through theoretical calculations because of their radiotoxicity and experimental difficulties. In this work, we have investigated three dithioamide-based ligands and their extraction behaviors with Am­(III) and Eu­(III) ions using the scalar-relativistic density functional theory. The results show that the dithioamide-based ligands have stronger electron donating ability than do the corresponding diamide-based ones. All analyses including geometry, Mulliken population, QTAIM (quantum theory of atoms in molecules), and NBO (natural bond orbital) suggest that the Am–S/N bonds possess more covalency compared to the Eu–S/N bonds, and the M–S bonds have more covalent character than the M–N bonds. Thermodynamic results reveal that N 2,N 9-diethyl-N 2,N 9-di-p-tolyl-1,10-phenanthroline-2,9-bis­(carbothioamide) (L 1 ) has a stronger complexing ability with metal ions owing to its rigid structure and that N 6,N 6′-diethyl-N 6,N 6′-di-p-tolyl-[2,2′-bipyridine]-6,6′-bis­(carbothioamide) (L 2 ) shows a higher selectivity for the Am­(III)/Eu­(III) separation. In addition, these dithioamide-based ligands possess Am­(III)/Eu­(III) selectivity higher than those of the corresponding diamide-based ones, although the former have weaker complexing ability with metal ions, probably due to the greater covalency of the M–S bonds. This theoretical evaluation provides valuable insights into the nature of the selectivity for the Am­(III)/Eu­(III) separation and information on designing of efficient An­(III)/Ln­(III) separation with dithioamide-based ligands.
Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly desirable to understand the nature of selectivity for the An(III)/Ln(III) separation with various ligands through theoretical calculations because of their radiotoxicity and experimental difficulties. In this work, we have investigated three dithioamide-based ligands and their extraction behaviors with Am(III) and Eu(III) ions using the scalar-relativistic density functional theory. The results show that the dithioamide-based ligands have stronger electron donating ability than do the corresponding diamide-based ones. All analyses including geometry, Mulliken population, QTAIM (quantum theory of atoms in molecules), and NBO (natural bond orbital) suggest that the Am-S/N bonds possess more covalency compared to the Eu-S/N bonds, and the M-S bonds have more covalent character than the M-N bonds. Thermodynamic results reveal that , -diethyl- , -di- -tolyl-1,10-phenanthroline-2,9-bis(carbothioamide) ( ) has a stronger complexing ability with metal ions owing to its rigid structure and that , -diethyl- , -di- -tolyl-[2,2'-bipyridine]-6,6'-bis(carbothioamide) ( ) shows a higher selectivity for the Am(III)/Eu(III) separation. In addition, these dithioamide-based ligands possess Am(III)/Eu(III) selectivity higher than those of the corresponding diamide-based ones, although the former have weaker complexing ability with metal ions, probably due to the greater covalency of the M-S bonds. This theoretical evaluation provides valuable insights into the nature of the selectivity for the Am(III)/Eu(III) separation and information on designing of efficient An(III)/Ln(III) separation with dithioamide-based ligands.
Author Nie, Chang-Ming
Wu, Qun-Yan
Kong, Xiang-He
Chai, Zhi-Fang
Wang, Cong-Zhi
Lan, Jian-Hui
Shi, Wei-Qun
Wang, Cui
AuthorAffiliation Laboratory of Nuclear Energy Chemistry
Ningbo Institute of Industrial Technology, Chinese Academy of Sciences
School of Chemistry and Chemical Engineering
Engineering Laboratory of Advanced Energy Materials
AuthorAffiliation_xml – name: Laboratory of Nuclear Energy Chemistry
– name: School of Chemistry and Chemical Engineering
– name: Ningbo Institute of Industrial Technology, Chinese Academy of Sciences
– name: Engineering Laboratory of Advanced Energy Materials
Author_xml – sequence: 1
  givenname: Cui
  surname: Wang
  fullname: Wang, Cui
  organization: School of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Qun-Yan
  surname: Wu
  fullname: Wu, Qun-Yan
  organization: Laboratory of Nuclear Energy Chemistry
– sequence: 3
  givenname: Xiang-He
  surname: Kong
  fullname: Kong, Xiang-He
  organization: School of Chemistry and Chemical Engineering
– sequence: 4
  givenname: Cong-Zhi
  surname: Wang
  fullname: Wang, Cong-Zhi
  organization: Laboratory of Nuclear Energy Chemistry
– sequence: 5
  givenname: Jian-Hui
  surname: Lan
  fullname: Lan, Jian-Hui
  organization: Laboratory of Nuclear Energy Chemistry
– sequence: 6
  givenname: Chang-Ming
  surname: Nie
  fullname: Nie, Chang-Ming
  organization: School of Chemistry and Chemical Engineering
– sequence: 7
  givenname: Zhi-Fang
  surname: Chai
  fullname: Chai, Zhi-Fang
  organization: Ningbo Institute of Industrial Technology, Chinese Academy of Sciences
– sequence: 8
  givenname: Wei-Qun
  orcidid: 0000-0001-9929-9732
  surname: Shi
  fullname: Shi, Wei-Qun
  email: shiwq@ihep.ac.cn
  organization: Laboratory of Nuclear Energy Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31287677$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v0zAYhy20iXUbHwHk4zik-F-cRJzGViBSpR02JG6RY79pPCVxsZ3Cvj2uWnrgsov9yn6e9_D7XaKzyU2A0HtKlpQw-knpsLST8xvdw7isWkIZIW_QguaMZDklP8_QgpA0UymrC3QZwjMhpOJCvkUXnLKykEWxQLunHpyHaLUacD0Fu-ljwHaKDsce8CMMoKPdAV79iV6l0U3Ydfh2BG-1ncebuq4_YrcDj1ezd9vT028be3yfDuvUaA1kX1QAg9d2oyYTrtF5p4YA7473FfrxdfV09z1bP3yr727XmeI5jZlSgrd5ywsFgndUkJIRw4UBpaAECqzk2hjTVkpIVmjJ8rwDCVUppOiY0vwK3Rz2br37NUOIzWiDhmFQE7g5NCwZQual4An9cETndgTTbL0dlX9p_mWVgPwAaO9C8NCdEEqafSdN6qQ5ddIcO0ne5_88baPaJ5kStcOrNj3Y--9nN_sp5fWK8xfHD6ln
CitedBy_id crossref_primary_10_1016_j_molliq_2019_112287
crossref_primary_10_1039_D2QI00803C
crossref_primary_10_1007_s10967_021_07653_8
crossref_primary_10_1021_acs_jpca_4c02777
crossref_primary_10_1016_j_cej_2024_150138
crossref_primary_10_1021_acsearthspacechem_1c00117
crossref_primary_10_1016_j_molliq_2021_117151
crossref_primary_10_1016_j_molliq_2024_124124
crossref_primary_10_1021_acs_inorgchem_9b03604
crossref_primary_10_1016_j_enmm_2022_100749
crossref_primary_10_1021_acs_iecr_4c01250
crossref_primary_10_1002_slct_202203535
crossref_primary_10_1021_acs_inorgchem_4c04570
crossref_primary_10_1021_acs_inorgchem_1c02916
crossref_primary_10_1016_j_molliq_2022_120924
crossref_primary_10_1016_j_seppur_2024_126442
crossref_primary_10_1080_01496395_2023_2212858
crossref_primary_10_1016_j_molliq_2023_123108
crossref_primary_10_3390_molecules27175527
crossref_primary_10_1016_j_molstruc_2021_131875
crossref_primary_10_1021_acs_jpca_3c01629
crossref_primary_10_1016_j_molliq_2021_115819
crossref_primary_10_1039_D1QI00097G
crossref_primary_10_1002_aoc_6999
crossref_primary_10_1039_D2CC03352F
crossref_primary_10_1016_j_cclet_2023_109402
crossref_primary_10_1080_02603594_2024_2305884
crossref_primary_10_1016_j_poly_2022_115832
crossref_primary_10_1155_2022_3528170
crossref_primary_10_1039_D0NJ06296K
crossref_primary_10_1080_09593330_2021_1921055
crossref_primary_10_1002_slct_202200956
crossref_primary_10_1016_j_poly_2021_115533
crossref_primary_10_1002_slct_202102543
crossref_primary_10_1016_j_molstruc_2022_133524
crossref_primary_10_1021_acs_jpcb_0c09562
crossref_primary_10_1039_D0NJ01014F
crossref_primary_10_1021_acs_inorgchem_0c01271
crossref_primary_10_1002_aoc_6686
crossref_primary_10_1016_j_comptc_2019_112643
crossref_primary_10_1002_slct_202200446
crossref_primary_10_1039_D1NJ06029E
crossref_primary_10_1080_07366299_2023_2239866
crossref_primary_10_1021_acs_inorgchem_2c00232
crossref_primary_10_1021_acs_inorgchem_2c04476
crossref_primary_10_1002_aoc_7428
crossref_primary_10_1002_qua_27220
crossref_primary_10_1002_aoc_6331
crossref_primary_10_1021_acs_inorgchem_0c03002
crossref_primary_10_1016_j_comptc_2025_115100
crossref_primary_10_1039_D2RA07660H
Cites_doi 10.1039/B603847F
10.1021/acscentsci.6b00066
10.1021/jacs.6b03106
10.1080/07366290600761936
10.1021/acs.jpca.8b01335
10.1039/C7CP05381A
10.1080/07366299.2014.985912
10.1021/acs.inorgchem.8b03358
10.1002/chem.201001471
10.1063/1.456066
10.1021/jo982382l
10.1021/acs.jpca.8b00177
10.1039/C4DT02402H
10.1021/acs.inorgchem.8b02550
10.1080/07366299.2011.539127
10.1039/C7CP04625A
10.1039/P29930000799
10.1016/j.crci.2006.12.011
10.1039/C8DT00134K
10.1039/C8CC07683A
10.1021/acs.organomet.8b00391
10.1016/j.anucene.2007.02.009
10.1007/s10967-018-6263-9
10.1002/jcc.22885
10.1021/jp980017s
10.1080/07360299908934598
10.1021/jp053522f
10.1021/ic991316e
10.1039/B511321K
10.1080/07366299.2013.833783
10.1021/ic100844t
10.1021/acs.inorgchem.8b00345
10.1063/1.1521431
10.1021/ic102238c
10.1021/ic7015403
10.1002/wcms.19
10.1021/ja203378m
10.1103/PhysRev.136.B864
10.1063/1.1501133
10.1016/j.theochem.2006.03.021
10.1021/ic3008848
10.1021/ic3026842
10.1039/b901724k
10.1007/s10953-012-9826-3
10.1080/07366290500388459
10.1021/ic402784c
10.1007/s11224-014-0430-6
10.1021/ic301599y
10.1107/S0567739476001551
10.1063/1.449486
10.1039/C5CP03100A
10.1021/jp512950j
10.1021/acs.inorgchem.8b01635
10.1080/07366299308918184
10.1021/cr3003399
10.1021/ic501006p
10.1680/nuen.42.5.263.37622
10.1016/S0166-1280(01)00751-5
10.1016/j.theochem.2003.12.015
10.1021/acs.inorgchem.5b01452
10.1039/C8DT02702A
10.1021/jp906341r
10.1016/S0925-8388(98)00064-4
10.1039/c2dt31503c
10.1002/anie.201606367
10.1039/c3dt52104d
10.1039/C6DT00296J
10.1080/07366299908934641
10.1039/c3cp54478h
10.1063/1.466847
10.1021/jp5065819
10.1002/jcc.10228
10.1103/PhysRev.140.A1133
10.1063/1.445134
10.1016/j.seppur.2017.02.043
10.1021/acs.inorgchem.5b00483
10.1021/ic010165o
10.1016/j.anucene.2007.12.007
10.1039/c2sc21806b
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.inorgchem.9b01200
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 10056
ExternalDocumentID 31287677
10_1021_acs_inorgchem_9b01200
b133800683
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
~02
NPM
YIN
7X8
ID FETCH-LOGICAL-a351t-aa43b5b37ae43f140820d34deaae8e1e283cdddb9a4627c6255fe6e98464f2ac3
IEDL.DBID ACS
ISSN 0020-1669
1520-510X
IngestDate Fri Jul 11 05:16:49 EDT 2025
Wed Feb 19 02:34:08 EST 2025
Thu Apr 24 22:57:20 EDT 2025
Tue Jul 01 01:38:49 EDT 2025
Thu Aug 27 13:44:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a351t-aa43b5b37ae43f140820d34deaae8e1e283cdddb9a4627c6255fe6e98464f2ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9929-9732
PMID 31287677
PQID 2255465843
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2255465843
pubmed_primary_31287677
crossref_primary_10_1021_acs_inorgchem_9b01200
crossref_citationtrail_10_1021_acs_inorgchem_9b01200
acs_journals_10_1021_acs_inorgchem_9b01200
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190805
2019-08-05
2019-Aug-05
PublicationDateYYYYMMDD 2019-08-05
PublicationDate_xml – month: 08
  year: 2019
  text: 20190805
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref36/cit2016
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1039/B603847F
– ident: ref2/cit2
  doi: 10.1021/acscentsci.6b00066
– ident: ref3/cit3
  doi: 10.1021/jacs.6b03106
– ident: ref21/cit21
  doi: 10.1080/07366290600761936
– ident: ref76/cit76
  doi: 10.1021/acs.jpca.8b01335
– ident: ref72/cit72
  doi: 10.1039/C7CP05381A
– ident: ref24/cit24
  doi: 10.1080/07366299.2014.985912
– ident: ref25/cit25
  doi: 10.1021/acs.inorgchem.8b03358
– ident: ref74/cit74
  doi: 10.1002/chem.201001471
– ident: ref43/cit43
  doi: 10.1063/1.456066
– ident: ref56/cit56
  doi: 10.1021/jo982382l
– ident: ref33/cit33
  doi: 10.1021/acs.jpca.8b00177
– ident: ref29/cit29
  doi: 10.1039/C4DT02402H
– ident: ref68/cit68
  doi: 10.1021/acs.inorgchem.8b02550
– ident: ref7/cit7
  doi: 10.1080/07366299.2011.539127
– ident: ref13/cit13
  doi: 10.1039/C7CP04625A
– ident: ref52/cit52
  doi: 10.1039/P29930000799
– ident: ref73/cit73
  doi: 10.1016/j.crci.2006.12.011
– ident: ref32/cit32
  doi: 10.1039/C8DT00134K
– ident: ref31/cit31
  doi: 10.1039/C8CC07683A
– ident: ref70/cit70
  doi: 10.1021/acs.organomet.8b00391
– ident: ref5/cit5
  doi: 10.1016/j.anucene.2007.02.009
– ident: ref34/cit34
  doi: 10.1007/s10967-018-6263-9
– ident: ref48/cit48
  doi: 10.1002/jcc.22885
– ident: ref53/cit53
  doi: 10.1021/jp980017s
– ident: ref19/cit19
  doi: 10.1080/07360299908934598
– ident: ref36/cit2016
– ident: ref54/cit54
  doi: 10.1021/jp053522f
– ident: ref80/cit80
  doi: 10.1021/ic991316e
– ident: ref20/cit20
  doi: 10.1039/B511321K
– ident: ref17/cit17
  doi: 10.1080/07366299.2013.833783
– ident: ref26/cit26
  doi: 10.1021/ic100844t
– ident: ref78/cit78
  doi: 10.1021/acs.inorgchem.8b00345
– ident: ref46/cit46
  doi: 10.1063/1.1521431
– ident: ref69/cit69
  doi: 10.1021/ic102238c
– ident: ref55/cit55
  doi: 10.1021/ic7015403
– ident: ref58/cit58
  doi: 10.1002/wcms.19
– ident: ref22/cit22
  doi: 10.1021/ja203378m
– ident: ref37/cit37
  doi: 10.1103/PhysRev.136.B864
– ident: ref51/cit51
  doi: 10.1063/1.1501133
– ident: ref71/cit71
  doi: 10.1016/j.theochem.2006.03.021
– ident: ref1/cit1
  doi: 10.1021/ic3008848
– ident: ref23/cit23
  doi: 10.1021/ic3026842
– ident: ref40/cit40
  doi: 10.1039/b901724k
– ident: ref60/cit60
  doi: 10.1007/s10953-012-9826-3
– ident: ref9/cit9
  doi: 10.1080/07366290500388459
– ident: ref18/cit18
  doi: 10.1021/ic402784c
– ident: ref59/cit59
  doi: 10.1007/s11224-014-0430-6
– ident: ref14/cit14
  doi: 10.1021/ic301599y
– ident: ref57/cit57
  doi: 10.1107/S0567739476001551
– ident: ref67/cit67
  doi: 10.1063/1.449486
– ident: ref27/cit27
  doi: 10.1039/C5CP03100A
– ident: ref64/cit64
  doi: 10.1021/jp512950j
– ident: ref30/cit30
  doi: 10.1021/acs.inorgchem.8b01635
– ident: ref63/cit63
  doi: 10.1080/07366299308918184
– ident: ref12/cit12
  doi: 10.1021/cr3003399
– ident: ref65/cit65
  doi: 10.1021/ic501006p
– ident: ref4/cit4
  doi: 10.1680/nuen.42.5.263.37622
– ident: ref45/cit45
  doi: 10.1016/S0166-1280(01)00751-5
– ident: ref47/cit47
  doi: 10.1016/j.theochem.2003.12.015
– ident: ref15/cit15
  doi: 10.1021/acs.inorgchem.5b01452
– ident: ref42/cit42
  doi: 10.1039/C8DT02702A
– ident: ref49/cit49
  doi: 10.1021/jp906341r
– ident: ref8/cit8
  doi: 10.1016/S0925-8388(98)00064-4
– ident: ref35/cit35
  doi: 10.1039/c2dt31503c
– ident: ref62/cit62
  doi: 10.1002/anie.201606367
– ident: ref28/cit28
  doi: 10.1039/c3dt52104d
– ident: ref41/cit41
  doi: 10.1039/C6DT00296J
– ident: ref16/cit16
  doi: 10.1080/07366299908934641
– ident: ref77/cit77
  doi: 10.1039/c3cp54478h
– ident: ref44/cit44
  doi: 10.1063/1.466847
– ident: ref61/cit61
  doi: 10.1021/jp5065819
– ident: ref39/cit39
  doi: 10.1002/jcc.10228
– ident: ref38/cit38
  doi: 10.1103/PhysRev.140.A1133
– ident: ref66/cit66
  doi: 10.1063/1.445134
– ident: ref10/cit10
  doi: 10.1016/j.seppur.2017.02.043
– ident: ref79/cit79
  doi: 10.1021/acs.inorgchem.5b00483
– ident: ref50/cit50
  doi: 10.1021/ic010165o
– ident: ref6/cit6
  doi: 10.1016/j.anucene.2007.12.007
– ident: ref75/cit75
  doi: 10.1039/c2sc21806b
SSID ssj0009346
Score 2.5086765
Snippet Separation of trivalent actinides An­(III) from lanthanides Ln­(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly...
Separation of trivalent actinides An(III) from lanthanides Ln(III) is a worldwide challenge owing to their very similar chemical behaviors. It is highly...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10047
Title Theoretical Insights into the Selective Extraction of Americium(III) over Europium(III) with Dithioamide-Based Ligands
URI http://dx.doi.org/10.1021/acs.inorgchem.9b01200
https://www.ncbi.nlm.nih.gov/pubmed/31287677
https://www.proquest.com/docview/2255465843
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB734fqwvInhQoeumebQ96rriioqggreSJqkU3VZsV8Rf76SPXUQW9dJDIKFJJplvMvPNILQvhDYC_tDRMe04YH8ZRyppHOLK2NW-ooxbvvP1jbh4YJeP_HEKHU_w4LvkWKocMCi0wCQG7SCybE-w0Wdc4XvW2jrp3o2z7NKKmWNtIiJE0FB2Jg1jVZLKv6ukCTiz1DfnC-i2Ye1UYSbP7WERtdXnzySOf53KIpqvsSc-qYRlCU2ZdBnNdpuSbyvo_X5Ma8T9NLeGe46TtMgw4ER8V9bMgesR9z6Kt4oRgbMYV16fZDg46Pf7h9gGheLylX_UZF978Rl8kkwOEm2cU1CeGl8lT5ZpvIoeznv33QunLszgSMpJ4UjJaMQj6knDaExszeqOpkwbKY1viAHIorTWUSCZcD0FJhaPQSICwDosdqWia2g6zVKzgTDVNm6lQ40JAmZ8ImMutYLROCMdxeMWOoJVC-uDlYelz9wloW0cLWVYL2ULsWYjQ1WnOLeVNl5-69YedXutcnz81mGvkZIQdsi6WGRqsmEewu1oq8v7jLbQeiU-oyEpQAFPeN7mf6a0heYAogVlyCHfRtPF29DsAAwqot1S9L8AHnkHig
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB615dBeyptueRkJJEDKEsd2sjlwKNtWG7rtpVupt-DYDopgk2qT5fWD-Cv8LcZ5rUCqKg6VuOQwki2Px85843kBPPd9bXxcoaNT5jpofxlHKmkc6snU0yPFuLD5zscn_uSMvz8X52vws8uFwUWUOFNZO_FX1QXoG0vLcqQiL_NhmNikT7cNpjwy37-iqVa-jfZRri887_BgNp44bTcBRzJBK0dKzhKRsEAazlJqGy27mnFtpDQjQw3qWaW1TkLJfS9QaBeIFNkIUUHz1JOK4bzrcAMBkGeNvL3x6aq4L2sSgqwpRn0_7DKFLlu21YSq_FMTXgJvazV3eBN-9RtUR7d8Gi6rZKh-_FU78v_fwVuw3SJtstdcjduwZvI7sDnuGtzdhS-zVRInifLSPlOUJMurgiAqJqd1hyBUBuTgW7Vo8j9IkZLGx5Ut5y-jKHpFbAgsqX0aPcm-bZN9_GSFnGfaOO8QKmgyzT7avOp7cHYtbN-HjbzIzQ4Qpm2UjsuMCUNuRlSmQmqFswlOXSXSAbxGKcXtb6SM6wgBj8aW2IsubkU3AN6dn1i1Bd1tX5HPVw0b9sMumoomVw141h3OGCVkHUoyN8WyjFEXCG4hLBvAg-bU9lMyBD6BHwS7_8LSU9iczI6n8TQ6OXoIWwhOwzrYUjyCjWqxNI8RAFbJk_r2Efhw3Yf1N7K7a-U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIkEvvB_L00ggQaUscWwnmwOHsttVQ0uF1FbqLTh-VBFsUjVZXj-Jv8KfYpxXBVJVceiBSw6OPLIz48yMZ74ZgOdhqE2IK_S0Zb6H_pfxpJLGo4G0gZ4oxoXDO7_fDbcO-LtDcbgCP3ssDC6iQkpVE8R3p_pY267CAH3txvMC3-B-FuM4c8BPv0uo3Dbfv6K7Vr1JZsjbF0Ew39yfbnldRwFPMkFrT0rOMpGxSBrOLHXNln3NuDZSmomhBnWt0lpnseRhECn0DYTFrcSopLkNpGJI9xJcdqFC5-htTPdOC_yyFhTk3DEahnGPFjpr2U4bqupPbXiGiduouvl1-DV8pCbD5dN4WWdj9eOv-pH_x1e8Adc6i5tstEfkJqyY4hZcnfaN7m7Dl_1TMCdJispdV1QkL-qSoHVM9ppOQagUyOa3-qTFgZDSkjbWlS8XL5MkeUVcKixpYhvDkLvjJjN85KVc5Np4b9Fk0GQnP3L46jtwcCHbvgurRVmY-0CYdtk6PjMmjrmZUGmF1AqpCU59JewI1pFLafc7qdImUyCgqRscWJd2rBsB72UoVV1hd9df5PN508bDtOO2ssl5E571Apoih1xgSRamXFYp6gTBnSnLRnCvldyBJEMDKAqj6MG_bOkpXPkwm6c7ye72Q1hDGzVuci7FI1itT5bmMdqBdfakOYAEPl60rP4GdXJuaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Insights+into+the+Selective+Extraction+of+Americium%28III%29+over+Europium%28III%29+with+Dithioamide-Based+Ligands&rft.jtitle=Inorganic+chemistry&rft.au=Wang%2C+Cui&rft.au=Wu%2C+Qun-Yan&rft.au=Kong%2C+Xiang-He&rft.au=Wang%2C+Cong-Zhi&rft.date=2019-08-05&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=58&rft.issue=15&rft.spage=10047&rft.epage=10056&rft_id=info:doi/10.1021%2Facs.inorgchem.9b01200&rft.externalDocID=b133800683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon