A Quantitative Scale of Oxophilicity and Thiophilicity

Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues with reference states and system dependencies and captures empirically known tendencies toward oxygen. This enables a detailed analysis of t...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 55; no. 18; pp. 9461 - 9470
Main Author Kepp, Kasper P
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.09.2016
Online AccessGet full text

Cover

Loading…
Abstract Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues with reference states and system dependencies and captures empirically known tendencies toward oxygen. This enables a detailed analysis of the fundamental causes of oxophilicity. Notably, the notion that oxophilicity relates to Lewis acid hardness is invalid. Rather, oxophilicity correlates only modestly and inversely with absolute hardness and more strongly with electronegativity and effective nuclear charge. Since oxygen is highly electronegative, ionic bonding is stronger to metals of low electronegativity. Left-side d-block elements with low effective nuclear charges and electronegativities are thus highly oxophilic, and the f-block elements, not because of their hardness, which is normal, but as a result of the small ionization energies of their outermost valence electrons, can easily transfer electrons to fulfill the electron demands of oxygen. Consistent with empirical experience, the most oxophilic elements are found in the left part of the d block, the lanthanides, and the actinides. The d-block elements differ substantially in oxophilicity, quantifying their different uses in a wide range of chemical reactions; thus, the use of mixed oxo- and thiophilic (i.e., “mesophilic”) surfaces and catalysts as a design principle can explain the success of many recent applications. The proposed scale may therefore help to rationalize and improve chemical reactions more effectively than current qualitative considerations of oxophilicity.
AbstractList Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues with reference states and system dependencies and captures empirically known tendencies toward oxygen. This enables a detailed analysis of the fundamental causes of oxophilicity. Notably, the notion that oxophilicity relates to Lewis acid hardness is invalid. Rather, oxophilicity correlates only modestly and inversely with absolute hardness and more strongly with electronegativity and effective nuclear charge. Since oxygen is highly electronegative, ionic bonding is stronger to metals of low electronegativity. Left-side d-block elements with low effective nuclear charges and electronegativities are thus highly oxophilic, and the f-block elements, not because of their hardness, which is normal, but as a result of the small ionization energies of their outermost valence electrons, can easily transfer electrons to fulfill the electron demands of oxygen. Consistent with empirical experience, the most oxophilic elements are found in the left part of the d block, the lanthanides, and the actinides. The d-block elements differ substantially in oxophilicity, quantifying their different uses in a wide range of chemical reactions; thus, the use of mixed oxo- and thiophilic (i.e., "mesophilic") surfaces and catalysts as a design principle can explain the success of many recent applications. The proposed scale may therefore help to rationalize and improve chemical reactions more effectively than current qualitative considerations of oxophilicity.
Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues with reference states and system dependencies and captures empirically known tendencies toward oxygen. This enables a detailed analysis of the fundamental causes of oxophilicity. Notably, the notion that oxophilicity relates to Lewis acid hardness is invalid. Rather, oxophilicity correlates only modestly and inversely with absolute hardness and more strongly with electronegativity and effective nuclear charge. Since oxygen is highly electronegative, ionic bonding is stronger to metals of low electronegativity. Left-side d-block elements with low effective nuclear charges and electronegativities are thus highly oxophilic, and the f-block elements, not because of their hardness, which is normal, but as a result of the small ionization energies of their outermost valence electrons, can easily transfer electrons to fulfill the electron demands of oxygen. Consistent with empirical experience, the most oxophilic elements are found in the left part of the d block, the lanthanides, and the actinides. The d-block elements differ substantially in oxophilicity, quantifying their different uses in a wide range of chemical reactions; thus, the use of mixed oxo- and thiophilic (i.e., "mesophilic") surfaces and catalysts as a design principle can explain the success of many recent applications. The proposed scale may therefore help to rationalize and improve chemical reactions more effectively than current qualitative considerations of oxophilicity.Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues with reference states and system dependencies and captures empirically known tendencies toward oxygen. This enables a detailed analysis of the fundamental causes of oxophilicity. Notably, the notion that oxophilicity relates to Lewis acid hardness is invalid. Rather, oxophilicity correlates only modestly and inversely with absolute hardness and more strongly with electronegativity and effective nuclear charge. Since oxygen is highly electronegative, ionic bonding is stronger to metals of low electronegativity. Left-side d-block elements with low effective nuclear charges and electronegativities are thus highly oxophilic, and the f-block elements, not because of their hardness, which is normal, but as a result of the small ionization energies of their outermost valence electrons, can easily transfer electrons to fulfill the electron demands of oxygen. Consistent with empirical experience, the most oxophilic elements are found in the left part of the d block, the lanthanides, and the actinides. The d-block elements differ substantially in oxophilicity, quantifying their different uses in a wide range of chemical reactions; thus, the use of mixed oxo- and thiophilic (i.e., "mesophilic") surfaces and catalysts as a design principle can explain the success of many recent applications. The proposed scale may therefore help to rationalize and improve chemical reactions more effectively than current qualitative considerations of oxophilicity.
Author Kepp, Kasper P
AuthorAffiliation DTU Chemistry
Technical University of Denmark
AuthorAffiliation_xml – name: DTU Chemistry
– name: Technical University of Denmark
Author_xml – sequence: 1
  givenname: Kasper P
  surname: Kepp
  fullname: Kepp, Kasper P
  email: kpj@kemi.dtu.dk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27580183$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LAzEQhoNU7If-BGWPXrbOJPsVPJXiFxSKWMFbyGazNmV3Uze7Yv-9W9sqeOkpQ-Z9ZphnSHqVrTQhlwhjBIo3UrmxqWz9rpa6HEcpYAz0hAwwpOCHCG89MgDoaowi3idD51YAwFkQnZE-jcMEMGEDEk2851ZWjWlkYz6196JkoT2be_Mvu16awijTbDxZZd5iaf5-zslpLgunL_bviLze3y2mj_5s_vA0ncx8yUJsfMmDFFOZ5RJjrtKYsQxVIpGrWFLIuKYsRwZZymMaaEiThHKqM2Tbtk6Bjcj1bu66th-tdo0ojVO6KGSlbesEJhTjJOEBdtGrfbRNS52JdW1KWW_E4dYucLsLqNo6V-tcqJ-rbdXU0hQCQWzNis6s-DUr9mY7OvxHHxYc43DHbdsr29ZV5-sI8w2xr5JP
CitedBy_id crossref_primary_10_1021_jacs_1c13698
crossref_primary_10_1021_acsanm_3c03297
crossref_primary_10_1021_acscatal_8b00933
crossref_primary_10_1021_acs_jpca_8b01843
crossref_primary_10_1021_acssuschemeng_2c06913
crossref_primary_10_1021_acssuschemeng_9b05183
crossref_primary_10_1016_j_chempr_2024_04_006
crossref_primary_10_1039_D4TC02287D
crossref_primary_10_1002_anie_202318916
crossref_primary_10_1016_j_niox_2019_01_005
crossref_primary_10_1021_acs_jpca_3c03738
crossref_primary_10_1021_acs_analchem_4c05167
crossref_primary_10_1021_acsomega_9b03333
crossref_primary_10_1021_jacs_3c12783
crossref_primary_10_1002_adma_202314252
crossref_primary_10_1039_D2IM00054G
crossref_primary_10_1002_chem_201801492
crossref_primary_10_1002_ejoc_202000229
crossref_primary_10_1021_acs_orglett_4c00799
crossref_primary_10_1002_cphc_202000529
crossref_primary_10_1039_D4SC01025F
crossref_primary_10_1002_cctc_202201048
crossref_primary_10_1016_j_mattod_2019_12_003
crossref_primary_10_1039_D1TA07382F
crossref_primary_10_3390_molecules23112741
crossref_primary_10_1103_PhysRevMaterials_6_013401
crossref_primary_10_3390_nano11102530
crossref_primary_10_1016_j_talanta_2019_120634
crossref_primary_10_1007_s40843_022_2427_3
crossref_primary_10_1039_D1CP02997E
crossref_primary_10_1002_cssc_202301315
crossref_primary_10_1016_j_envpol_2021_118641
crossref_primary_10_1039_C8DT05052J
crossref_primary_10_1039_D5GC00477B
crossref_primary_10_1039_C9CY00181F
crossref_primary_10_1021_acs_inorgchem_0c03145
crossref_primary_10_1021_jacs_1c00377
crossref_primary_10_1016_j_jelechem_2022_116574
crossref_primary_10_1021_jacs_4c02042
crossref_primary_10_1021_acs_inorgchem_4c03534
crossref_primary_10_1002_ejoc_202000573
crossref_primary_10_1021_acsenergylett_4c03186
crossref_primary_10_1021_jacs_0c10661
crossref_primary_10_2174_0115734137301010240507101533
crossref_primary_10_1016_j_mtchem_2024_102240
crossref_primary_10_1039_D1CY00496D
crossref_primary_10_1002_ange_202016768
crossref_primary_10_1021_jacs_3c01555
crossref_primary_10_1021_jacs_9b12112
crossref_primary_10_1021_acs_inorgchem_0c03052
crossref_primary_10_1002_advs_202403295
crossref_primary_10_1039_C7DT02144E
crossref_primary_10_1002_anie_202425038
crossref_primary_10_1021_acs_organomet_3c00318
crossref_primary_10_1039_C7RA13245J
crossref_primary_10_1002_ange_202301562
crossref_primary_10_1007_s10593_021_02944_0
crossref_primary_10_1016_j_cattod_2024_115155
crossref_primary_10_1021_acs_organomet_1c00123
crossref_primary_10_1021_acs_jpclett_2c02161
crossref_primary_10_3390_nano14060500
crossref_primary_10_1002_anie_202016768
crossref_primary_10_1002_anie_202006722
crossref_primary_10_1039_D2SC01776H
crossref_primary_10_1002_ejic_202100400
crossref_primary_10_1016_j_ccr_2021_214366
crossref_primary_10_1021_acssuschemeng_4c00561
crossref_primary_10_1002_ange_202207581
crossref_primary_10_1002_anie_202209232
crossref_primary_10_1021_acs_accounts_1c00148
crossref_primary_10_3390_magnetochemistry11010001
crossref_primary_10_1021_acs_macromol_1c01460
crossref_primary_10_1039_D1CY01258D
crossref_primary_10_1002_anie_202301562
crossref_primary_10_1021_acs_jpca_3c02784
crossref_primary_10_1021_acssuschemeng_2c05917
crossref_primary_10_1039_D3TC00215B
crossref_primary_10_1002_slct_201902568
crossref_primary_10_1021_acscatal_7b03597
crossref_primary_10_1039_D0TA04241B
crossref_primary_10_1016_j_cej_2023_141301
crossref_primary_10_1016_j_ccr_2017_05_007
crossref_primary_10_1039_C7NJ00566K
crossref_primary_10_1021_acscatal_1c01870
crossref_primary_10_1038_s41467_021_23192_y
crossref_primary_10_1021_acs_joc_3c02007
crossref_primary_10_1039_D2DT02642B
crossref_primary_10_1038_s41929_025_01301_0
crossref_primary_10_1021_acscatal_7b01061
crossref_primary_10_1016_j_surfcoat_2018_09_054
crossref_primary_10_1039_D2CC04153G
crossref_primary_10_1016_j_jorganchem_2019_121025
crossref_primary_10_1021_acs_accounts_1c00050
crossref_primary_10_1002_cphc_201900862
crossref_primary_10_1038_s41467_024_50343_8
crossref_primary_10_1039_D0QO01388A
crossref_primary_10_3390_molecules25051104
crossref_primary_10_1002_ange_202425038
crossref_primary_10_1016_j_mcat_2024_113819
crossref_primary_10_1021_acs_inorgchem_9b03612
crossref_primary_10_1002_chem_202004660
crossref_primary_10_1021_acsenergylett_9b00277
crossref_primary_10_1149_1945_7111_ac2022
crossref_primary_10_1002_ange_202006722
crossref_primary_10_1016_j_cplett_2020_137551
crossref_primary_10_1002_adfm_202401990
crossref_primary_10_1038_s41467_024_54277_z
crossref_primary_10_1039_D4CC01057D
crossref_primary_10_1021_acs_iecr_4c03213
crossref_primary_10_1021_acsmacrolett_4c00575
crossref_primary_10_1021_acs_inorgchem_0c03137
crossref_primary_10_1016_j_apsusc_2022_156207
crossref_primary_10_1021_acssuschemeng_3c01179
crossref_primary_10_1002_advs_202304424
crossref_primary_10_1021_acscatal_3c03821
crossref_primary_10_1039_C8DT02432D
crossref_primary_10_1021_acscatal_1c01421
crossref_primary_10_1016_j_cinorg_2024_100043
crossref_primary_10_1016_j_fuproc_2024_108063
crossref_primary_10_1002_adfm_202304125
crossref_primary_10_1021_acsnano_3c03884
crossref_primary_10_1016_j_jcou_2022_102033
crossref_primary_10_1039_D4TA09223F
crossref_primary_10_1039_D3TA01940C
crossref_primary_10_1116_6_0003975
crossref_primary_10_1002_slct_201702232
crossref_primary_10_1021_acssuschemeng_2c02399
crossref_primary_10_1021_jacs_3c11734
crossref_primary_10_1002_cctc_202400137
crossref_primary_10_1021_acs_organomet_1c00308
crossref_primary_10_1002_aoc_5578
crossref_primary_10_1016_j_checat_2023_100602
crossref_primary_10_1039_C9CY01082C
crossref_primary_10_1039_D2QI00592A
crossref_primary_10_1002_ange_202301269
crossref_primary_10_1016_j_apcatb_2022_122141
crossref_primary_10_1016_j_cattod_2025_115291
crossref_primary_10_1016_j_mcat_2020_111277
crossref_primary_10_1038_s41467_018_07458_6
crossref_primary_10_1002_cbic_202100554
crossref_primary_10_1007_s12274_022_4489_x
crossref_primary_10_3389_fchem_2023_1287528
crossref_primary_10_1021_acs_chemmater_0c03788
crossref_primary_10_1021_acs_organomet_8b00111
crossref_primary_10_1021_jasms_4c00017
crossref_primary_10_1039_D4GC00220B
crossref_primary_10_3390_nano13192713
crossref_primary_10_1002_smll_202402257
crossref_primary_10_1039_D0CY00631A
crossref_primary_10_1002_cctc_202101730
crossref_primary_10_1007_s12678_024_00863_0
crossref_primary_10_1016_j_xcrp_2024_102050
crossref_primary_10_1021_acs_organomet_3c00504
crossref_primary_10_1039_C6DT04893E
crossref_primary_10_1039_D4SE01149J
crossref_primary_10_1002_aenm_202301597
crossref_primary_10_1002_cctc_202301714
crossref_primary_10_1021_acs_jpcc_1c10824
crossref_primary_10_1016_j_jssc_2019_120948
crossref_primary_10_1002_aenm_202301119
crossref_primary_10_1039_D0GC04175K
crossref_primary_10_1021_jacs_7b01114
crossref_primary_10_1063_1_5142398
crossref_primary_10_1002_ange_202301049
crossref_primary_10_1038_s41557_020_0450_3
crossref_primary_10_1002_admi_202201486
crossref_primary_10_1021_acs_inorgchem_7b02705
crossref_primary_10_1039_D3TC02716C
crossref_primary_10_1039_D1CY01914G
crossref_primary_10_1002_cphc_202000013
crossref_primary_10_1016_j_jcat_2022_10_004
crossref_primary_10_1021_acsomega_4c05082
crossref_primary_10_1107_S2053229621002412
crossref_primary_10_1002_aenm_202400777
crossref_primary_10_1021_cbe_4c00108
crossref_primary_10_1002_ange_202114253
crossref_primary_10_1021_acsnano_3c12543
crossref_primary_10_6023_cjoc202406052
crossref_primary_10_1021_jacs_4c07004
crossref_primary_10_1016_j_ica_2021_120288
crossref_primary_10_1016_j_nantod_2019_100802
crossref_primary_10_1021_jacs_3c10321
crossref_primary_10_1039_D1CE01549D
crossref_primary_10_1071_CH24094
crossref_primary_10_1016_j_jece_2021_105285
crossref_primary_10_1007_s40843_022_2061_x
crossref_primary_10_1002_ange_202209232
crossref_primary_10_1021_acs_jpcc_9b02745
crossref_primary_10_1021_acs_organomet_2c00672
crossref_primary_10_1002_aenm_202303563
crossref_primary_10_1016_j_apcatb_2022_122106
crossref_primary_10_1021_acsanm_8b01357
crossref_primary_10_1021_acs_jmedchem_3c00226
crossref_primary_10_1002_ange_202419455
crossref_primary_10_1021_acssuschemeng_2c02345
crossref_primary_10_1002_advs_202309041
crossref_primary_10_3390_nano12050755
crossref_primary_10_1021_acs_organomet_3c00541
crossref_primary_10_1021_jacs_7b02356
crossref_primary_10_1039_D4TA08848D
crossref_primary_10_1021_acscatal_2c00859
crossref_primary_10_1002_adfm_202002087
crossref_primary_10_1016_j_cej_2024_152552
crossref_primary_10_1007_s10847_021_01048_8
crossref_primary_10_1021_acs_chemrev_0c00119
crossref_primary_10_1002_asia_202101358
crossref_primary_10_1021_acs_orglett_3c00772
crossref_primary_10_1021_acsnano_2c00641
crossref_primary_10_1016_j_jcat_2018_05_004
crossref_primary_10_1002_marc_202100238
crossref_primary_10_1002_cctc_202400352
crossref_primary_10_1039_D2TA08306J
crossref_primary_10_1016_j_apsadv_2023_100402
crossref_primary_10_1021_acs_jpcc_1c07690
crossref_primary_10_1016_j_cattod_2020_03_031
crossref_primary_10_1021_acs_jpcc_0c06397
crossref_primary_10_1021_acs_joc_4c01675
crossref_primary_10_1002_adma_202310671
crossref_primary_10_1002_cnma_201900466
crossref_primary_10_1038_s42005_024_01651_4
crossref_primary_10_1002_anie_201800749
crossref_primary_10_1016_j_ijms_2024_117248
crossref_primary_10_1002_ange_202419675
crossref_primary_10_1002_ange_202318916
crossref_primary_10_1002_cssc_201801535
crossref_primary_10_1039_D2CC06204F
crossref_primary_10_1016_j_cej_2023_146803
crossref_primary_10_1002_cplu_202300474
crossref_primary_10_1002_ange_201711316
crossref_primary_10_1021_acs_jpcc_0c01801
crossref_primary_10_1016_j_jpowsour_2021_230760
crossref_primary_10_1021_acs_organomet_1c00316
crossref_primary_10_1021_acsami_7b19574
crossref_primary_10_1080_01614940_2024_2443192
crossref_primary_10_1016_j_ccr_2024_215821
crossref_primary_10_1002_anie_202502227
crossref_primary_10_1016_j_jallcom_2024_176151
crossref_primary_10_1039_D0CP00547A
crossref_primary_10_1073_pnas_1913803116
crossref_primary_10_5059_yukigoseikyokaishi_82_697
crossref_primary_10_1039_C7DT04089J
crossref_primary_10_1021_acs_orglett_4c04357
crossref_primary_10_1021_acs_joc_9b02717
crossref_primary_10_1021_acs_organomet_7b00896
crossref_primary_10_1021_acs_orglett_3c00229
crossref_primary_10_1039_D3NR01940C
crossref_primary_10_1038_s41467_023_37011_z
crossref_primary_10_1016_j_cattod_2024_114514
crossref_primary_10_1016_j_ccr_2023_215318
crossref_primary_10_1016_j_matchemphys_2021_124575
crossref_primary_10_1016_j_bioelechem_2019_107348
crossref_primary_10_1109_LED_2024_3424407
crossref_primary_10_1039_D0CY00683A
crossref_primary_10_1007_s10967_020_07376_2
crossref_primary_10_1016_j_apcatb_2023_122830
crossref_primary_10_1016_j_biombioe_2025_107806
crossref_primary_10_1021_acs_jpcc_9b04457
crossref_primary_10_1021_jacs_4c06088
crossref_primary_10_1021_acs_chemmater_1c02377
crossref_primary_10_1021_acscatal_0c00489
crossref_primary_10_1039_D4DT00464G
crossref_primary_10_1002_cctc_201902033
crossref_primary_10_1039_D3TA07010G
crossref_primary_10_1016_j_apcatb_2024_124278
crossref_primary_10_1021_acsnanoscienceau_2c00025
crossref_primary_10_1002_anie_202011400
crossref_primary_10_1016_j_matdes_2023_111918
crossref_primary_10_1002_adfm_202107479
crossref_primary_10_1002_cplu_202300265
crossref_primary_10_1016_j_ceramint_2024_06_286
crossref_primary_10_1021_acsami_3c11683
crossref_primary_10_1039_D4QI01656D
crossref_primary_10_1039_C9GC02762A
crossref_primary_10_1088_1361_648X_ac709f
crossref_primary_10_1039_D0CC07241A
crossref_primary_10_1039_D4CS00472H
crossref_primary_10_1039_C9SC04290C
crossref_primary_10_1002_cctc_202301436
crossref_primary_10_1016_j_mcat_2019_110560
crossref_primary_10_1021_jacs_4c00323
crossref_primary_10_1002_ange_202011400
crossref_primary_10_1021_acs_chemrev_1c00371
crossref_primary_10_1016_j_ccr_2023_215534
crossref_primary_10_1021_acs_biochem_1c00091
crossref_primary_10_1021_acs_jpcc_3c01366
crossref_primary_10_1016_j_apcatb_2020_119711
crossref_primary_10_1002_ejic_202400127
crossref_primary_10_1002_hlca_202200073
crossref_primary_10_1016_j_fuel_2022_123891
crossref_primary_10_1021_acs_jpcc_9b04317
crossref_primary_10_1016_j_seppur_2024_128599
crossref_primary_10_1021_acs_est_2c07099
crossref_primary_10_1021_acsami_4c05542
crossref_primary_10_1002_cnma_202300300
crossref_primary_10_1002_adfm_202405416
crossref_primary_10_1016_j_jmmm_2019_165477
crossref_primary_10_1021_acs_jpca_3c07859
crossref_primary_10_3389_fchem_2020_601029
crossref_primary_10_1039_D1CY00567G
crossref_primary_10_1021_acs_inorgchem_4c04091
crossref_primary_10_1016_j_ccr_2019_213023
crossref_primary_10_1039_D0GC02610G
crossref_primary_10_1016_j_jece_2025_115647
crossref_primary_10_1021_acssuschemeng_2c02075
crossref_primary_10_1021_acs_jpca_6b12086
crossref_primary_10_1016_j_joule_2017_06_001
crossref_primary_10_1021_acs_chemrev_9b00682
crossref_primary_10_2139_ssrn_4117599
crossref_primary_10_1039_D3SC04888H
crossref_primary_10_1021_acs_jpcc_1c05468
crossref_primary_10_1002_ange_202502227
crossref_primary_10_1021_acsami_4c19882
crossref_primary_10_1021_jacs_3c06697
crossref_primary_10_1021_acsnano_0c01005
crossref_primary_10_1021_jacs_2c10087
crossref_primary_10_1002_advs_202002768
crossref_primary_10_1016_j_matchemphys_2024_129926
crossref_primary_10_1016_j_poly_2018_10_042
crossref_primary_10_1016_j_chempr_2022_03_002
crossref_primary_10_1021_acs_jpcc_8b09319
crossref_primary_10_1002_adma_202311575
crossref_primary_10_1021_acscatal_2c03724
crossref_primary_10_1021_acs_inorgchem_1c01159
crossref_primary_10_1002_EXP_20220024
crossref_primary_10_1021_jacs_1c11978
crossref_primary_10_3390_catal11050541
crossref_primary_10_1002_advs_202204579
crossref_primary_10_1021_jacs_4c03622
crossref_primary_10_1080_2055074X_2019_1595872
crossref_primary_10_1039_D2TA02157A
crossref_primary_10_1088_1757_899X_334_1_012074
crossref_primary_10_1016_j_matlet_2019_126868
crossref_primary_10_1021_jacs_3c05270
crossref_primary_10_1021_prechem_2c00002
crossref_primary_10_1002_anie_202008442
crossref_primary_10_1515_pac_2019_0802
crossref_primary_10_1021_acs_jpclett_4c01638
crossref_primary_10_3389_fchem_2024_1508515
crossref_primary_10_1016_j_nanoen_2021_106160
crossref_primary_10_3389_fchem_2023_1165303
crossref_primary_10_1021_acs_est_1c08671
crossref_primary_10_1002_ejoc_201801040
crossref_primary_10_1021_acsnano_1c08681
crossref_primary_10_1021_acsami_9b04580
crossref_primary_10_1002_ange_202008442
crossref_primary_10_1038_s41570_018_0059_x
crossref_primary_10_1016_j_jcat_2024_115919
crossref_primary_10_1021_acscatal_3c04849
crossref_primary_10_1063_5_0004194
crossref_primary_10_1039_C9CC02695A
crossref_primary_10_1021_acsabm_3c01158
crossref_primary_10_1063_5_0232316
crossref_primary_10_1002_chem_202403449
crossref_primary_10_1002_anie_202207581
crossref_primary_10_1016_j_poly_2024_117308
crossref_primary_10_1016_j_apcata_2021_118276
crossref_primary_10_1002_adma_202105248
crossref_primary_10_1002_marc_202400122
crossref_primary_10_1021_acs_organomet_2c00197
crossref_primary_10_1002_adma_202401867
crossref_primary_10_1016_j_mattod_2024_10_010
crossref_primary_10_1002_adma_202410106
crossref_primary_10_1002_anie_202114253
crossref_primary_10_1007_s11426_024_2429_0
crossref_primary_10_1016_j_jpowsour_2020_227830
crossref_primary_10_1016_j_ccr_2023_215396
crossref_primary_10_1021_jacs_4c02327
crossref_primary_10_1016_j_cej_2022_136564
crossref_primary_10_1016_j_apcata_2017_05_002
crossref_primary_10_1016_j_nanoen_2021_105850
crossref_primary_10_1016_j_jelechem_2021_115342
crossref_primary_10_1021_acs_accounts_3c00123
crossref_primary_10_1039_D2CC01550A
crossref_primary_10_1002_chem_201705025
crossref_primary_10_1039_D1CY00238D
crossref_primary_10_1021_acs_langmuir_1c02041
crossref_primary_10_1038_s41467_020_19039_7
crossref_primary_10_1039_D0SC04229C
crossref_primary_10_1021_acs_orglett_2c02060
crossref_primary_10_1002_asia_202300724
crossref_primary_10_1002_adsc_202100261
crossref_primary_10_1021_acscatal_2c05816
crossref_primary_10_1039_D2GC02186B
crossref_primary_10_1016_j_ijhydene_2024_03_059
crossref_primary_10_1021_acsaem_1c02119
crossref_primary_10_1007_s10562_022_04171_4
crossref_primary_10_1021_acscatal_6b03291
crossref_primary_10_1039_D1OB00603G
crossref_primary_10_1039_D4NR01222D
crossref_primary_10_1021_acssuschemeng_9b02663
crossref_primary_10_1016_j_chempr_2018_05_001
crossref_primary_10_1016_j_poly_2024_117314
crossref_primary_10_1002_anie_202419455
crossref_primary_10_1002_anie_202301049
crossref_primary_10_1038_s41467_024_44721_5
crossref_primary_10_1021_acsanm_4c00233
crossref_primary_10_1021_acsanm_4c02410
crossref_primary_10_1039_C7OB01327B
crossref_primary_10_1039_D2SC01420C
crossref_primary_10_1063_1_5043490
crossref_primary_10_1021_acscatal_2c00079
crossref_primary_10_1021_acs_orglett_2c03680
crossref_primary_10_1016_j_ica_2020_119691
crossref_primary_10_1021_jacs_7b10776
crossref_primary_10_1039_D0QI00904K
crossref_primary_10_1063_5_0054522
crossref_primary_10_1039_D4TA08359H
crossref_primary_10_1002_smll_202201333
crossref_primary_10_1007_s40843_023_2566_y
crossref_primary_10_1021_acs_orglett_1c03464
crossref_primary_10_1155_2022_2982594
crossref_primary_10_1016_j_apsusc_2024_161679
crossref_primary_10_1002_ange_201800749
crossref_primary_10_1039_D2DT00787H
crossref_primary_10_1021_acs_iecr_1c02596
crossref_primary_10_1002_anie_202419675
crossref_primary_10_1039_D4CS00370E
crossref_primary_10_1002_anie_202301269
crossref_primary_10_1021_acs_joc_1c00706
crossref_primary_10_1021_jacs_3c08943
crossref_primary_10_1039_D0CC04115G
crossref_primary_10_1039_D4NR03880K
crossref_primary_10_1039_D3CC01731A
crossref_primary_10_1021_acscatal_9b04368
crossref_primary_10_1039_D4TC00785A
crossref_primary_10_1016_j_apmt_2023_101971
crossref_primary_10_1039_D0GC01430C
crossref_primary_10_1002_anie_201711316
crossref_primary_10_1016_j_cattod_2018_04_016
crossref_primary_10_1039_D3CS00292F
crossref_primary_10_1002_asia_202200495
crossref_primary_10_1039_D1CC00808K
crossref_primary_10_1039_C9NR08906C
crossref_primary_10_1016_j_matchemphys_2024_129784
crossref_primary_10_1016_j_apcatb_2019_02_077
crossref_primary_10_1002_ejic_202400206
crossref_primary_10_1039_D4SU00054D
crossref_primary_10_1039_D5DT00044K
crossref_primary_10_1039_D0CP05055E
crossref_primary_10_1002_chem_202101751
crossref_primary_10_1002_chem_202400029
crossref_primary_10_1021_acs_jpcc_0c07906
crossref_primary_10_1021_acscatal_3c05954
Cites_doi 10.1016/j.jcat.2006.09.019
10.1063/1.1665298
10.1063/1.1733573
10.1016/0009-2614(89)85118-8
10.1021/om200181y
10.1021/ic800841t
10.1063/1.3382344
10.1021/ic00337a007
10.1039/C5NJ90042E
10.1063/1.1712084
10.1007/BF01114537
10.1021/ja806818a
10.1038/nchem.727
10.1021/cr00087a002
10.1021/ol0069251
10.1093/petrology/26.1.31
10.1039/a905569j
10.1063/1.463096
10.1021/om900332k
10.1016/S0065-2792(08)60242-3
10.1021/nl503522y
10.1021/acs.inorgchem.5b02371
10.1021/jo005561n
10.1021/ja00310a009
10.1201/b17118
10.1021/ja00905a001
10.1103/PhysRevB.33.8822
10.1039/C1SC00544H
10.1103/PhysRevA.38.3098
10.1016/j.cattod.2008.08.013
10.1039/b508541a
10.1021/om00042a056
10.1021/ja01348a011
10.1103/PhysRevLett.91.146401
10.1063/1.1749394
10.1016/j.ccr.2016.06.004
10.1021/acs.jpca.5b11809
10.1038/nmat3313
10.1021/cs400700r
10.2475/ajs.292.9.659
10.1063/1.459993
10.1021/jo00360a036
10.1016/j.ccr.2008.11.015
10.1039/c4dt00371c
10.1021/acs.accounts.5b00280
10.1021/ar000114f
10.1021/ja300591v
10.1016/0009-2614(96)00382-X
10.1063/1.1622924
10.1039/C4DT01314J
10.1073/pnas.77.8.4403
10.1364/JOSA.66.001010
10.1021/jo0268153
10.1103/PhysRev.180.45
10.1002/chem.19950010112
10.1021/acs.jpca.5b01626
10.1021/cr9804644
10.1039/C4EE02564D
10.1021/om00143a019
10.1039/qr9581200265
10.1063/1.2406071
10.1021/ol500854m
10.1007/BF00528565
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.inorgchem.6b01702
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 9470
ExternalDocumentID 27580183
10_1021_acs_inorgchem_6b01702
c593099655
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
~02
NPM
YIN
7X8
ID FETCH-LOGICAL-a351t-a94b1badfa179cb733d1c8a19c7a20d9e23f130db9724e0b88292ed137a20eb03
IEDL.DBID ACS
ISSN 0020-1669
1520-510X
IngestDate Fri Jul 11 12:02:32 EDT 2025
Wed Feb 19 02:40:59 EST 2025
Tue Jul 01 03:41:13 EDT 2025
Thu Apr 24 22:50:23 EDT 2025
Thu Aug 27 13:44:31 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a351t-a94b1badfa179cb733d1c8a19c7a20d9e23f130db9724e0b88292ed137a20eb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27580183
PQID 1821788941
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1821788941
pubmed_primary_27580183
crossref_citationtrail_10_1021_acs_inorgchem_6b01702
crossref_primary_10_1021_acs_inorgchem_6b01702
acs_journals_10_1021_acs_inorgchem_6b01702
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160919
2016-09-19
2016-Sep-19
PublicationDateYYYYMMDD 2016-09-19
PublicationDate_xml – month: 09
  year: 2016
  text: 20160919
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
Haynes W. M. (ref28/cit28) 2014
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
Schulze D. G. (ref1/cit1) 2002
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
Misra K. (ref2/cit2) 2012
ref7/cit7
References_xml – ident: ref58/cit58
  doi: 10.1016/j.jcat.2006.09.019
– ident: ref38/cit38
  doi: 10.1063/1.1665298
– start-page: 1
  volume-title: Soil Mineralogy with Environmental Applications
  year: 2002
  ident: ref1/cit1
– ident: ref53/cit53
  doi: 10.1063/1.1733573
– ident: ref29/cit29
  doi: 10.1016/0009-2614(89)85118-8
– ident: ref62/cit62
  doi: 10.1021/om200181y
– ident: ref30/cit30
  doi: 10.1021/ic800841t
– volume-title: Understanding Mineral Deposits
  year: 2012
  ident: ref2/cit2
– ident: ref35/cit35
  doi: 10.1063/1.3382344
– ident: ref56/cit56
  doi: 10.1021/ic00337a007
– ident: ref6/cit6
  doi: 10.1039/C5NJ90042E
– ident: ref54/cit54
  doi: 10.1063/1.1712084
– ident: ref41/cit41
  doi: 10.1007/BF01114537
– ident: ref19/cit19
  doi: 10.1021/ja806818a
– ident: ref20/cit20
  doi: 10.1038/nchem.727
– ident: ref5/cit5
  doi: 10.1021/cr00087a002
– ident: ref22/cit22
  doi: 10.1021/ol0069251
– ident: ref63/cit63
  doi: 10.1093/petrology/26.1.31
– ident: ref21/cit21
  doi: 10.1039/a905569j
– ident: ref36/cit36
  doi: 10.1063/1.463096
– ident: ref27/cit27
  doi: 10.1021/om900332k
– ident: ref46/cit46
  doi: 10.1016/S0065-2792(08)60242-3
– ident: ref18/cit18
  doi: 10.1021/nl503522y
– ident: ref45/cit45
  doi: 10.1021/acs.inorgchem.5b02371
– ident: ref25/cit25
  doi: 10.1021/jo005561n
– ident: ref24/cit24
  doi: 10.1021/ja00310a009
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2014
  ident: ref28/cit28
  doi: 10.1201/b17118
– ident: ref23/cit23
  doi: 10.1021/ja00905a001
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.33.8822
– ident: ref48/cit48
  doi: 10.1039/C1SC00544H
– ident: ref32/cit32
  doi: 10.1103/PhysRevA.38.3098
– ident: ref59/cit59
  doi: 10.1016/j.cattod.2008.08.013
– ident: ref34/cit34
  doi: 10.1039/b508541a
– ident: ref65/cit65
  doi: 10.1021/om00042a056
– ident: ref50/cit50
  doi: 10.1021/ja01348a011
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.91.146401
– ident: ref49/cit49
  doi: 10.1063/1.1749394
– ident: ref12/cit12
  doi: 10.1016/j.ccr.2016.06.004
– ident: ref13/cit13
  doi: 10.1021/acs.jpca.5b11809
– ident: ref14/cit14
  doi: 10.1038/nmat3313
– ident: ref3/cit3
  doi: 10.1021/cs400700r
– ident: ref64/cit64
  doi: 10.2475/ajs.292.9.659
– ident: ref40/cit40
  doi: 10.1063/1.459993
– ident: ref15/cit15
  doi: 10.1021/jo00360a036
– ident: ref9/cit9
  doi: 10.1016/j.ccr.2008.11.015
– ident: ref61/cit61
  doi: 10.1039/c4dt00371c
– ident: ref10/cit10
  doi: 10.1021/acs.accounts.5b00280
– ident: ref8/cit8
  doi: 10.1021/ar000114f
– ident: ref11/cit11
  doi: 10.1021/ja300591v
– ident: ref42/cit42
  doi: 10.1016/0009-2614(96)00382-X
– ident: ref43/cit43
  doi: 10.1063/1.1622924
– ident: ref60/cit60
  doi: 10.1039/C4DT01314J
– ident: ref52/cit52
  doi: 10.1073/pnas.77.8.4403
– ident: ref44/cit44
  doi: 10.1364/JOSA.66.001010
– ident: ref17/cit17
  doi: 10.1021/jo0268153
– ident: ref51/cit51
  doi: 10.1103/PhysRev.180.45
– ident: ref16/cit16
  doi: 10.1002/chem.19950010112
– ident: ref55/cit55
  doi: 10.1021/acs.jpca.5b01626
– ident: ref7/cit7
  doi: 10.1021/cr9804644
– ident: ref57/cit57
  doi: 10.1039/C4EE02564D
– ident: ref26/cit26
  doi: 10.1021/om00143a019
– ident: ref47/cit47
  doi: 10.1039/qr9581200265
– ident: ref31/cit31
  doi: 10.1063/1.2406071
– ident: ref4/cit4
  doi: 10.1021/ol500854m
– ident: ref39/cit39
  doi: 10.1007/BF00528565
SSID ssj0009346
Score 2.6461477
Snippet Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9461
Title A Quantitative Scale of Oxophilicity and Thiophilicity
URI http://dx.doi.org/10.1021/acs.inorgchem.6b01702
https://www.ncbi.nlm.nih.gov/pubmed/27580183
https://www.proquest.com/docview/1821788941
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za8MwDDZle9hedh_dRQZ7GiSNjxx-LGWlDHbRFvoWbMdhY1tS1gTGfv3kHC1jlG6vCjaRZUufLEtC6EpiHOggcG1OXHNbxU3JWx3bLPE042CipGfyne_u_cGY3U68SQt1lkTwCe4INQMMChRg4t3xpSn4Ajp3nfhhYLytbm-4qLJLq8wc4xNh3-dNys6yaYxJUrOfJmkJziztTX8bPTZZO9Uzk1enyKWjvn4XcfwrKztoq8aeVrfaLLuopdM9tNFrWr7tI79rPRUiLfPOQAtaQxCgtrLEevjMpubmRQFmt0QaW6PnlwXlAI37N6PewK4bK9iCeji3BWcSSxEnAo6jkgGlMVahwFwFgrgx14QmYNtiyQPCtCsBhXOiY0zNZy1deojW0izVx8hiVInE1yRMiGaSSWl8uMRoiUAKl6o2ugauo_pgzKIy5k1wZIjzpYjqpWgj1ggiUnWJctMp423VMGc-bFrV6Fg14LKRcgQrbEIkItVZAb8XgosWhpzhNjqqxD-fkoBr5YIGPPkPS6doEyCWb16YYH6G1vKPQp8DjMnlRbl1vwGKeO49
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxsxEB4BPcAFKOURSosrtRekDetHdtcHDlEgCgSoKoLEbbG9XoGADWITQflB_BX-Vseb3URFQqgHpF7HsjUej-dhez4DfNeUhjYMfU8y351WSQd5axNPpA0rJLoo3XD1zkfHQedUHJw1zqbgqaqFQSZyHCkvLvEn6AJ029EuM6TiXG7qgXa4L6x8TNm1v-8xVct39ndxXX8w1t7rtTpe-ZuAp3iDDjwlhaZaJalCHTQ65DyhJlJUmlAxP5GW8RQNeqJlyIT1NYaektmEctdstc9x3Gn4gAEQc0les3UyAfflo4Igl4rRIJBVpdBrbDtPaPK_PeEr4W3h5toL8DwWUPG65ao-HOi6eXyBHfn_S3AR5stImzRHW-MjTNlsCWZb1Qd3nyBokl9DlRVVdmjzyQmqqyX9lPx86N-6cyaDGQpRWUJ6F5cTyjKcvgvbKzCT9TO7BkRwo9LAsihlVmihtctYU2cTQ618bmqwhVKOSzOQx8UNP6OxI45FH5eir4Go1j82JSC7-xfk-q1u9XG32xEiyVsdvlXKFaOE3YWQymx_iOxFmJBGkRS0BqsjrRsPyTCR9NHer__LlDZhttM7OowP94-7n2EOg8vAva2hcgNmBndD-wUDuIH-WuweAufvrWx_ADInUUs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkGgvhdLX8miNRC-Vso0fm8SHHlYLK960AiRuwXYcFbXNrsiuWvhJ_Sv9U53JJouohFAPHHq1ZWs8Hs_D4_kMsGE5j30ch4EWId1WaYK89Vmg8o5XGk2U7VC988FhtH2qds86ZzPwq6mFQSJKnKmskvh0qodZXiMM8A_UflFgD67nezuyhP0i6geVe_7qB4Zr5cedTdzbd0L0t05620H9o0BgZIePAqOV5dZkuUE5dDaWMuMuMVy72Igw017IHJV6ZnUslA8tup9a-IxL6vY2lDjvI5ijVCEFet3e8Q3Ar5wUBVE4xqNIN9VCd5FN1tCVt63hHS5uZer6C_B7yqTqhcvX9nhk2-76L_zI_4OLi_C09rhZd3JEnsGML5bgca_56O45RF32eWyKqtoOdT87RrH1bJCzo5-DId03OYxUmCkydvLl4qblBZw-CNkvYbYYFP41MCWdySMvklx4ZZW1FLnmpBtja0LpWvAeuZzW6qBMq0y_4Ck1Tlmf1qxvgWpkIHU1MDv9D_LtvmHt6bDhBJnkvgHrjYClyGFKDJnCD8ZIXoKBaZJoxVvwaiJ50ykFBpQh6v3lf1nSW5j_tNlP93cO91bgCfqYET2x4XoVZkeXY7-GftzIvqkOEIPzh5a1P0i4U84
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quantitative+Scale+of+Oxophilicity+and+Thiophilicity&rft.jtitle=Inorganic+chemistry&rft.au=Kepp%2C+Kasper+P&rft.date=2016-09-19&rft.eissn=1520-510X&rft.volume=55&rft.issue=18&rft.spage=9461&rft_id=info:doi/10.1021%2Facs.inorgchem.6b01702&rft_id=info%3Apmid%2F27580183&rft.externalDocID=27580183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon