A Quantitative Scale of Oxophilicity and Thiophilicity
Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues with reference states and system dependencies and captures empirically known tendencies toward oxygen. This enables a detailed analysis of t...
Saved in:
Published in | Inorganic chemistry Vol. 55; no. 18; pp. 9461 - 9470 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.09.2016
|
Online Access | Get full text |
Cover
Loading…
Abstract | Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues with reference states and system dependencies and captures empirically known tendencies toward oxygen. This enables a detailed analysis of the fundamental causes of oxophilicity. Notably, the notion that oxophilicity relates to Lewis acid hardness is invalid. Rather, oxophilicity correlates only modestly and inversely with absolute hardness and more strongly with electronegativity and effective nuclear charge. Since oxygen is highly electronegative, ionic bonding is stronger to metals of low electronegativity. Left-side d-block elements with low effective nuclear charges and electronegativities are thus highly oxophilic, and the f-block elements, not because of their hardness, which is normal, but as a result of the small ionization energies of their outermost valence electrons, can easily transfer electrons to fulfill the electron demands of oxygen. Consistent with empirical experience, the most oxophilic elements are found in the left part of the d block, the lanthanides, and the actinides. The d-block elements differ substantially in oxophilicity, quantifying their different uses in a wide range of chemical reactions; thus, the use of mixed oxo- and thiophilic (i.e., “mesophilic”) surfaces and catalysts as a design principle can explain the success of many recent applications. The proposed scale may therefore help to rationalize and improve chemical reactions more effectively than current qualitative considerations of oxophilicity. |
---|---|
AbstractList | Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues with reference states and system dependencies and captures empirically known tendencies toward oxygen. This enables a detailed analysis of the fundamental causes of oxophilicity. Notably, the notion that oxophilicity relates to Lewis acid hardness is invalid. Rather, oxophilicity correlates only modestly and inversely with absolute hardness and more strongly with electronegativity and effective nuclear charge. Since oxygen is highly electronegative, ionic bonding is stronger to metals of low electronegativity. Left-side d-block elements with low effective nuclear charges and electronegativities are thus highly oxophilic, and the f-block elements, not because of their hardness, which is normal, but as a result of the small ionization energies of their outermost valence electrons, can easily transfer electrons to fulfill the electron demands of oxygen. Consistent with empirical experience, the most oxophilic elements are found in the left part of the d block, the lanthanides, and the actinides. The d-block elements differ substantially in oxophilicity, quantifying their different uses in a wide range of chemical reactions; thus, the use of mixed oxo- and thiophilic (i.e., "mesophilic") surfaces and catalysts as a design principle can explain the success of many recent applications. The proposed scale may therefore help to rationalize and improve chemical reactions more effectively than current qualitative considerations of oxophilicity. Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues with reference states and system dependencies and captures empirically known tendencies toward oxygen. This enables a detailed analysis of the fundamental causes of oxophilicity. Notably, the notion that oxophilicity relates to Lewis acid hardness is invalid. Rather, oxophilicity correlates only modestly and inversely with absolute hardness and more strongly with electronegativity and effective nuclear charge. Since oxygen is highly electronegative, ionic bonding is stronger to metals of low electronegativity. Left-side d-block elements with low effective nuclear charges and electronegativities are thus highly oxophilic, and the f-block elements, not because of their hardness, which is normal, but as a result of the small ionization energies of their outermost valence electrons, can easily transfer electrons to fulfill the electron demands of oxygen. Consistent with empirical experience, the most oxophilic elements are found in the left part of the d block, the lanthanides, and the actinides. The d-block elements differ substantially in oxophilicity, quantifying their different uses in a wide range of chemical reactions; thus, the use of mixed oxo- and thiophilic (i.e., "mesophilic") surfaces and catalysts as a design principle can explain the success of many recent applications. The proposed scale may therefore help to rationalize and improve chemical reactions more effectively than current qualitative considerations of oxophilicity.Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues with reference states and system dependencies and captures empirically known tendencies toward oxygen. This enables a detailed analysis of the fundamental causes of oxophilicity. Notably, the notion that oxophilicity relates to Lewis acid hardness is invalid. Rather, oxophilicity correlates only modestly and inversely with absolute hardness and more strongly with electronegativity and effective nuclear charge. Since oxygen is highly electronegative, ionic bonding is stronger to metals of low electronegativity. Left-side d-block elements with low effective nuclear charges and electronegativities are thus highly oxophilic, and the f-block elements, not because of their hardness, which is normal, but as a result of the small ionization energies of their outermost valence electrons, can easily transfer electrons to fulfill the electron demands of oxygen. Consistent with empirical experience, the most oxophilic elements are found in the left part of the d block, the lanthanides, and the actinides. The d-block elements differ substantially in oxophilicity, quantifying their different uses in a wide range of chemical reactions; thus, the use of mixed oxo- and thiophilic (i.e., "mesophilic") surfaces and catalysts as a design principle can explain the success of many recent applications. The proposed scale may therefore help to rationalize and improve chemical reactions more effectively than current qualitative considerations of oxophilicity. |
Author | Kepp, Kasper P |
AuthorAffiliation | DTU Chemistry Technical University of Denmark |
AuthorAffiliation_xml | – name: DTU Chemistry – name: Technical University of Denmark |
Author_xml | – sequence: 1 givenname: Kasper P surname: Kepp fullname: Kepp, Kasper P email: kpj@kemi.dtu.dk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27580183$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LAzEQhoNU7If-BGWPXrbOJPsVPJXiFxSKWMFbyGazNmV3Uze7Yv-9W9sqeOkpQ-Z9ZphnSHqVrTQhlwhjBIo3UrmxqWz9rpa6HEcpYAz0hAwwpOCHCG89MgDoaowi3idD51YAwFkQnZE-jcMEMGEDEk2851ZWjWlkYz6196JkoT2be_Mvu16awijTbDxZZd5iaf5-zslpLgunL_bviLze3y2mj_5s_vA0ncx8yUJsfMmDFFOZ5RJjrtKYsQxVIpGrWFLIuKYsRwZZymMaaEiThHKqM2Tbtk6Bjcj1bu66th-tdo0ojVO6KGSlbesEJhTjJOEBdtGrfbRNS52JdW1KWW_E4dYucLsLqNo6V-tcqJ-rbdXU0hQCQWzNis6s-DUr9mY7OvxHHxYc43DHbdsr29ZV5-sI8w2xr5JP |
CitedBy_id | crossref_primary_10_1021_jacs_1c13698 crossref_primary_10_1021_acsanm_3c03297 crossref_primary_10_1021_acscatal_8b00933 crossref_primary_10_1021_acs_jpca_8b01843 crossref_primary_10_1021_acssuschemeng_2c06913 crossref_primary_10_1021_acssuschemeng_9b05183 crossref_primary_10_1016_j_chempr_2024_04_006 crossref_primary_10_1039_D4TC02287D crossref_primary_10_1002_anie_202318916 crossref_primary_10_1016_j_niox_2019_01_005 crossref_primary_10_1021_acs_jpca_3c03738 crossref_primary_10_1021_acs_analchem_4c05167 crossref_primary_10_1021_acsomega_9b03333 crossref_primary_10_1021_jacs_3c12783 crossref_primary_10_1002_adma_202314252 crossref_primary_10_1039_D2IM00054G crossref_primary_10_1002_chem_201801492 crossref_primary_10_1002_ejoc_202000229 crossref_primary_10_1021_acs_orglett_4c00799 crossref_primary_10_1002_cphc_202000529 crossref_primary_10_1039_D4SC01025F crossref_primary_10_1002_cctc_202201048 crossref_primary_10_1016_j_mattod_2019_12_003 crossref_primary_10_1039_D1TA07382F crossref_primary_10_3390_molecules23112741 crossref_primary_10_1103_PhysRevMaterials_6_013401 crossref_primary_10_3390_nano11102530 crossref_primary_10_1016_j_talanta_2019_120634 crossref_primary_10_1007_s40843_022_2427_3 crossref_primary_10_1039_D1CP02997E crossref_primary_10_1002_cssc_202301315 crossref_primary_10_1016_j_envpol_2021_118641 crossref_primary_10_1039_C8DT05052J crossref_primary_10_1039_D5GC00477B crossref_primary_10_1039_C9CY00181F crossref_primary_10_1021_acs_inorgchem_0c03145 crossref_primary_10_1021_jacs_1c00377 crossref_primary_10_1016_j_jelechem_2022_116574 crossref_primary_10_1021_jacs_4c02042 crossref_primary_10_1021_acs_inorgchem_4c03534 crossref_primary_10_1002_ejoc_202000573 crossref_primary_10_1021_acsenergylett_4c03186 crossref_primary_10_1021_jacs_0c10661 crossref_primary_10_2174_0115734137301010240507101533 crossref_primary_10_1016_j_mtchem_2024_102240 crossref_primary_10_1039_D1CY00496D crossref_primary_10_1002_ange_202016768 crossref_primary_10_1021_jacs_3c01555 crossref_primary_10_1021_jacs_9b12112 crossref_primary_10_1021_acs_inorgchem_0c03052 crossref_primary_10_1002_advs_202403295 crossref_primary_10_1039_C7DT02144E crossref_primary_10_1002_anie_202425038 crossref_primary_10_1021_acs_organomet_3c00318 crossref_primary_10_1039_C7RA13245J crossref_primary_10_1002_ange_202301562 crossref_primary_10_1007_s10593_021_02944_0 crossref_primary_10_1016_j_cattod_2024_115155 crossref_primary_10_1021_acs_organomet_1c00123 crossref_primary_10_1021_acs_jpclett_2c02161 crossref_primary_10_3390_nano14060500 crossref_primary_10_1002_anie_202016768 crossref_primary_10_1002_anie_202006722 crossref_primary_10_1039_D2SC01776H crossref_primary_10_1002_ejic_202100400 crossref_primary_10_1016_j_ccr_2021_214366 crossref_primary_10_1021_acssuschemeng_4c00561 crossref_primary_10_1002_ange_202207581 crossref_primary_10_1002_anie_202209232 crossref_primary_10_1021_acs_accounts_1c00148 crossref_primary_10_3390_magnetochemistry11010001 crossref_primary_10_1021_acs_macromol_1c01460 crossref_primary_10_1039_D1CY01258D crossref_primary_10_1002_anie_202301562 crossref_primary_10_1021_acs_jpca_3c02784 crossref_primary_10_1021_acssuschemeng_2c05917 crossref_primary_10_1039_D3TC00215B crossref_primary_10_1002_slct_201902568 crossref_primary_10_1021_acscatal_7b03597 crossref_primary_10_1039_D0TA04241B crossref_primary_10_1016_j_cej_2023_141301 crossref_primary_10_1016_j_ccr_2017_05_007 crossref_primary_10_1039_C7NJ00566K crossref_primary_10_1021_acscatal_1c01870 crossref_primary_10_1038_s41467_021_23192_y crossref_primary_10_1021_acs_joc_3c02007 crossref_primary_10_1039_D2DT02642B crossref_primary_10_1038_s41929_025_01301_0 crossref_primary_10_1021_acscatal_7b01061 crossref_primary_10_1016_j_surfcoat_2018_09_054 crossref_primary_10_1039_D2CC04153G crossref_primary_10_1016_j_jorganchem_2019_121025 crossref_primary_10_1021_acs_accounts_1c00050 crossref_primary_10_1002_cphc_201900862 crossref_primary_10_1038_s41467_024_50343_8 crossref_primary_10_1039_D0QO01388A crossref_primary_10_3390_molecules25051104 crossref_primary_10_1002_ange_202425038 crossref_primary_10_1016_j_mcat_2024_113819 crossref_primary_10_1021_acs_inorgchem_9b03612 crossref_primary_10_1002_chem_202004660 crossref_primary_10_1021_acsenergylett_9b00277 crossref_primary_10_1149_1945_7111_ac2022 crossref_primary_10_1002_ange_202006722 crossref_primary_10_1016_j_cplett_2020_137551 crossref_primary_10_1002_adfm_202401990 crossref_primary_10_1038_s41467_024_54277_z crossref_primary_10_1039_D4CC01057D crossref_primary_10_1021_acs_iecr_4c03213 crossref_primary_10_1021_acsmacrolett_4c00575 crossref_primary_10_1021_acs_inorgchem_0c03137 crossref_primary_10_1016_j_apsusc_2022_156207 crossref_primary_10_1021_acssuschemeng_3c01179 crossref_primary_10_1002_advs_202304424 crossref_primary_10_1021_acscatal_3c03821 crossref_primary_10_1039_C8DT02432D crossref_primary_10_1021_acscatal_1c01421 crossref_primary_10_1016_j_cinorg_2024_100043 crossref_primary_10_1016_j_fuproc_2024_108063 crossref_primary_10_1002_adfm_202304125 crossref_primary_10_1021_acsnano_3c03884 crossref_primary_10_1016_j_jcou_2022_102033 crossref_primary_10_1039_D4TA09223F crossref_primary_10_1039_D3TA01940C crossref_primary_10_1116_6_0003975 crossref_primary_10_1002_slct_201702232 crossref_primary_10_1021_acssuschemeng_2c02399 crossref_primary_10_1021_jacs_3c11734 crossref_primary_10_1002_cctc_202400137 crossref_primary_10_1021_acs_organomet_1c00308 crossref_primary_10_1002_aoc_5578 crossref_primary_10_1016_j_checat_2023_100602 crossref_primary_10_1039_C9CY01082C crossref_primary_10_1039_D2QI00592A crossref_primary_10_1002_ange_202301269 crossref_primary_10_1016_j_apcatb_2022_122141 crossref_primary_10_1016_j_cattod_2025_115291 crossref_primary_10_1016_j_mcat_2020_111277 crossref_primary_10_1038_s41467_018_07458_6 crossref_primary_10_1002_cbic_202100554 crossref_primary_10_1007_s12274_022_4489_x crossref_primary_10_3389_fchem_2023_1287528 crossref_primary_10_1021_acs_chemmater_0c03788 crossref_primary_10_1021_acs_organomet_8b00111 crossref_primary_10_1021_jasms_4c00017 crossref_primary_10_1039_D4GC00220B crossref_primary_10_3390_nano13192713 crossref_primary_10_1002_smll_202402257 crossref_primary_10_1039_D0CY00631A crossref_primary_10_1002_cctc_202101730 crossref_primary_10_1007_s12678_024_00863_0 crossref_primary_10_1016_j_xcrp_2024_102050 crossref_primary_10_1021_acs_organomet_3c00504 crossref_primary_10_1039_C6DT04893E crossref_primary_10_1039_D4SE01149J crossref_primary_10_1002_aenm_202301597 crossref_primary_10_1002_cctc_202301714 crossref_primary_10_1021_acs_jpcc_1c10824 crossref_primary_10_1016_j_jssc_2019_120948 crossref_primary_10_1002_aenm_202301119 crossref_primary_10_1039_D0GC04175K crossref_primary_10_1021_jacs_7b01114 crossref_primary_10_1063_1_5142398 crossref_primary_10_1002_ange_202301049 crossref_primary_10_1038_s41557_020_0450_3 crossref_primary_10_1002_admi_202201486 crossref_primary_10_1021_acs_inorgchem_7b02705 crossref_primary_10_1039_D3TC02716C crossref_primary_10_1039_D1CY01914G crossref_primary_10_1002_cphc_202000013 crossref_primary_10_1016_j_jcat_2022_10_004 crossref_primary_10_1021_acsomega_4c05082 crossref_primary_10_1107_S2053229621002412 crossref_primary_10_1002_aenm_202400777 crossref_primary_10_1021_cbe_4c00108 crossref_primary_10_1002_ange_202114253 crossref_primary_10_1021_acsnano_3c12543 crossref_primary_10_6023_cjoc202406052 crossref_primary_10_1021_jacs_4c07004 crossref_primary_10_1016_j_ica_2021_120288 crossref_primary_10_1016_j_nantod_2019_100802 crossref_primary_10_1021_jacs_3c10321 crossref_primary_10_1039_D1CE01549D crossref_primary_10_1071_CH24094 crossref_primary_10_1016_j_jece_2021_105285 crossref_primary_10_1007_s40843_022_2061_x crossref_primary_10_1002_ange_202209232 crossref_primary_10_1021_acs_jpcc_9b02745 crossref_primary_10_1021_acs_organomet_2c00672 crossref_primary_10_1002_aenm_202303563 crossref_primary_10_1016_j_apcatb_2022_122106 crossref_primary_10_1021_acsanm_8b01357 crossref_primary_10_1021_acs_jmedchem_3c00226 crossref_primary_10_1002_ange_202419455 crossref_primary_10_1021_acssuschemeng_2c02345 crossref_primary_10_1002_advs_202309041 crossref_primary_10_3390_nano12050755 crossref_primary_10_1021_acs_organomet_3c00541 crossref_primary_10_1021_jacs_7b02356 crossref_primary_10_1039_D4TA08848D crossref_primary_10_1021_acscatal_2c00859 crossref_primary_10_1002_adfm_202002087 crossref_primary_10_1016_j_cej_2024_152552 crossref_primary_10_1007_s10847_021_01048_8 crossref_primary_10_1021_acs_chemrev_0c00119 crossref_primary_10_1002_asia_202101358 crossref_primary_10_1021_acs_orglett_3c00772 crossref_primary_10_1021_acsnano_2c00641 crossref_primary_10_1016_j_jcat_2018_05_004 crossref_primary_10_1002_marc_202100238 crossref_primary_10_1002_cctc_202400352 crossref_primary_10_1039_D2TA08306J crossref_primary_10_1016_j_apsadv_2023_100402 crossref_primary_10_1021_acs_jpcc_1c07690 crossref_primary_10_1016_j_cattod_2020_03_031 crossref_primary_10_1021_acs_jpcc_0c06397 crossref_primary_10_1021_acs_joc_4c01675 crossref_primary_10_1002_adma_202310671 crossref_primary_10_1002_cnma_201900466 crossref_primary_10_1038_s42005_024_01651_4 crossref_primary_10_1002_anie_201800749 crossref_primary_10_1016_j_ijms_2024_117248 crossref_primary_10_1002_ange_202419675 crossref_primary_10_1002_ange_202318916 crossref_primary_10_1002_cssc_201801535 crossref_primary_10_1039_D2CC06204F crossref_primary_10_1016_j_cej_2023_146803 crossref_primary_10_1002_cplu_202300474 crossref_primary_10_1002_ange_201711316 crossref_primary_10_1021_acs_jpcc_0c01801 crossref_primary_10_1016_j_jpowsour_2021_230760 crossref_primary_10_1021_acs_organomet_1c00316 crossref_primary_10_1021_acsami_7b19574 crossref_primary_10_1080_01614940_2024_2443192 crossref_primary_10_1016_j_ccr_2024_215821 crossref_primary_10_1002_anie_202502227 crossref_primary_10_1016_j_jallcom_2024_176151 crossref_primary_10_1039_D0CP00547A crossref_primary_10_1073_pnas_1913803116 crossref_primary_10_5059_yukigoseikyokaishi_82_697 crossref_primary_10_1039_C7DT04089J crossref_primary_10_1021_acs_orglett_4c04357 crossref_primary_10_1021_acs_joc_9b02717 crossref_primary_10_1021_acs_organomet_7b00896 crossref_primary_10_1021_acs_orglett_3c00229 crossref_primary_10_1039_D3NR01940C crossref_primary_10_1038_s41467_023_37011_z crossref_primary_10_1016_j_cattod_2024_114514 crossref_primary_10_1016_j_ccr_2023_215318 crossref_primary_10_1016_j_matchemphys_2021_124575 crossref_primary_10_1016_j_bioelechem_2019_107348 crossref_primary_10_1109_LED_2024_3424407 crossref_primary_10_1039_D0CY00683A crossref_primary_10_1007_s10967_020_07376_2 crossref_primary_10_1016_j_apcatb_2023_122830 crossref_primary_10_1016_j_biombioe_2025_107806 crossref_primary_10_1021_acs_jpcc_9b04457 crossref_primary_10_1021_jacs_4c06088 crossref_primary_10_1021_acs_chemmater_1c02377 crossref_primary_10_1021_acscatal_0c00489 crossref_primary_10_1039_D4DT00464G crossref_primary_10_1002_cctc_201902033 crossref_primary_10_1039_D3TA07010G crossref_primary_10_1016_j_apcatb_2024_124278 crossref_primary_10_1021_acsnanoscienceau_2c00025 crossref_primary_10_1002_anie_202011400 crossref_primary_10_1016_j_matdes_2023_111918 crossref_primary_10_1002_adfm_202107479 crossref_primary_10_1002_cplu_202300265 crossref_primary_10_1016_j_ceramint_2024_06_286 crossref_primary_10_1021_acsami_3c11683 crossref_primary_10_1039_D4QI01656D crossref_primary_10_1039_C9GC02762A crossref_primary_10_1088_1361_648X_ac709f crossref_primary_10_1039_D0CC07241A crossref_primary_10_1039_D4CS00472H crossref_primary_10_1039_C9SC04290C crossref_primary_10_1002_cctc_202301436 crossref_primary_10_1016_j_mcat_2019_110560 crossref_primary_10_1021_jacs_4c00323 crossref_primary_10_1002_ange_202011400 crossref_primary_10_1021_acs_chemrev_1c00371 crossref_primary_10_1016_j_ccr_2023_215534 crossref_primary_10_1021_acs_biochem_1c00091 crossref_primary_10_1021_acs_jpcc_3c01366 crossref_primary_10_1016_j_apcatb_2020_119711 crossref_primary_10_1002_ejic_202400127 crossref_primary_10_1002_hlca_202200073 crossref_primary_10_1016_j_fuel_2022_123891 crossref_primary_10_1021_acs_jpcc_9b04317 crossref_primary_10_1016_j_seppur_2024_128599 crossref_primary_10_1021_acs_est_2c07099 crossref_primary_10_1021_acsami_4c05542 crossref_primary_10_1002_cnma_202300300 crossref_primary_10_1002_adfm_202405416 crossref_primary_10_1016_j_jmmm_2019_165477 crossref_primary_10_1021_acs_jpca_3c07859 crossref_primary_10_3389_fchem_2020_601029 crossref_primary_10_1039_D1CY00567G crossref_primary_10_1021_acs_inorgchem_4c04091 crossref_primary_10_1016_j_ccr_2019_213023 crossref_primary_10_1039_D0GC02610G crossref_primary_10_1016_j_jece_2025_115647 crossref_primary_10_1021_acssuschemeng_2c02075 crossref_primary_10_1021_acs_jpca_6b12086 crossref_primary_10_1016_j_joule_2017_06_001 crossref_primary_10_1021_acs_chemrev_9b00682 crossref_primary_10_2139_ssrn_4117599 crossref_primary_10_1039_D3SC04888H crossref_primary_10_1021_acs_jpcc_1c05468 crossref_primary_10_1002_ange_202502227 crossref_primary_10_1021_acsami_4c19882 crossref_primary_10_1021_jacs_3c06697 crossref_primary_10_1021_acsnano_0c01005 crossref_primary_10_1021_jacs_2c10087 crossref_primary_10_1002_advs_202002768 crossref_primary_10_1016_j_matchemphys_2024_129926 crossref_primary_10_1016_j_poly_2018_10_042 crossref_primary_10_1016_j_chempr_2022_03_002 crossref_primary_10_1021_acs_jpcc_8b09319 crossref_primary_10_1002_adma_202311575 crossref_primary_10_1021_acscatal_2c03724 crossref_primary_10_1021_acs_inorgchem_1c01159 crossref_primary_10_1002_EXP_20220024 crossref_primary_10_1021_jacs_1c11978 crossref_primary_10_3390_catal11050541 crossref_primary_10_1002_advs_202204579 crossref_primary_10_1021_jacs_4c03622 crossref_primary_10_1080_2055074X_2019_1595872 crossref_primary_10_1039_D2TA02157A crossref_primary_10_1088_1757_899X_334_1_012074 crossref_primary_10_1016_j_matlet_2019_126868 crossref_primary_10_1021_jacs_3c05270 crossref_primary_10_1021_prechem_2c00002 crossref_primary_10_1002_anie_202008442 crossref_primary_10_1515_pac_2019_0802 crossref_primary_10_1021_acs_jpclett_4c01638 crossref_primary_10_3389_fchem_2024_1508515 crossref_primary_10_1016_j_nanoen_2021_106160 crossref_primary_10_3389_fchem_2023_1165303 crossref_primary_10_1021_acs_est_1c08671 crossref_primary_10_1002_ejoc_201801040 crossref_primary_10_1021_acsnano_1c08681 crossref_primary_10_1021_acsami_9b04580 crossref_primary_10_1002_ange_202008442 crossref_primary_10_1038_s41570_018_0059_x crossref_primary_10_1016_j_jcat_2024_115919 crossref_primary_10_1021_acscatal_3c04849 crossref_primary_10_1063_5_0004194 crossref_primary_10_1039_C9CC02695A crossref_primary_10_1021_acsabm_3c01158 crossref_primary_10_1063_5_0232316 crossref_primary_10_1002_chem_202403449 crossref_primary_10_1002_anie_202207581 crossref_primary_10_1016_j_poly_2024_117308 crossref_primary_10_1016_j_apcata_2021_118276 crossref_primary_10_1002_adma_202105248 crossref_primary_10_1002_marc_202400122 crossref_primary_10_1021_acs_organomet_2c00197 crossref_primary_10_1002_adma_202401867 crossref_primary_10_1016_j_mattod_2024_10_010 crossref_primary_10_1002_adma_202410106 crossref_primary_10_1002_anie_202114253 crossref_primary_10_1007_s11426_024_2429_0 crossref_primary_10_1016_j_jpowsour_2020_227830 crossref_primary_10_1016_j_ccr_2023_215396 crossref_primary_10_1021_jacs_4c02327 crossref_primary_10_1016_j_cej_2022_136564 crossref_primary_10_1016_j_apcata_2017_05_002 crossref_primary_10_1016_j_nanoen_2021_105850 crossref_primary_10_1016_j_jelechem_2021_115342 crossref_primary_10_1021_acs_accounts_3c00123 crossref_primary_10_1039_D2CC01550A crossref_primary_10_1002_chem_201705025 crossref_primary_10_1039_D1CY00238D crossref_primary_10_1021_acs_langmuir_1c02041 crossref_primary_10_1038_s41467_020_19039_7 crossref_primary_10_1039_D0SC04229C crossref_primary_10_1021_acs_orglett_2c02060 crossref_primary_10_1002_asia_202300724 crossref_primary_10_1002_adsc_202100261 crossref_primary_10_1021_acscatal_2c05816 crossref_primary_10_1039_D2GC02186B crossref_primary_10_1016_j_ijhydene_2024_03_059 crossref_primary_10_1021_acsaem_1c02119 crossref_primary_10_1007_s10562_022_04171_4 crossref_primary_10_1021_acscatal_6b03291 crossref_primary_10_1039_D1OB00603G crossref_primary_10_1039_D4NR01222D crossref_primary_10_1021_acssuschemeng_9b02663 crossref_primary_10_1016_j_chempr_2018_05_001 crossref_primary_10_1016_j_poly_2024_117314 crossref_primary_10_1002_anie_202419455 crossref_primary_10_1002_anie_202301049 crossref_primary_10_1038_s41467_024_44721_5 crossref_primary_10_1021_acsanm_4c00233 crossref_primary_10_1021_acsanm_4c02410 crossref_primary_10_1039_C7OB01327B crossref_primary_10_1039_D2SC01420C crossref_primary_10_1063_1_5043490 crossref_primary_10_1021_acscatal_2c00079 crossref_primary_10_1021_acs_orglett_2c03680 crossref_primary_10_1016_j_ica_2020_119691 crossref_primary_10_1021_jacs_7b10776 crossref_primary_10_1039_D0QI00904K crossref_primary_10_1063_5_0054522 crossref_primary_10_1039_D4TA08359H crossref_primary_10_1002_smll_202201333 crossref_primary_10_1007_s40843_023_2566_y crossref_primary_10_1021_acs_orglett_1c03464 crossref_primary_10_1155_2022_2982594 crossref_primary_10_1016_j_apsusc_2024_161679 crossref_primary_10_1002_ange_201800749 crossref_primary_10_1039_D2DT00787H crossref_primary_10_1021_acs_iecr_1c02596 crossref_primary_10_1002_anie_202419675 crossref_primary_10_1039_D4CS00370E crossref_primary_10_1002_anie_202301269 crossref_primary_10_1021_acs_joc_1c00706 crossref_primary_10_1021_jacs_3c08943 crossref_primary_10_1039_D0CC04115G crossref_primary_10_1039_D4NR03880K crossref_primary_10_1039_D3CC01731A crossref_primary_10_1021_acscatal_9b04368 crossref_primary_10_1039_D4TC00785A crossref_primary_10_1016_j_apmt_2023_101971 crossref_primary_10_1039_D0GC01430C crossref_primary_10_1002_anie_201711316 crossref_primary_10_1016_j_cattod_2018_04_016 crossref_primary_10_1039_D3CS00292F crossref_primary_10_1002_asia_202200495 crossref_primary_10_1039_D1CC00808K crossref_primary_10_1039_C9NR08906C crossref_primary_10_1016_j_matchemphys_2024_129784 crossref_primary_10_1016_j_apcatb_2019_02_077 crossref_primary_10_1002_ejic_202400206 crossref_primary_10_1039_D4SU00054D crossref_primary_10_1039_D5DT00044K crossref_primary_10_1039_D0CP05055E crossref_primary_10_1002_chem_202101751 crossref_primary_10_1002_chem_202400029 crossref_primary_10_1021_acs_jpcc_0c07906 crossref_primary_10_1021_acscatal_3c05954 |
Cites_doi | 10.1016/j.jcat.2006.09.019 10.1063/1.1665298 10.1063/1.1733573 10.1016/0009-2614(89)85118-8 10.1021/om200181y 10.1021/ic800841t 10.1063/1.3382344 10.1021/ic00337a007 10.1039/C5NJ90042E 10.1063/1.1712084 10.1007/BF01114537 10.1021/ja806818a 10.1038/nchem.727 10.1021/cr00087a002 10.1021/ol0069251 10.1093/petrology/26.1.31 10.1039/a905569j 10.1063/1.463096 10.1021/om900332k 10.1016/S0065-2792(08)60242-3 10.1021/nl503522y 10.1021/acs.inorgchem.5b02371 10.1021/jo005561n 10.1021/ja00310a009 10.1201/b17118 10.1021/ja00905a001 10.1103/PhysRevB.33.8822 10.1039/C1SC00544H 10.1103/PhysRevA.38.3098 10.1016/j.cattod.2008.08.013 10.1039/b508541a 10.1021/om00042a056 10.1021/ja01348a011 10.1103/PhysRevLett.91.146401 10.1063/1.1749394 10.1016/j.ccr.2016.06.004 10.1021/acs.jpca.5b11809 10.1038/nmat3313 10.1021/cs400700r 10.2475/ajs.292.9.659 10.1063/1.459993 10.1021/jo00360a036 10.1016/j.ccr.2008.11.015 10.1039/c4dt00371c 10.1021/acs.accounts.5b00280 10.1021/ar000114f 10.1021/ja300591v 10.1016/0009-2614(96)00382-X 10.1063/1.1622924 10.1039/C4DT01314J 10.1073/pnas.77.8.4403 10.1364/JOSA.66.001010 10.1021/jo0268153 10.1103/PhysRev.180.45 10.1002/chem.19950010112 10.1021/acs.jpca.5b01626 10.1021/cr9804644 10.1039/C4EE02564D 10.1021/om00143a019 10.1039/qr9581200265 10.1063/1.2406071 10.1021/ol500854m 10.1007/BF00528565 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.inorgchem.6b01702 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 9470 |
ExternalDocumentID | 27580183 10_1021_acs_inorgchem_6b01702 c593099655 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -~X 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ~02 NPM YIN 7X8 |
ID | FETCH-LOGICAL-a351t-a94b1badfa179cb733d1c8a19c7a20d9e23f130db9724e0b88292ed137a20eb03 |
IEDL.DBID | ACS |
ISSN | 0020-1669 1520-510X |
IngestDate | Fri Jul 11 12:02:32 EDT 2025 Wed Feb 19 02:40:59 EST 2025 Tue Jul 01 03:41:13 EDT 2025 Thu Apr 24 22:50:23 EDT 2025 Thu Aug 27 13:44:31 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a351t-a94b1badfa179cb733d1c8a19c7a20d9e23f130db9724e0b88292ed137a20eb03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27580183 |
PQID | 1821788941 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1821788941 pubmed_primary_27580183 crossref_citationtrail_10_1021_acs_inorgchem_6b01702 crossref_primary_10_1021_acs_inorgchem_6b01702 acs_journals_10_1021_acs_inorgchem_6b01702 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160919 2016-09-19 2016-Sep-19 |
PublicationDateYYYYMMDD | 2016-09-19 |
PublicationDate_xml | – month: 09 year: 2016 text: 20160919 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 Haynes W. M. (ref28/cit28) 2014 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 Schulze D. G. (ref1/cit1) 2002 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 Misra K. (ref2/cit2) 2012 ref7/cit7 |
References_xml | – ident: ref58/cit58 doi: 10.1016/j.jcat.2006.09.019 – ident: ref38/cit38 doi: 10.1063/1.1665298 – start-page: 1 volume-title: Soil Mineralogy with Environmental Applications year: 2002 ident: ref1/cit1 – ident: ref53/cit53 doi: 10.1063/1.1733573 – ident: ref29/cit29 doi: 10.1016/0009-2614(89)85118-8 – ident: ref62/cit62 doi: 10.1021/om200181y – ident: ref30/cit30 doi: 10.1021/ic800841t – volume-title: Understanding Mineral Deposits year: 2012 ident: ref2/cit2 – ident: ref35/cit35 doi: 10.1063/1.3382344 – ident: ref56/cit56 doi: 10.1021/ic00337a007 – ident: ref6/cit6 doi: 10.1039/C5NJ90042E – ident: ref54/cit54 doi: 10.1063/1.1712084 – ident: ref41/cit41 doi: 10.1007/BF01114537 – ident: ref19/cit19 doi: 10.1021/ja806818a – ident: ref20/cit20 doi: 10.1038/nchem.727 – ident: ref5/cit5 doi: 10.1021/cr00087a002 – ident: ref22/cit22 doi: 10.1021/ol0069251 – ident: ref63/cit63 doi: 10.1093/petrology/26.1.31 – ident: ref21/cit21 doi: 10.1039/a905569j – ident: ref36/cit36 doi: 10.1063/1.463096 – ident: ref27/cit27 doi: 10.1021/om900332k – ident: ref46/cit46 doi: 10.1016/S0065-2792(08)60242-3 – ident: ref18/cit18 doi: 10.1021/nl503522y – ident: ref45/cit45 doi: 10.1021/acs.inorgchem.5b02371 – ident: ref25/cit25 doi: 10.1021/jo005561n – ident: ref24/cit24 doi: 10.1021/ja00310a009 – volume-title: CRC Handbook of Chemistry and Physics year: 2014 ident: ref28/cit28 doi: 10.1201/b17118 – ident: ref23/cit23 doi: 10.1021/ja00905a001 – ident: ref33/cit33 doi: 10.1103/PhysRevB.33.8822 – ident: ref48/cit48 doi: 10.1039/C1SC00544H – ident: ref32/cit32 doi: 10.1103/PhysRevA.38.3098 – ident: ref59/cit59 doi: 10.1016/j.cattod.2008.08.013 – ident: ref34/cit34 doi: 10.1039/b508541a – ident: ref65/cit65 doi: 10.1021/om00042a056 – ident: ref50/cit50 doi: 10.1021/ja01348a011 – ident: ref37/cit37 doi: 10.1103/PhysRevLett.91.146401 – ident: ref49/cit49 doi: 10.1063/1.1749394 – ident: ref12/cit12 doi: 10.1016/j.ccr.2016.06.004 – ident: ref13/cit13 doi: 10.1021/acs.jpca.5b11809 – ident: ref14/cit14 doi: 10.1038/nmat3313 – ident: ref3/cit3 doi: 10.1021/cs400700r – ident: ref64/cit64 doi: 10.2475/ajs.292.9.659 – ident: ref40/cit40 doi: 10.1063/1.459993 – ident: ref15/cit15 doi: 10.1021/jo00360a036 – ident: ref9/cit9 doi: 10.1016/j.ccr.2008.11.015 – ident: ref61/cit61 doi: 10.1039/c4dt00371c – ident: ref10/cit10 doi: 10.1021/acs.accounts.5b00280 – ident: ref8/cit8 doi: 10.1021/ar000114f – ident: ref11/cit11 doi: 10.1021/ja300591v – ident: ref42/cit42 doi: 10.1016/0009-2614(96)00382-X – ident: ref43/cit43 doi: 10.1063/1.1622924 – ident: ref60/cit60 doi: 10.1039/C4DT01314J – ident: ref52/cit52 doi: 10.1073/pnas.77.8.4403 – ident: ref44/cit44 doi: 10.1364/JOSA.66.001010 – ident: ref17/cit17 doi: 10.1021/jo0268153 – ident: ref51/cit51 doi: 10.1103/PhysRev.180.45 – ident: ref16/cit16 doi: 10.1002/chem.19950010112 – ident: ref55/cit55 doi: 10.1021/acs.jpca.5b01626 – ident: ref7/cit7 doi: 10.1021/cr9804644 – ident: ref57/cit57 doi: 10.1039/C4EE02564D – ident: ref26/cit26 doi: 10.1021/om00143a019 – ident: ref47/cit47 doi: 10.1039/qr9581200265 – ident: ref31/cit31 doi: 10.1063/1.2406071 – ident: ref4/cit4 doi: 10.1021/ol500854m – ident: ref39/cit39 doi: 10.1007/BF00528565 |
SSID | ssj0009346 |
Score | 2.6461477 |
Snippet | Oxophilicity and thiophilicity are widely used concepts with no quantitative definition. In this paper, a simple, generic scale is developed that solves issues... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9461 |
Title | A Quantitative Scale of Oxophilicity and Thiophilicity |
URI | http://dx.doi.org/10.1021/acs.inorgchem.6b01702 https://www.ncbi.nlm.nih.gov/pubmed/27580183 https://www.proquest.com/docview/1821788941 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za8MwDDZle9hedh_dRQZ7GiSNjxx-LGWlDHbRFvoWbMdhY1tS1gTGfv3kHC1jlG6vCjaRZUufLEtC6EpiHOggcG1OXHNbxU3JWx3bLPE042CipGfyne_u_cGY3U68SQt1lkTwCe4INQMMChRg4t3xpSn4Ajp3nfhhYLytbm-4qLJLq8wc4xNh3-dNys6yaYxJUrOfJmkJziztTX8bPTZZO9Uzk1enyKWjvn4XcfwrKztoq8aeVrfaLLuopdM9tNFrWr7tI79rPRUiLfPOQAtaQxCgtrLEevjMpubmRQFmt0QaW6PnlwXlAI37N6PewK4bK9iCeji3BWcSSxEnAo6jkgGlMVahwFwFgrgx14QmYNtiyQPCtCsBhXOiY0zNZy1deojW0izVx8hiVInE1yRMiGaSSWl8uMRoiUAKl6o2ugauo_pgzKIy5k1wZIjzpYjqpWgj1ggiUnWJctMp423VMGc-bFrV6Fg14LKRcgQrbEIkItVZAb8XgosWhpzhNjqqxD-fkoBr5YIGPPkPS6doEyCWb16YYH6G1vKPQp8DjMnlRbl1vwGKeO49 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxsxEB4BPcAFKOURSosrtRekDetHdtcHDlEgCgSoKoLEbbG9XoGADWITQflB_BX-Vseb3URFQqgHpF7HsjUej-dhez4DfNeUhjYMfU8y351WSQd5axNPpA0rJLoo3XD1zkfHQedUHJw1zqbgqaqFQSZyHCkvLvEn6AJ029EuM6TiXG7qgXa4L6x8TNm1v-8xVct39ndxXX8w1t7rtTpe-ZuAp3iDDjwlhaZaJalCHTQ65DyhJlJUmlAxP5GW8RQNeqJlyIT1NYaektmEctdstc9x3Gn4gAEQc0les3UyAfflo4Igl4rRIJBVpdBrbDtPaPK_PeEr4W3h5toL8DwWUPG65ao-HOi6eXyBHfn_S3AR5stImzRHW-MjTNlsCWZb1Qd3nyBokl9DlRVVdmjzyQmqqyX9lPx86N-6cyaDGQpRWUJ6F5cTyjKcvgvbKzCT9TO7BkRwo9LAsihlVmihtctYU2cTQ618bmqwhVKOSzOQx8UNP6OxI45FH5eir4Go1j82JSC7-xfk-q1u9XG32xEiyVsdvlXKFaOE3YWQymx_iOxFmJBGkRS0BqsjrRsPyTCR9NHer__LlDZhttM7OowP94-7n2EOg8vAva2hcgNmBndD-wUDuIH-WuweAufvrWx_ADInUUs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkGgvhdLX8miNRC-Vso0fm8SHHlYLK960AiRuwXYcFbXNrsiuWvhJ_Sv9U53JJouohFAPHHq1ZWs8Hs_D4_kMsGE5j30ch4EWId1WaYK89Vmg8o5XGk2U7VC988FhtH2qds86ZzPwq6mFQSJKnKmskvh0qodZXiMM8A_UflFgD67nezuyhP0i6geVe_7qB4Zr5cedTdzbd0L0t05620H9o0BgZIePAqOV5dZkuUE5dDaWMuMuMVy72Igw017IHJV6ZnUslA8tup9a-IxL6vY2lDjvI5ijVCEFet3e8Q3Ar5wUBVE4xqNIN9VCd5FN1tCVt63hHS5uZer6C_B7yqTqhcvX9nhk2-76L_zI_4OLi_C09rhZd3JEnsGML5bgca_56O45RF32eWyKqtoOdT87RrH1bJCzo5-DId03OYxUmCkydvLl4qblBZw-CNkvYbYYFP41MCWdySMvklx4ZZW1FLnmpBtja0LpWvAeuZzW6qBMq0y_4Ck1Tlmf1qxvgWpkIHU1MDv9D_LtvmHt6bDhBJnkvgHrjYClyGFKDJnCD8ZIXoKBaZJoxVvwaiJ50ykFBpQh6v3lf1nSW5j_tNlP93cO91bgCfqYET2x4XoVZkeXY7-GftzIvqkOEIPzh5a1P0i4U84 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quantitative+Scale+of+Oxophilicity+and+Thiophilicity&rft.jtitle=Inorganic+chemistry&rft.au=Kepp%2C+Kasper+P&rft.date=2016-09-19&rft.eissn=1520-510X&rft.volume=55&rft.issue=18&rft.spage=9461&rft_id=info:doi/10.1021%2Facs.inorgchem.6b01702&rft_id=info%3Apmid%2F27580183&rft.externalDocID=27580183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |