Stress wave propagation across jointed rock mass under dynamic extension and its effect on dynamic response and supporting of underground opening

•Extension/compression-first wave transmission differs owing to joint opening.•Joint tensile strength determines stress wave propagation under dynamic extension.•Rock bolt and shotcrete lining effectively support opening against dynamic extension. Rock joints are prone to open and fail when subject...

Full description

Saved in:
Bibliographic Details
Published inTunnelling and underground space technology Vol. 108; p. 103648
Main Authors Zhu, Jianbo, Li, Yashi, Peng, Qi, Deng, Xifei, Gao, Mingzhong, Zhang, Jianguo
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Extension/compression-first wave transmission differs owing to joint opening.•Joint tensile strength determines stress wave propagation under dynamic extension.•Rock bolt and shotcrete lining effectively support opening against dynamic extension. Rock joints are prone to open and fail when subject to severe dynamic extension, which might result in spalling of surrounding rock and collapse of underground openings. However, the understanding of dynamic response of rock joints and underground openings subject to tensile stress wave is still at its infancy. To investigate the effect of tensile wave on the response, stability and supporting of underground openings in jointed rock mass, numerical modelling was carried out herein with the DEM-based universal distinct element code (UDEC) after its validation using explosion testing measurements. Results showed that joint tensile strength has significant effects on stress wave propagation if it is lower than the amplitude of tensile stress wave in the shallow rock mass, where joint opening will occur, no significant portion of wave energy could transmit through the joint, and the transmission coefficient for tension-first wave is lower than that for compression-first wave. The buried depth of underground opening and joint properties including stiffness, spacing and dip angle as well as crossing angle between joint sets could significantly influence stress wave propagation and dynamic responses of underground openings under dynamic extension. In addition, installation of rock bolts with appropriate number and length and shotcreting with sufficient thickness could effectively reinforce the surrounding rock and reduce the area of disturbed zones when against dynamic extension. The findings in this study could be of great significance for the design, supporting and stability evaluation of underground openings.
AbstractList •Extension/compression-first wave transmission differs owing to joint opening.•Joint tensile strength determines stress wave propagation under dynamic extension.•Rock bolt and shotcrete lining effectively support opening against dynamic extension. Rock joints are prone to open and fail when subject to severe dynamic extension, which might result in spalling of surrounding rock and collapse of underground openings. However, the understanding of dynamic response of rock joints and underground openings subject to tensile stress wave is still at its infancy. To investigate the effect of tensile wave on the response, stability and supporting of underground openings in jointed rock mass, numerical modelling was carried out herein with the DEM-based universal distinct element code (UDEC) after its validation using explosion testing measurements. Results showed that joint tensile strength has significant effects on stress wave propagation if it is lower than the amplitude of tensile stress wave in the shallow rock mass, where joint opening will occur, no significant portion of wave energy could transmit through the joint, and the transmission coefficient for tension-first wave is lower than that for compression-first wave. The buried depth of underground opening and joint properties including stiffness, spacing and dip angle as well as crossing angle between joint sets could significantly influence stress wave propagation and dynamic responses of underground openings under dynamic extension. In addition, installation of rock bolts with appropriate number and length and shotcreting with sufficient thickness could effectively reinforce the surrounding rock and reduce the area of disturbed zones when against dynamic extension. The findings in this study could be of great significance for the design, supporting and stability evaluation of underground openings.
Rock joints are prone to open and fail when subject to severe dynamic extension, which might result in spalling of surrounding rock and collapse of underground openings. However, the understanding of dynamic response of rock joints and underground openings subject to tensile stress wave is still at its infancy. To investigate the effect of tensile wave on the response, stability and supporting of underground openings in jointed rock mass, numerical modelling was carried out herein with the DEM-based universal distinct element code (UDEC) after its validation using explosion testing measurements. Results showed that joint tensile strength has significant effects on stress wave propagation if it is lower than the amplitude of tensile stress wave in the shallow rock mass, where joint opening will occur, no significant portion of wave energy could transmit through the joint, and the transmission coefficient for tension-first wave is lower than that for compression-first wave. The buried depth of underground opening and joint properties including stiffness, spacing and dip angle as well as crossing angle between joint sets could significantly influence stress wave propagation and dynamic responses of underground openings under dynamic extension. In addition, installation of rock bolts with appropriate number and length and shotcreting with sufficient thickness could effectively reinforce the surrounding rock and reduce the area of disturbed zones when against dynamic extension. The findings in this study could be of great significance for the design, supporting and stability evaluation of underground openings.
ArticleNumber 103648
Author Gao, Mingzhong
Peng, Qi
Deng, Xifei
Zhang, Jianguo
Li, Yashi
Zhu, Jianbo
Author_xml – sequence: 1
  givenname: Jianbo
  surname: Zhu
  fullname: Zhu, Jianbo
  email: jbzhu@tju.edu.cn
  organization: State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Yashi
  surname: Li
  fullname: Li, Yashi
  organization: State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Qi
  surname: Peng
  fullname: Peng, Qi
  organization: Shenzhen Municipal Design and Research Institute, Shenzhen, China
– sequence: 4
  givenname: Xifei
  surname: Deng
  fullname: Deng, Xifei
  organization: China Tiesiju Civil Engineering Group Co. Ltd., Hefei, China
– sequence: 5
  givenname: Mingzhong
  surname: Gao
  fullname: Gao, Mingzhong
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
– sequence: 6
  givenname: Jianguo
  surname: Zhang
  fullname: Zhang, Jianguo
  organization: State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, China Pingmei Shenma Group, Pingdingshan 467000, China
BookMark eNp9kctqHDEQRUWwIePHD2QlyLonKnVPjwTZBBMnAYMXttdCI5UGdTxSR1L78Rn-Y2umnY0XXhV1uaeKqntCjkIMSMgXYEtg0H8blmXKZckZ3wtt34lPZAFiLZquNkdkwYTom_Vais_kJOeBMbbiXC7Iy01JmDN91A9IxxRHvdXFx0C1SbHqQ_ShoKUpmr90p6syBYuJ2uegd95QfCoY8gEIlvqSKTqHptCq_PfUBWMMGQ-WPI1jTMWHLY1uHrZNsVYaRwxVPiPHTt9nPH-rp-Tu8uftxe_m6vrXn4sfV41uV1AayYAb2-oOwLRsA9KwFqSUznLggMA2EowzG6ONEC3qXuoe3YatV8As1649JV_nufXqfxPmooY4pVBXKt5J6KHtQFSXmF2HdyR0yvhy-FBJ2t8rYGofgBrUPgC1D0DNAVSUv0PH5Hc6PX8MfZ8hrKc_eEwqG4_BoPWpvlXZ6D_CXwHs_KWz
CitedBy_id crossref_primary_10_3390_app122010224
crossref_primary_10_1007_s11709_024_1009_y
crossref_primary_10_1088_1755_1315_861_3_032067
crossref_primary_10_1007_s12040_024_02342_y
crossref_primary_10_1061_IJGNAI_GMENG_9291
crossref_primary_10_1007_s10064_024_03718_6
crossref_primary_10_1007_s00603_023_03286_3
crossref_primary_10_1007_s40571_024_00722_1
crossref_primary_10_1016_j_tust_2022_104416
crossref_primary_10_1016_j_tust_2024_106180
crossref_primary_10_3390_en15093233
crossref_primary_10_1016_j_ijmst_2021_04_003
crossref_primary_10_1016_j_tafmec_2024_104695
crossref_primary_10_1007_s40948_022_00376_4
crossref_primary_10_1061__ASCE_MT_1943_5533_0004554
crossref_primary_10_3390_app12189146
crossref_primary_10_1016_j_ijimpeng_2021_103999
crossref_primary_10_3390_app131810275
crossref_primary_10_1007_s13369_024_09437_0
crossref_primary_10_1016_j_tust_2024_105941
crossref_primary_10_1016_j_tust_2024_105620
crossref_primary_10_3389_feart_2022_1112249
crossref_primary_10_1016_j_tust_2023_105060
crossref_primary_10_1016_j_engfailanal_2024_108847
crossref_primary_10_1016_j_tust_2024_106132
crossref_primary_10_3390_su15021711
crossref_primary_10_1016_j_simpat_2024_102975
crossref_primary_10_1016_j_ijrmms_2021_104959
crossref_primary_10_1061_IJGNAI_GMENG_9430
crossref_primary_10_1038_s41598_022_24128_2
crossref_primary_10_1061_IJGNAI_GMENG_7958
crossref_primary_10_3390_math12091346
crossref_primary_10_1007_s40948_023_00594_4
crossref_primary_10_1007_s00603_023_03696_3
crossref_primary_10_1155_2021_9985774
Cites_doi 10.1016/S1365-1609(00)00013-7
10.1016/S1365-1609(97)80037-8
10.1007/s00603-016-0993-1
10.1007/s10706-016-9984-y
10.1016/j.soildyn.2013.08.003
10.1007/s00603-016-1041-x
10.1016/S0267-7261(00)00104-4
10.1016/j.ijrmms.2019.104060
10.1016/j.compgeo.2007.01.001
10.1016/S0141-0296(99)00072-3
10.1016/j.compgeo.2012.05.002
10.1016/j.tust.2014.04.008
10.1016/j.tust.2017.03.005
10.1007/s10064-014-0625-5
10.1016/j.tust.2012.07.005
10.1016/B978-008043864-1/50005-7
10.1007/s10706-016-0084-9
10.1016/j.tust.2012.05.002
10.1029/JB095iB07p11345
10.1007/s00603-014-0600-2
10.1016/0148-9062(78)90979-8
10.1111/j.1365-2478.1986.tb00522.x
10.1061/JSFEAQ.0001885
10.1007/s00603-012-0352-9
10.1061/JMCEA3.0001144
10.1016/j.tust.2014.04.004
10.1016/j.tust.2016.01.017
10.1007/s00603-010-0106-5
10.1016/j.ijmst.2019.06.008
10.1016/S0266-352X(98)00011-1
10.1016/j.tust.2015.04.003
10.1007/s00603-010-0105-6
10.1155/2018/6275941
10.1016/j.ijrmms.2010.01.005
10.1016/j.ijrmms.2008.09.010
10.1016/j.tust.2018.08.057
10.1016/S0148-9062(97)00322-7
10.1126/science.1163113
10.1007/s12205-015-0480-3
10.1016/j.compgeo.2013.06.002
10.1002/nag.2209
10.1016/j.tust.2013.02.003
10.1007/s00603-014-0633-6
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Feb 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 2021
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1016/j.tust.2020.103648
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-4364
ExternalDocumentID 10_1016_j_tust_2020_103648
S0886779820306027
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-a351t-9012cd3a411c30b19c031999fd2121e10b91cfcbcac883ea69a6efb07510d2af3
IEDL.DBID .~1
ISSN 0886-7798
IngestDate Fri Jul 25 03:41:29 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Tue Jul 01 01:06:28 EDT 2025
Fri Feb 23 02:48:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rock joint
Supporting
Dynamic extension
Wave propagation
Underground opening
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a351t-9012cd3a411c30b19c031999fd2121e10b91cfcbcac883ea69a6efb07510d2af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2491613418
PQPubID 2045384
ParticipantIDs proquest_journals_2491613418
crossref_citationtrail_10_1016_j_tust_2020_103648
crossref_primary_10_1016_j_tust_2020_103648
elsevier_sciencedirect_doi_10_1016_j_tust_2020_103648
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Tunnelling and underground space technology
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhao, X.B., 2004. Theoretical and numerical studies of wave attenuation across parallel fractures. PhD Thesis. Nanyang Technological University, Singapore.
Hoddeson, L., Henriksen, P. W., Meade, R. A., Westfall, C., Neushul, P., 2004. Critical assembly: A technical history of Los Alamos during the oppenheimer years, 1943-1945, Cambridge University Press.
Luo, Li, Tao, Dong (b0175) 2017; 65
Barla, Monacis, Perino, Hatzor (b0030) 2010; 43
Cai (b0040) 2013; 36
He, Dou, Fan, Du, Sun (b0115) 2012; 32
Li, Li, Ma, Zhou (b0165) 2013; 35
Cai, Zhao (b0035) 2000; 37
Ma, G.W., Hao, H., Zhou, Y.X., 1998. Modeling of wave propagation induced by under- ground explosion. Computers and Geotechnics. 22 (3–4), 283–303.
Deng, Chen, Zhu, Zhou, Zhao, Zhao (b0075) 2015; 48
Dowding (b0080) 1984; 4
Xing, Kulatilake, Sandbak (b0260) 2017; 35
UDEC Manual., 2005. Version 4.0. Itasca Consulting Group, Inc.
Lu, Chen, Yan, Zhou (b0170) 2007; 26
Hansson, H., Forsén, R., 1997. Mitigation effects of water on ground shock: Large scale testing in Älvdalen, FOA-R--97-00510-311--SE, FOA, Tumba.
Zhu, Deng, Zhao, Zhao (b0300) 2013; 46
Tating, Hack, Jetten (b0245) 2015; 74
Cundall (b0065) 1971; 1
King, Myer, Rezowalli (b0150) 1986; 34
Tang, C.A., Liao, Z.Y., 2018. Spalling in extreme ground motion and evidence from the 2008 Wenchuan earthquake. Rock Dynamics and Applications 3: Proceedings of the 3rd International Conference on Rock Dynamics and Applications (RocDyn-3), Trondheim, Norway.
Zhao, Zhao, Zhu (b0280) 2014; 38
Yang, Lu, Zhao, Yan, Chen (b0265) 2014; 43
Yu, Liu (b0270) 2018; 2018
Zhu, Liao, Tang (b0305) 2016; 49
Shang, Hencher, West (b0220) 2016; 49
Fan, Lu, Yan, Chen, Zhang (b0100) 2015; 49
Cai (b0045) 2019; 29
Asprone, Cadoni, Prota, Manfredi (b0015) 2009; 46
Hao, Wu, Ma, Zhou (b0110) 2001; 21
Mortazavi, Alavi (b0210) 2013; 54
Aoi, Kunugi, Fujiwara (b0010) 2008; 322
Cao, Li, Tao, Zhou (b0050) 2016; 53
Hudson, J.A, Harrison, J.P., 1997. Engineering rock mechanics: An introduction to the principles. Elsevier Science, PP. 41-69.
Goodman, R.E., 1989. Introduction to Rock Mechanics (Second Edition). Wiley India Pvt. Ltd., New Delhi.
Hendron, A.J., 1977. Engineering of rock blasting on civil projects. In: Hall, W. J., (ed.). Structural and Geotechnical Mechanics: A Volume Honoring N. M. Newmark. Englewood Cliffs, Prentice-Hall, New Jersey, 242–277.
Tao, Li, Wu (b0235) 2012; 45
Zhang, Deng, Zhu (b0275) 2017
Pyrak-Nolte, Myer, Cook (b0215) 1990; 95
Zhu, Li, Wu (b0310) 2018; 82
Zhou, Y.X., Zhao, J., 2011. Explosion Loading and Tunnel Response. In: Zhou, Y.X., Zhao., J., (Eds.). Advances in rock dynamics and applications. Taylor and Francis Group, London, 457–481.
Chen, Zhao (b0060) 1998; 35
Ma, G.W., Hao, H., Zhou, Y.X., 2000. Assessment of structure damage to blasting induced ground motions. Engineering Structures. 22 (10), 1378–1389.
Deng, Zhu, Chen, Zhao, Zhou, Zhao (b0070) 2014; 43
Achenbach, J.D., 1973.Wave propagation in elastic solids. North-Holland Publishing Company - Amsterdam, London, American Elsevier Publishing Company, Inc., New York.
Duan, Li, Wang, Zhao, Wu (b0090) 2019; 122
Tao, Li, Wu (b0240) 2013; 54
Dowding, C. H., 1985. Restrained response: tunnels, pipelines, and basement walls. In: Dowding, C. H., (ed.). Blast vibration monitoring and control. Englewood Cliffs, Prentice Hall, New Jersy, 166-176.
AUTODYN User Manual, 2005. Version 6.1. Century dynamics.
Lysmer, Kuhlemeyer (b0185) 1973; 99
Li (b0160) 2010; 47
Lysmer, Kuhlemeyer (b0180) 1969; 95
Aydan, Ohta, Geniş, Tokashiki, Ohkubo (b0025) 2010; 43
Chen, Lu, Yan, Hu (b0055) 2016; 20
Zhao, Zhao, Cai, Hefny (b0290) 2008; 35
Shen, Barton (b0225) 1997; 34
Kulatilake, Shreedharan, Sherizadeh, Shu, Xing, He (b0155) 2016; 34
ISRM, 1978. Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 15, 319–368.
Hencher, Richards (b0125) 2015; 48
Jaeger, Cook, Zimmerman (b0145) 2007
He (10.1016/j.tust.2020.103648_b0115) 2012; 32
10.1016/j.tust.2020.103648_b0105
Cai (10.1016/j.tust.2020.103648_b0035) 2000; 37
Li (10.1016/j.tust.2020.103648_b0165) 2013; 35
Zhao (10.1016/j.tust.2020.103648_b0290) 2008; 35
Hencher (10.1016/j.tust.2020.103648_b0125) 2015; 48
Li (10.1016/j.tust.2020.103648_b0160) 2010; 47
King (10.1016/j.tust.2020.103648_b0150) 1986; 34
Deng (10.1016/j.tust.2020.103648_b0075) 2015; 48
10.1016/j.tust.2020.103648_b0140
10.1016/j.tust.2020.103648_b0020
Cai (10.1016/j.tust.2020.103648_b0040) 2013; 36
Cai (10.1016/j.tust.2020.103648_b0045) 2019; 29
Lu (10.1016/j.tust.2020.103648_b0170) 2007; 26
Tating (10.1016/j.tust.2020.103648_b0245) 2015; 74
Fan (10.1016/j.tust.2020.103648_b0100) 2015; 49
Cao (10.1016/j.tust.2020.103648_b0050) 2016; 53
10.1016/j.tust.2020.103648_b0135
Zhao (10.1016/j.tust.2020.103648_b0280) 2014; 38
Chen (10.1016/j.tust.2020.103648_b0055) 2016; 20
Zhu (10.1016/j.tust.2020.103648_b0300) 2013; 46
Yang (10.1016/j.tust.2020.103648_b0265) 2014; 43
10.1016/j.tust.2020.103648_b0250
10.1016/j.tust.2020.103648_b0130
10.1016/j.tust.2020.103648_b0295
Zhu (10.1016/j.tust.2020.103648_b0305) 2016; 49
10.1016/j.tust.2020.103648_b0095
Lysmer (10.1016/j.tust.2020.103648_b0185) 1973; 99
Xing (10.1016/j.tust.2020.103648_b0260) 2017; 35
10.1016/j.tust.2020.103648_b0005
Shang (10.1016/j.tust.2020.103648_b0220) 2016; 49
Deng (10.1016/j.tust.2020.103648_b0070) 2014; 43
Kulatilake (10.1016/j.tust.2020.103648_b0155) 2016; 34
10.1016/j.tust.2020.103648_b0200
Pyrak-Nolte (10.1016/j.tust.2020.103648_b0215) 1990; 95
Aydan (10.1016/j.tust.2020.103648_b0025) 2010; 43
Hao (10.1016/j.tust.2020.103648_b0110) 2001; 21
Cundall (10.1016/j.tust.2020.103648_b0065) 1971; 1
10.1016/j.tust.2020.103648_b0085
Aoi (10.1016/j.tust.2020.103648_b0010) 2008; 322
Tao (10.1016/j.tust.2020.103648_b0240) 2013; 54
10.1016/j.tust.2020.103648_b0120
Tao (10.1016/j.tust.2020.103648_b0235) 2012; 45
Zhang (10.1016/j.tust.2020.103648_b0275) 2017
10.1016/j.tust.2020.103648_b0285
Jaeger (10.1016/j.tust.2020.103648_b0145) 2007
Zhu (10.1016/j.tust.2020.103648_b0310) 2018; 82
Barla (10.1016/j.tust.2020.103648_b0030) 2010; 43
Mortazavi (10.1016/j.tust.2020.103648_b0210) 2013; 54
Luo (10.1016/j.tust.2020.103648_b0175) 2017; 65
Duan (10.1016/j.tust.2020.103648_b0090) 2019; 122
Shen (10.1016/j.tust.2020.103648_b0225) 1997; 34
10.1016/j.tust.2020.103648_b0190
Yu (10.1016/j.tust.2020.103648_b0270) 2018; 2018
Dowding (10.1016/j.tust.2020.103648_b0080) 1984; 4
Chen (10.1016/j.tust.2020.103648_b0060) 1998; 35
Lysmer (10.1016/j.tust.2020.103648_b0180) 1969; 95
10.1016/j.tust.2020.103648_b0230
Asprone (10.1016/j.tust.2020.103648_b0015) 2009; 46
References_xml – volume: 34
  start-page: 1185
  year: 1986
  end-page: 1199
  ident: b0150
  article-title: Experimental studies of elastic-wave propagation in a columnar-jointed rock mass
  publication-title: Geophys. Prospect.
– reference: Tang, C.A., Liao, Z.Y., 2018. Spalling in extreme ground motion and evidence from the 2008 Wenchuan earthquake. Rock Dynamics and Applications 3: Proceedings of the 3rd International Conference on Rock Dynamics and Applications (RocDyn-3), Trondheim, Norway.
– volume: 4
  start-page: 113
  year: 1984
  end-page: 119
  ident: b0080
  article-title: Estimating earthquake damage from explosion testing of full-scale tunnels
  publication-title: Adv. Tunnell. Technol. Subsurface Use
– volume: 99
  start-page: 421
  year: 1973
  end-page: 427
  ident: b0185
  article-title: Finite element method accuracy for wave propagation problems
  publication-title: J. Soil Mech. Foundat. Div.
– volume: 43
  start-page: 857
  year: 2010
  end-page: 875
  ident: b0025
  article-title: Response and stability of underground structures in rock mass during earthquakes
  publication-title: Rock Mech. Rock Eng.
– volume: 34
  start-page: 1723
  year: 2016
  end-page: 1735
  ident: b0155
  article-title: Laboratory estimation of rock joint stiffness and frictional parameters
  publication-title: Geotech. Geol. Eng.
– reference: Zhou, Y.X., Zhao, J., 2011. Explosion Loading and Tunnel Response. In: Zhou, Y.X., Zhao., J., (Eds.). Advances in rock dynamics and applications. Taylor and Francis Group, London, 457–481.
– volume: 35
  start-page: 97
  year: 2008
  end-page: 104
  ident: b0290
  article-title: UDEC modelling on wave propagation across fractured rock masses
  publication-title: Comput. Geotech.
– volume: 48
  start-page: 883
  year: 2015
  end-page: 905
  ident: b0125
  article-title: Assessing the shear strength of rock discontinuities at laboratory and field scales
  publication-title: Rock Mech. Rock Eng.
– reference: AUTODYN User Manual, 2005. Version 6.1. Century dynamics.
– volume: 47
  start-page: 396
  year: 2010
  end-page: 404
  ident: b0160
  article-title: A new energy-absorbing bolt for rock support in high stress rock masses
  publication-title: Int. J. Rock Mech. Min. Sci.
– reference: Achenbach, J.D., 1973.Wave propagation in elastic solids. North-Holland Publishing Company - Amsterdam, London, American Elsevier Publishing Company, Inc., New York.
– volume: 38
  start-page: 92
  year: 2014
  end-page: 110
  ident: b0280
  article-title: Application of the numerical manifold method for stress wave propagation across rock masses
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 45
  start-page: 83
  year: 2012
  end-page: 92
  ident: b0235
  article-title: Characteristics of the unloading process of rocks under high initial stress
  publication-title: Comput. Geotech.
– volume: 322
  start-page: 727
  year: 2008
  end-page: 730
  ident: b0010
  article-title: Trampoline effect in extreme ground motion
  publication-title: Science
– volume: 35
  start-page: 227
  year: 2013
  end-page: 234
  ident: b0165
  article-title: Assessment of underground tunnel stability to adjacent tunnel explosion
  publication-title: Tunn. Undergr. Space Technol.
– volume: 54
  start-page: 33
  year: 2013
  end-page: 45
  ident: b0240
  article-title: 3D numerical model for dynamic loading-induced multiple fracture zones around underground cavity faces
  publication-title: Comput. Geotech.
– volume: 20
  start-page: 933
  year: 2016
  end-page: 942
  ident: b0055
  article-title: Blasting excavation induced damage of surrounding rock masses in deep-buried tunnels
  publication-title: KSCE J. Civ. Eng.
– volume: 54
  start-page: 66
  year: 2013
  end-page: 72
  ident: b0210
  article-title: A numerical study of the behavior of fully grouted rockbolts under dynamic loading
  publication-title: Soil Dyn. Earthq. Eng.
– volume: 74
  start-page: 427
  year: 2015
  end-page: 441
  ident: b0245
  article-title: Weathering effects on discontinuity properties in sandstone in a tropical environment: case study at Kota Kinabalu. Sabah Malaysia
  publication-title: Bull. Eng. Geol. Environ.
– volume: 37
  start-page: 661
  year: 2000
  end-page: 682
  ident: b0035
  article-title: Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 35
  start-page: 45
  year: 2017
  end-page: 67
  ident: b0260
  article-title: Rock mass stability investigation around tunnels in an underground mine in USA
  publication-title: Geotech. Geol. Eng.
– volume: 53
  start-page: 78
  year: 2016
  end-page: 95
  ident: b0050
  article-title: Vibrations induced by high initial stress release during underground excavations
  publication-title: Tunn. Undergr. Space Technol.
– reference: Hendron, A.J., 1977. Engineering of rock blasting on civil projects. In: Hall, W. J., (ed.). Structural and Geotechnical Mechanics: A Volume Honoring N. M. Newmark. Englewood Cliffs, Prentice-Hall, New Jersey, 242–277.
– reference: Ma, G.W., Hao, H., Zhou, Y.X., 2000. Assessment of structure damage to blasting induced ground motions. Engineering Structures. 22 (10), 1378–1389.
– volume: 49
  start-page: 9
  year: 2015
  end-page: 17
  ident: b0100
  article-title: Transient characters of energy changes induced by blasting excavation of deep-buried tunnels
  publication-title: Tunnell. Undergr. Space Technol. Incorporat. Trenchless Technol. Res.
– reference: Dowding, C. H., 1985. Restrained response: tunnels, pipelines, and basement walls. In: Dowding, C. H., (ed.). Blast vibration monitoring and control. Englewood Cliffs, Prentice Hall, New Jersy, 166-176.
– volume: 95
  start-page: 859
  year: 1969
  end-page: 878
  ident: b0180
  article-title: Finite dynamic model for infinite media
  publication-title: J. Eng. Mech. Div.
– volume: 49
  start-page: 4213
  year: 2016
  end-page: 4225
  ident: b0220
  article-title: Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins
  publication-title: Rock Mech. Rock Eng.
– volume: 46
  start-page: 1429
  year: 2013
  end-page: 1442
  ident: b0300
  article-title: A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC
  publication-title: Rock Mech. Rock Eng.
– volume: 46
  start-page: 514
  year: 2009
  end-page: 520
  ident: b0015
  article-title: Dynamic behavior of a mediterranean natural stone under tensile loading
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 29
  start-page: 529
  year: 2019
  end-page: 534
  ident: b0045
  article-title: Rock support in strainburst-prone ground
  publication-title: Int. J. Min. Sci. Technol.
– year: 2007
  ident: b0145
  article-title: Fundamentals of rock mechanics
– volume: 34
  start-page: 117
  year: 1997
  end-page: 125
  ident: b0225
  article-title: The disturbed zone around tunnels in jointed rock masses
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 35
  start-page: 93
  year: 1998
  end-page: 99
  ident: b0060
  article-title: A study of UDEC modelling for blast wave propagation in jointed rock masses
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 95
  start-page: 11345
  year: 1990
  end-page: 11358
  ident: b0215
  article-title: Anisotropy in seismic velocities and amplitudes from multiple parallel fractures
  publication-title: J. Geophys. Res.
– volume: 43
  start-page: 88
  year: 2014
  end-page: 100
  ident: b0070
  article-title: Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses
  publication-title: Tunn. Undergr. Space Technol.
– reference: Goodman, R.E., 1989. Introduction to Rock Mechanics (Second Edition). Wiley India Pvt. Ltd., New Delhi.
– reference: Hansson, H., Forsén, R., 1997. Mitigation effects of water on ground shock: Large scale testing in Älvdalen, FOA-R--97-00510-311--SE, FOA, Tumba.
– reference: ISRM, 1978. Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 15, 319–368.
– reference: Zhao, X.B., 2004. Theoretical and numerical studies of wave attenuation across parallel fractures. PhD Thesis. Nanyang Technological University, Singapore.
– volume: 48
  start-page: 737
  year: 2015
  end-page: 747
  ident: b0075
  article-title: UDEC–AUTODYN hybrid modeling of a large-scale underground explosion test
  publication-title: Rock Mech. Rock Eng.
– volume: 32
  start-page: 34
  year: 2012
  end-page: 43
  ident: b0115
  article-title: Deep-hole directional fracturing of thick hard roof for rockburst prevention
  publication-title: Tunn. Undergr. Space Technol.
– volume: 122
  year: 2019
  ident: b0090
  article-title: Dynamic responses and failure modes of stratified sedimentary rocks
  publication-title: Int. J. Rock Mech. Min. Sci.
– reference: Ma, G.W., Hao, H., Zhou, Y.X., 1998. Modeling of wave propagation induced by under- ground explosion. Computers and Geotechnics. 22 (3–4), 283–303.
– volume: 36
  start-page: 46
  year: 2013
  end-page: 56
  ident: b0040
  article-title: Principles of rock support in burst-prone ground
  publication-title: Tunn. Undergr. Space Technol.
– volume: 43
  start-page: 123
  year: 2014
  end-page: 132
  ident: b0265
  article-title: Safety distance for secondary shotcrete subjected to blasting vibration in jinping-II deep-buried tunnels
  publication-title: Tunn. Undergr. Space Technol.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 18
  ident: b0270
  article-title: Stability of close chambers surrounding rock in deep and comprehensive control technology
  publication-title: Adv. Civil Eng.
– volume: 26
  start-page: 3329
  year: 2007
  end-page: 3334
  ident: b0170
  article-title: Study on vibration characteristics of surrounding rock induced by tunnel excavation under high in-situ stress
  publication-title: Chinese J. Rock Mech. Eng.
– volume: 43
  start-page: 877
  year: 2010
  end-page: 890
  ident: b0030
  article-title: Distinct element modelling in static and dynamic conditions with application to an underground archaeological site
  publication-title: Rock Mech. Rock Eng.
– reference: UDEC Manual., 2005. Version 4.0. Itasca Consulting Group, Inc.
– volume: 1
  start-page: 11
  year: 1971
  end-page: 18
  ident: b0065
  article-title: A computer model for simulating progressive, large-scale movements in blocky rock systems
  publication-title: Sympos. Int. Soc. Rock Mech.
– start-page: 1
  year: 2017
  end-page: 59
  ident: b0275
  article-title: A rapid and non-destructive method to determine normal and shear stiffness of a single rock joint based on one-dimensional wave propagation theory
  publication-title: Geophysics
– volume: 65
  start-page: 215
  year: 2017
  end-page: 224
  ident: b0175
  article-title: Mechanical behavior of rock-shotcrete interface under static and dynamic tensile loads
  publication-title: Tunn. Undergr. Space Technol.
– reference: Hudson, J.A, Harrison, J.P., 1997. Engineering rock mechanics: An introduction to the principles. Elsevier Science, PP. 41-69.
– volume: 21
  start-page: 85
  year: 2001
  end-page: 98
  ident: b0110
  article-title: Characteristics of surface ground motions induced by blasts in jointed rock mass
  publication-title: Soil Dyn. Earthq. Eng.
– volume: 82
  start-page: 442
  year: 2018
  end-page: 454
  ident: b0310
  article-title: Decoupled explosion in an underground opening and dynamic responses of surrounding rock masses and structures and induced ground motions: a FEM-DEM numerical study
  publication-title: Tunn. Undergr. Space Technol.
– volume: 49
  start-page: 3935
  year: 2016
  end-page: 3946
  ident: b0305
  article-title: Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses
  publication-title: Rock Mech. Rock Eng.
– reference: Hoddeson, L., Henriksen, P. W., Meade, R. A., Westfall, C., Neushul, P., 2004. Critical assembly: A technical history of Los Alamos during the oppenheimer years, 1943-1945, Cambridge University Press.
– volume: 37
  start-page: 661
  issue: 4
  year: 2000
  ident: 10.1016/j.tust.2020.103648_b0035
  article-title: Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/S1365-1609(00)00013-7
– volume: 34
  start-page: 117
  issue: 1
  year: 1997
  ident: 10.1016/j.tust.2020.103648_b0225
  article-title: The disturbed zone around tunnels in jointed rock masses
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/S1365-1609(97)80037-8
– volume: 49
  start-page: 3935
  year: 2016
  ident: 10.1016/j.tust.2020.103648_b0305
  article-title: Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-016-0993-1
– volume: 34
  start-page: 1723
  issue: 6
  year: 2016
  ident: 10.1016/j.tust.2020.103648_b0155
  article-title: Laboratory estimation of rock joint stiffness and frictional parameters
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-016-9984-y
– volume: 54
  start-page: 66
  issue: 11
  year: 2013
  ident: 10.1016/j.tust.2020.103648_b0210
  article-title: A numerical study of the behavior of fully grouted rockbolts under dynamic loading
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2013.08.003
– volume: 49
  start-page: 4213
  issue: 11
  year: 2016
  ident: 10.1016/j.tust.2020.103648_b0220
  article-title: Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-016-1041-x
– volume: 21
  start-page: 85
  issue: 2
  year: 2001
  ident: 10.1016/j.tust.2020.103648_b0110
  article-title: Characteristics of surface ground motions induced by blasts in jointed rock mass
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/S0267-7261(00)00104-4
– volume: 122
  year: 2019
  ident: 10.1016/j.tust.2020.103648_b0090
  article-title: Dynamic responses and failure modes of stratified sedimentary rocks
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2019.104060
– volume: 35
  start-page: 97
  issue: 1
  year: 2008
  ident: 10.1016/j.tust.2020.103648_b0290
  article-title: UDEC modelling on wave propagation across fractured rock masses
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2007.01.001
– ident: 10.1016/j.tust.2020.103648_b0085
– ident: 10.1016/j.tust.2020.103648_b0200
  doi: 10.1016/S0141-0296(99)00072-3
– volume: 45
  start-page: 83
  year: 2012
  ident: 10.1016/j.tust.2020.103648_b0235
  article-title: Characteristics of the unloading process of rocks under high initial stress
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2012.05.002
– volume: 43
  start-page: 123
  year: 2014
  ident: 10.1016/j.tust.2020.103648_b0265
  article-title: Safety distance for secondary shotcrete subjected to blasting vibration in jinping-II deep-buried tunnels
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2014.04.008
– volume: 65
  start-page: 215
  year: 2017
  ident: 10.1016/j.tust.2020.103648_b0175
  article-title: Mechanical behavior of rock-shotcrete interface under static and dynamic tensile loads
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2017.03.005
– volume: 74
  start-page: 427
  issue: 2
  year: 2015
  ident: 10.1016/j.tust.2020.103648_b0245
  article-title: Weathering effects on discontinuity properties in sandstone in a tropical environment: case study at Kota Kinabalu. Sabah Malaysia
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-014-0625-5
– ident: 10.1016/j.tust.2020.103648_b0095
– volume: 35
  start-page: 227
  issue: 35
  year: 2013
  ident: 10.1016/j.tust.2020.103648_b0165
  article-title: Assessment of underground tunnel stability to adjacent tunnel explosion
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2012.07.005
– ident: 10.1016/j.tust.2020.103648_b0135
  doi: 10.1016/B978-008043864-1/50005-7
– volume: 35
  start-page: 45
  issue: 1
  year: 2017
  ident: 10.1016/j.tust.2020.103648_b0260
  article-title: Rock mass stability investigation around tunnels in an underground mine in USA
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-016-0084-9
– volume: 32
  start-page: 34
  issue: 6
  year: 2012
  ident: 10.1016/j.tust.2020.103648_b0115
  article-title: Deep-hole directional fracturing of thick hard roof for rockburst prevention
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2012.05.002
– ident: 10.1016/j.tust.2020.103648_b0250
– volume: 95
  start-page: 11345
  year: 1990
  ident: 10.1016/j.tust.2020.103648_b0215
  article-title: Anisotropy in seismic velocities and amplitudes from multiple parallel fractures
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB095iB07p11345
– year: 2007
  ident: 10.1016/j.tust.2020.103648_b0145
– ident: 10.1016/j.tust.2020.103648_b0285
– volume: 48
  start-page: 737
  issue: 2
  year: 2015
  ident: 10.1016/j.tust.2020.103648_b0075
  article-title: UDEC–AUTODYN hybrid modeling of a large-scale underground explosion test
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-014-0600-2
– ident: 10.1016/j.tust.2020.103648_b0140
  doi: 10.1016/0148-9062(78)90979-8
– volume: 4
  start-page: 113
  issue: 3
  year: 1984
  ident: 10.1016/j.tust.2020.103648_b0080
  article-title: Estimating earthquake damage from explosion testing of full-scale tunnels
  publication-title: Adv. Tunnell. Technol. Subsurface Use
– volume: 1
  start-page: 11
  issue: ii-b
  year: 1971
  ident: 10.1016/j.tust.2020.103648_b0065
  article-title: A computer model for simulating progressive, large-scale movements in blocky rock systems
  publication-title: Sympos. Int. Soc. Rock Mech.
– ident: 10.1016/j.tust.2020.103648_b0105
– ident: 10.1016/j.tust.2020.103648_b0130
– ident: 10.1016/j.tust.2020.103648_b0120
– volume: 34
  start-page: 1185
  issue: 8
  year: 1986
  ident: 10.1016/j.tust.2020.103648_b0150
  article-title: Experimental studies of elastic-wave propagation in a columnar-jointed rock mass
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.1986.tb00522.x
– volume: 99
  start-page: 421
  year: 1973
  ident: 10.1016/j.tust.2020.103648_b0185
  article-title: Finite element method accuracy for wave propagation problems
  publication-title: J. Soil Mech. Foundat. Div.
  doi: 10.1061/JSFEAQ.0001885
– volume: 46
  start-page: 1429
  issue: 6
  year: 2013
  ident: 10.1016/j.tust.2020.103648_b0300
  article-title: A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-012-0352-9
– volume: 95
  start-page: 859
  issue: 4
  year: 1969
  ident: 10.1016/j.tust.2020.103648_b0180
  article-title: Finite dynamic model for infinite media
  publication-title: J. Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0001144
– volume: 43
  start-page: 88
  issue: 6
  year: 2014
  ident: 10.1016/j.tust.2020.103648_b0070
  article-title: Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2014.04.004
– volume: 53
  start-page: 78
  year: 2016
  ident: 10.1016/j.tust.2020.103648_b0050
  article-title: Vibrations induced by high initial stress release during underground excavations
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2016.01.017
– ident: 10.1016/j.tust.2020.103648_b0005
– volume: 43
  start-page: 877
  issue: 6
  year: 2010
  ident: 10.1016/j.tust.2020.103648_b0030
  article-title: Distinct element modelling in static and dynamic conditions with application to an underground archaeological site
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-010-0106-5
– volume: 29
  start-page: 529
  year: 2019
  ident: 10.1016/j.tust.2020.103648_b0045
  article-title: Rock support in strainburst-prone ground
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2019.06.008
– ident: 10.1016/j.tust.2020.103648_b0295
– ident: 10.1016/j.tust.2020.103648_b0190
  doi: 10.1016/S0266-352X(98)00011-1
– volume: 49
  start-page: 9
  year: 2015
  ident: 10.1016/j.tust.2020.103648_b0100
  article-title: Transient characters of energy changes induced by blasting excavation of deep-buried tunnels
  publication-title: Tunnell. Undergr. Space Technol. Incorporat. Trenchless Technol. Res.
  doi: 10.1016/j.tust.2015.04.003
– volume: 43
  start-page: 857
  issue: 6
  year: 2010
  ident: 10.1016/j.tust.2020.103648_b0025
  article-title: Response and stability of underground structures in rock mass during earthquakes
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-010-0105-6
– ident: 10.1016/j.tust.2020.103648_b0020
– ident: 10.1016/j.tust.2020.103648_b0230
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.tust.2020.103648_b0270
  article-title: Stability of close chambers surrounding rock in deep and comprehensive control technology
  publication-title: Adv. Civil Eng.
  doi: 10.1155/2018/6275941
– start-page: 1
  year: 2017
  ident: 10.1016/j.tust.2020.103648_b0275
  article-title: A rapid and non-destructive method to determine normal and shear stiffness of a single rock joint based on one-dimensional wave propagation theory
  publication-title: Geophysics
– volume: 47
  start-page: 396
  issue: 3
  year: 2010
  ident: 10.1016/j.tust.2020.103648_b0160
  article-title: A new energy-absorbing bolt for rock support in high stress rock masses
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2010.01.005
– volume: 46
  start-page: 514
  issue: 3
  year: 2009
  ident: 10.1016/j.tust.2020.103648_b0015
  article-title: Dynamic behavior of a mediterranean natural stone under tensile loading
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2008.09.010
– volume: 26
  start-page: 3329
  issue: a01
  year: 2007
  ident: 10.1016/j.tust.2020.103648_b0170
  article-title: Study on vibration characteristics of surrounding rock induced by tunnel excavation under high in-situ stress
  publication-title: Chinese J. Rock Mech. Eng.
– volume: 82
  start-page: 442
  year: 2018
  ident: 10.1016/j.tust.2020.103648_b0310
  article-title: Decoupled explosion in an underground opening and dynamic responses of surrounding rock masses and structures and induced ground motions: a FEM-DEM numerical study
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2018.08.057
– volume: 35
  start-page: 93
  issue: 1
  year: 1998
  ident: 10.1016/j.tust.2020.103648_b0060
  article-title: A study of UDEC modelling for blast wave propagation in jointed rock masses
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/S0148-9062(97)00322-7
– volume: 322
  start-page: 727
  year: 2008
  ident: 10.1016/j.tust.2020.103648_b0010
  article-title: Trampoline effect in extreme ground motion
  publication-title: Science
  doi: 10.1126/science.1163113
– volume: 20
  start-page: 933
  issue: 2
  year: 2016
  ident: 10.1016/j.tust.2020.103648_b0055
  article-title: Blasting excavation induced damage of surrounding rock masses in deep-buried tunnels
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-015-0480-3
– volume: 54
  start-page: 33
  issue: 10
  year: 2013
  ident: 10.1016/j.tust.2020.103648_b0240
  article-title: 3D numerical model for dynamic loading-induced multiple fracture zones around underground cavity faces
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2013.06.002
– volume: 38
  start-page: 92
  year: 2014
  ident: 10.1016/j.tust.2020.103648_b0280
  article-title: Application of the numerical manifold method for stress wave propagation across rock masses
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.2209
– volume: 36
  start-page: 46
  year: 2013
  ident: 10.1016/j.tust.2020.103648_b0040
  article-title: Principles of rock support in burst-prone ground
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2013.02.003
– volume: 48
  start-page: 883
  issue: 3
  year: 2015
  ident: 10.1016/j.tust.2020.103648_b0125
  article-title: Assessing the shear strength of rock discontinuities at laboratory and field scales
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-014-0633-6
SSID ssj0005229
Score 2.4800055
Snippet •Extension/compression-first wave transmission differs owing to joint opening.•Joint tensile strength determines stress wave propagation under dynamic...
Rock joints are prone to open and fail when subject to severe dynamic extension, which might result in spalling of surrounding rock and collapse of underground...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103648
SubjectTerms Dynamic extension
Dynamic response
Jointed rock
Longitudinal waves
Propagation
Rock bolts
Rock joint
Rock masses
Rocks
Spalling
Stability analysis
Stiffness
Stress propagation
Stress waves
Supporting
Tensile strength
Tensile stress
Underground construction
Underground opening
Wave power
Wave propagation
Title Stress wave propagation across jointed rock mass under dynamic extension and its effect on dynamic response and supporting of underground opening
URI https://dx.doi.org/10.1016/j.tust.2020.103648
https://www.proquest.com/docview/2491613418
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEYUSQ_ezAql-6BHQiSokQuSeGu63TbBBxBY9OZ_8B870-4aNIaDt0132m463Zlp830zhFxwCyZPCRakociCMOFhILSFJw7eNOFRzA1eDdwP48E4vH2MHiukV3JhEFZZ2H5v0521LlqaxWo255NJcwT_R5wkAlwYhL1wukIGe5jgLr_6WId5uEplKBygdEGc8RivHGkNcPx33PMYawD97Zx-mWnne_p7ZLcIGmnXf9c-qZjpAdlZSyV4SD5HjvRB39WboTAO2Am35lS5qejTDBNDZBT81TN9hYiZIntsQTNfkZ66y_Cl6zDN6CRfUo_0oNBSyiw8ntY4keVqjqE7TE5n1g-GDBF4gwW5oPmIjPvXD71BUJRbCBSPWI5AjbbOuAoZ07yVMqGR4SSEzcC9McNaqWDa6lQr3elwo2KhYmNTiDlYK2sry49JdTqbmhNCWWq51mArRCzCxAisaJ4lMIFtp1GHxzXCynWWushFjiUxXmQJOnuSqBuJupFeNzVy-d1n7jNxbJSOSvXJH_tJgqvY2K9e6loWf_NSwhEVAmPw953Tfw57RrbbCIZxcO86qeaLlTmHaCZPG267NshW9-ZuMPwCE_T2YQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB3R5EA5oLaASklbH3qrVonX-xEfEQKFJuQCSNwsr9eWAjSJkgV-B_-4M7YXAUIcelt5PfbK450ZW-_NAPwSDk2eljypMlknWSmyRBqHTwK9aSnyQli6GjibFqPL7M9VfrUBRy0XhmCV0fYHm-6tdWzpx9XsL2ez_jn-H0VZSnRhGPbi6eoDdCk7Vd6B7uHpeDR9hvTwxcqof0ICkTsTYF4NMRtSDJqIfl5QGaC3_dMrS-3dz8kn2I5xIzsMn_YZNuz8C2w9yya4A4_nnvfBHvS9ZTgOmgq_7Ez7qdj1gnJD1Axd1g37i0EzIwLZitWhKD3z9-FrLzCv2axZswD2YNjS9lkFSK31XdZ3S4recXK2cGEwIongG6rJhc27cHlyfHE0SmLFhUSLnDeE1UhNLXTGuRGDiktDJCcpXY0ejls-qCQ3zlRGm-FQWF1IXVhXYdjBB3WqndiDznwxt1-B8coJY9BcyEJmpZVU1LwucQKXVvlQFPvA23VWJqYjp6oYt6rFnV0r0o0i3aigm334_SSzDMk43u2dt-pTL7aUQm_xrlyv1bWKP_Ra4SkVY2N0-cNv_znsT9gcXZxN1OR0Oj6AjylhYzz6uwedZnVnv2Nw01Q_4ub9B33e-RI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+wave+propagation+across+jointed+rock+mass+under+dynamic+extension+and+its+effect+on+dynamic+response+and+supporting+of+underground+opening&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Zhu%2C+Jianbo&rft.au=Li%2C+Yashi&rft.au=Peng%2C+Qi&rft.au=Deng%2C+Xifei&rft.date=2021-02-01&rft.issn=0886-7798&rft.volume=108&rft.spage=103648&rft_id=info:doi/10.1016%2Fj.tust.2020.103648&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tust_2020_103648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon