Stress wave propagation across jointed rock mass under dynamic extension and its effect on dynamic response and supporting of underground opening
•Extension/compression-first wave transmission differs owing to joint opening.•Joint tensile strength determines stress wave propagation under dynamic extension.•Rock bolt and shotcrete lining effectively support opening against dynamic extension. Rock joints are prone to open and fail when subject...
Saved in:
Published in | Tunnelling and underground space technology Vol. 108; p. 103648 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Extension/compression-first wave transmission differs owing to joint opening.•Joint tensile strength determines stress wave propagation under dynamic extension.•Rock bolt and shotcrete lining effectively support opening against dynamic extension.
Rock joints are prone to open and fail when subject to severe dynamic extension, which might result in spalling of surrounding rock and collapse of underground openings. However, the understanding of dynamic response of rock joints and underground openings subject to tensile stress wave is still at its infancy. To investigate the effect of tensile wave on the response, stability and supporting of underground openings in jointed rock mass, numerical modelling was carried out herein with the DEM-based universal distinct element code (UDEC) after its validation using explosion testing measurements. Results showed that joint tensile strength has significant effects on stress wave propagation if it is lower than the amplitude of tensile stress wave in the shallow rock mass, where joint opening will occur, no significant portion of wave energy could transmit through the joint, and the transmission coefficient for tension-first wave is lower than that for compression-first wave. The buried depth of underground opening and joint properties including stiffness, spacing and dip angle as well as crossing angle between joint sets could significantly influence stress wave propagation and dynamic responses of underground openings under dynamic extension. In addition, installation of rock bolts with appropriate number and length and shotcreting with sufficient thickness could effectively reinforce the surrounding rock and reduce the area of disturbed zones when against dynamic extension. The findings in this study could be of great significance for the design, supporting and stability evaluation of underground openings. |
---|---|
AbstractList | •Extension/compression-first wave transmission differs owing to joint opening.•Joint tensile strength determines stress wave propagation under dynamic extension.•Rock bolt and shotcrete lining effectively support opening against dynamic extension.
Rock joints are prone to open and fail when subject to severe dynamic extension, which might result in spalling of surrounding rock and collapse of underground openings. However, the understanding of dynamic response of rock joints and underground openings subject to tensile stress wave is still at its infancy. To investigate the effect of tensile wave on the response, stability and supporting of underground openings in jointed rock mass, numerical modelling was carried out herein with the DEM-based universal distinct element code (UDEC) after its validation using explosion testing measurements. Results showed that joint tensile strength has significant effects on stress wave propagation if it is lower than the amplitude of tensile stress wave in the shallow rock mass, where joint opening will occur, no significant portion of wave energy could transmit through the joint, and the transmission coefficient for tension-first wave is lower than that for compression-first wave. The buried depth of underground opening and joint properties including stiffness, spacing and dip angle as well as crossing angle between joint sets could significantly influence stress wave propagation and dynamic responses of underground openings under dynamic extension. In addition, installation of rock bolts with appropriate number and length and shotcreting with sufficient thickness could effectively reinforce the surrounding rock and reduce the area of disturbed zones when against dynamic extension. The findings in this study could be of great significance for the design, supporting and stability evaluation of underground openings. Rock joints are prone to open and fail when subject to severe dynamic extension, which might result in spalling of surrounding rock and collapse of underground openings. However, the understanding of dynamic response of rock joints and underground openings subject to tensile stress wave is still at its infancy. To investigate the effect of tensile wave on the response, stability and supporting of underground openings in jointed rock mass, numerical modelling was carried out herein with the DEM-based universal distinct element code (UDEC) after its validation using explosion testing measurements. Results showed that joint tensile strength has significant effects on stress wave propagation if it is lower than the amplitude of tensile stress wave in the shallow rock mass, where joint opening will occur, no significant portion of wave energy could transmit through the joint, and the transmission coefficient for tension-first wave is lower than that for compression-first wave. The buried depth of underground opening and joint properties including stiffness, spacing and dip angle as well as crossing angle between joint sets could significantly influence stress wave propagation and dynamic responses of underground openings under dynamic extension. In addition, installation of rock bolts with appropriate number and length and shotcreting with sufficient thickness could effectively reinforce the surrounding rock and reduce the area of disturbed zones when against dynamic extension. The findings in this study could be of great significance for the design, supporting and stability evaluation of underground openings. |
ArticleNumber | 103648 |
Author | Gao, Mingzhong Peng, Qi Deng, Xifei Zhang, Jianguo Li, Yashi Zhu, Jianbo |
Author_xml | – sequence: 1 givenname: Jianbo surname: Zhu fullname: Zhu, Jianbo email: jbzhu@tju.edu.cn organization: State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Yashi surname: Li fullname: Li, Yashi organization: State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: Qi surname: Peng fullname: Peng, Qi organization: Shenzhen Municipal Design and Research Institute, Shenzhen, China – sequence: 4 givenname: Xifei surname: Deng fullname: Deng, Xifei organization: China Tiesiju Civil Engineering Group Co. Ltd., Hefei, China – sequence: 5 givenname: Mingzhong surname: Gao fullname: Gao, Mingzhong organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China – sequence: 6 givenname: Jianguo surname: Zhang fullname: Zhang, Jianguo organization: State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, China Pingmei Shenma Group, Pingdingshan 467000, China |
BookMark | eNp9kctqHDEQRUWwIePHD2QlyLonKnVPjwTZBBMnAYMXttdCI5UGdTxSR1L78Rn-Y2umnY0XXhV1uaeKqntCjkIMSMgXYEtg0H8blmXKZckZ3wtt34lPZAFiLZquNkdkwYTom_Vais_kJOeBMbbiXC7Iy01JmDN91A9IxxRHvdXFx0C1SbHqQ_ShoKUpmr90p6syBYuJ2uegd95QfCoY8gEIlvqSKTqHptCq_PfUBWMMGQ-WPI1jTMWHLY1uHrZNsVYaRwxVPiPHTt9nPH-rp-Tu8uftxe_m6vrXn4sfV41uV1AayYAb2-oOwLRsA9KwFqSUznLggMA2EowzG6ONEC3qXuoe3YatV8As1649JV_nufXqfxPmooY4pVBXKt5J6KHtQFSXmF2HdyR0yvhy-FBJ2t8rYGofgBrUPgC1D0DNAVSUv0PH5Hc6PX8MfZ8hrKc_eEwqG4_BoPWpvlXZ6D_CXwHs_KWz |
CitedBy_id | crossref_primary_10_3390_app122010224 crossref_primary_10_1007_s11709_024_1009_y crossref_primary_10_1088_1755_1315_861_3_032067 crossref_primary_10_1007_s12040_024_02342_y crossref_primary_10_1061_IJGNAI_GMENG_9291 crossref_primary_10_1007_s10064_024_03718_6 crossref_primary_10_1007_s00603_023_03286_3 crossref_primary_10_1007_s40571_024_00722_1 crossref_primary_10_1016_j_tust_2022_104416 crossref_primary_10_1016_j_tust_2024_106180 crossref_primary_10_3390_en15093233 crossref_primary_10_1016_j_ijmst_2021_04_003 crossref_primary_10_1016_j_tafmec_2024_104695 crossref_primary_10_1007_s40948_022_00376_4 crossref_primary_10_1061__ASCE_MT_1943_5533_0004554 crossref_primary_10_3390_app12189146 crossref_primary_10_1016_j_ijimpeng_2021_103999 crossref_primary_10_3390_app131810275 crossref_primary_10_1007_s13369_024_09437_0 crossref_primary_10_1016_j_tust_2024_105941 crossref_primary_10_1016_j_tust_2024_105620 crossref_primary_10_3389_feart_2022_1112249 crossref_primary_10_1016_j_tust_2023_105060 crossref_primary_10_1016_j_engfailanal_2024_108847 crossref_primary_10_1016_j_tust_2024_106132 crossref_primary_10_3390_su15021711 crossref_primary_10_1016_j_simpat_2024_102975 crossref_primary_10_1016_j_ijrmms_2021_104959 crossref_primary_10_1061_IJGNAI_GMENG_9430 crossref_primary_10_1038_s41598_022_24128_2 crossref_primary_10_1061_IJGNAI_GMENG_7958 crossref_primary_10_3390_math12091346 crossref_primary_10_1007_s40948_023_00594_4 crossref_primary_10_1007_s00603_023_03696_3 crossref_primary_10_1155_2021_9985774 |
Cites_doi | 10.1016/S1365-1609(00)00013-7 10.1016/S1365-1609(97)80037-8 10.1007/s00603-016-0993-1 10.1007/s10706-016-9984-y 10.1016/j.soildyn.2013.08.003 10.1007/s00603-016-1041-x 10.1016/S0267-7261(00)00104-4 10.1016/j.ijrmms.2019.104060 10.1016/j.compgeo.2007.01.001 10.1016/S0141-0296(99)00072-3 10.1016/j.compgeo.2012.05.002 10.1016/j.tust.2014.04.008 10.1016/j.tust.2017.03.005 10.1007/s10064-014-0625-5 10.1016/j.tust.2012.07.005 10.1016/B978-008043864-1/50005-7 10.1007/s10706-016-0084-9 10.1016/j.tust.2012.05.002 10.1029/JB095iB07p11345 10.1007/s00603-014-0600-2 10.1016/0148-9062(78)90979-8 10.1111/j.1365-2478.1986.tb00522.x 10.1061/JSFEAQ.0001885 10.1007/s00603-012-0352-9 10.1061/JMCEA3.0001144 10.1016/j.tust.2014.04.004 10.1016/j.tust.2016.01.017 10.1007/s00603-010-0106-5 10.1016/j.ijmst.2019.06.008 10.1016/S0266-352X(98)00011-1 10.1016/j.tust.2015.04.003 10.1007/s00603-010-0105-6 10.1155/2018/6275941 10.1016/j.ijrmms.2010.01.005 10.1016/j.ijrmms.2008.09.010 10.1016/j.tust.2018.08.057 10.1016/S0148-9062(97)00322-7 10.1126/science.1163113 10.1007/s12205-015-0480-3 10.1016/j.compgeo.2013.06.002 10.1002/nag.2209 10.1016/j.tust.2013.02.003 10.1007/s00603-014-0633-6 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Feb 2021 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Feb 2021 |
DBID | AAYXX CITATION 8FD FR3 KR7 |
DOI | 10.1016/j.tust.2020.103648 |
DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-4364 |
ExternalDocumentID | 10_1016_j_tust_2020_103648 S0886779820306027 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SST SSZ T5K WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-a351t-9012cd3a411c30b19c031999fd2121e10b91cfcbcac883ea69a6efb07510d2af3 |
IEDL.DBID | .~1 |
ISSN | 0886-7798 |
IngestDate | Fri Jul 25 03:41:29 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Tue Jul 01 01:06:28 EDT 2025 Fri Feb 23 02:48:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rock joint Supporting Dynamic extension Wave propagation Underground opening |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a351t-9012cd3a411c30b19c031999fd2121e10b91cfcbcac883ea69a6efb07510d2af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2491613418 |
PQPubID | 2045384 |
ParticipantIDs | proquest_journals_2491613418 crossref_citationtrail_10_1016_j_tust_2020_103648 crossref_primary_10_1016_j_tust_2020_103648 elsevier_sciencedirect_doi_10_1016_j_tust_2020_103648 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Tunnelling and underground space technology |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zhao, X.B., 2004. Theoretical and numerical studies of wave attenuation across parallel fractures. PhD Thesis. Nanyang Technological University, Singapore. Hoddeson, L., Henriksen, P. W., Meade, R. A., Westfall, C., Neushul, P., 2004. Critical assembly: A technical history of Los Alamos during the oppenheimer years, 1943-1945, Cambridge University Press. Luo, Li, Tao, Dong (b0175) 2017; 65 Barla, Monacis, Perino, Hatzor (b0030) 2010; 43 Cai (b0040) 2013; 36 He, Dou, Fan, Du, Sun (b0115) 2012; 32 Li, Li, Ma, Zhou (b0165) 2013; 35 Cai, Zhao (b0035) 2000; 37 Ma, G.W., Hao, H., Zhou, Y.X., 1998. Modeling of wave propagation induced by under- ground explosion. Computers and Geotechnics. 22 (3–4), 283–303. Deng, Chen, Zhu, Zhou, Zhao, Zhao (b0075) 2015; 48 Dowding (b0080) 1984; 4 Xing, Kulatilake, Sandbak (b0260) 2017; 35 UDEC Manual., 2005. Version 4.0. Itasca Consulting Group, Inc. Lu, Chen, Yan, Zhou (b0170) 2007; 26 Hansson, H., Forsén, R., 1997. Mitigation effects of water on ground shock: Large scale testing in Älvdalen, FOA-R--97-00510-311--SE, FOA, Tumba. Zhu, Deng, Zhao, Zhao (b0300) 2013; 46 Tating, Hack, Jetten (b0245) 2015; 74 Cundall (b0065) 1971; 1 King, Myer, Rezowalli (b0150) 1986; 34 Tang, C.A., Liao, Z.Y., 2018. Spalling in extreme ground motion and evidence from the 2008 Wenchuan earthquake. Rock Dynamics and Applications 3: Proceedings of the 3rd International Conference on Rock Dynamics and Applications (RocDyn-3), Trondheim, Norway. Zhao, Zhao, Zhu (b0280) 2014; 38 Yang, Lu, Zhao, Yan, Chen (b0265) 2014; 43 Yu, Liu (b0270) 2018; 2018 Zhu, Liao, Tang (b0305) 2016; 49 Shang, Hencher, West (b0220) 2016; 49 Fan, Lu, Yan, Chen, Zhang (b0100) 2015; 49 Cai (b0045) 2019; 29 Asprone, Cadoni, Prota, Manfredi (b0015) 2009; 46 Hao, Wu, Ma, Zhou (b0110) 2001; 21 Mortazavi, Alavi (b0210) 2013; 54 Aoi, Kunugi, Fujiwara (b0010) 2008; 322 Cao, Li, Tao, Zhou (b0050) 2016; 53 Hudson, J.A, Harrison, J.P., 1997. Engineering rock mechanics: An introduction to the principles. Elsevier Science, PP. 41-69. Goodman, R.E., 1989. Introduction to Rock Mechanics (Second Edition). Wiley India Pvt. Ltd., New Delhi. Hendron, A.J., 1977. Engineering of rock blasting on civil projects. In: Hall, W. J., (ed.). Structural and Geotechnical Mechanics: A Volume Honoring N. M. Newmark. Englewood Cliffs, Prentice-Hall, New Jersey, 242–277. Tao, Li, Wu (b0235) 2012; 45 Zhang, Deng, Zhu (b0275) 2017 Pyrak-Nolte, Myer, Cook (b0215) 1990; 95 Zhu, Li, Wu (b0310) 2018; 82 Zhou, Y.X., Zhao, J., 2011. Explosion Loading and Tunnel Response. In: Zhou, Y.X., Zhao., J., (Eds.). Advances in rock dynamics and applications. Taylor and Francis Group, London, 457–481. Chen, Zhao (b0060) 1998; 35 Ma, G.W., Hao, H., Zhou, Y.X., 2000. Assessment of structure damage to blasting induced ground motions. Engineering Structures. 22 (10), 1378–1389. Deng, Zhu, Chen, Zhao, Zhou, Zhao (b0070) 2014; 43 Achenbach, J.D., 1973.Wave propagation in elastic solids. North-Holland Publishing Company - Amsterdam, London, American Elsevier Publishing Company, Inc., New York. Duan, Li, Wang, Zhao, Wu (b0090) 2019; 122 Tao, Li, Wu (b0240) 2013; 54 Dowding, C. H., 1985. Restrained response: tunnels, pipelines, and basement walls. In: Dowding, C. H., (ed.). Blast vibration monitoring and control. Englewood Cliffs, Prentice Hall, New Jersy, 166-176. AUTODYN User Manual, 2005. Version 6.1. Century dynamics. Lysmer, Kuhlemeyer (b0185) 1973; 99 Li (b0160) 2010; 47 Lysmer, Kuhlemeyer (b0180) 1969; 95 Aydan, Ohta, Geniş, Tokashiki, Ohkubo (b0025) 2010; 43 Chen, Lu, Yan, Hu (b0055) 2016; 20 Zhao, Zhao, Cai, Hefny (b0290) 2008; 35 Shen, Barton (b0225) 1997; 34 Kulatilake, Shreedharan, Sherizadeh, Shu, Xing, He (b0155) 2016; 34 ISRM, 1978. Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 15, 319–368. Hencher, Richards (b0125) 2015; 48 Jaeger, Cook, Zimmerman (b0145) 2007 He (10.1016/j.tust.2020.103648_b0115) 2012; 32 10.1016/j.tust.2020.103648_b0105 Cai (10.1016/j.tust.2020.103648_b0035) 2000; 37 Li (10.1016/j.tust.2020.103648_b0165) 2013; 35 Zhao (10.1016/j.tust.2020.103648_b0290) 2008; 35 Hencher (10.1016/j.tust.2020.103648_b0125) 2015; 48 Li (10.1016/j.tust.2020.103648_b0160) 2010; 47 King (10.1016/j.tust.2020.103648_b0150) 1986; 34 Deng (10.1016/j.tust.2020.103648_b0075) 2015; 48 10.1016/j.tust.2020.103648_b0140 10.1016/j.tust.2020.103648_b0020 Cai (10.1016/j.tust.2020.103648_b0040) 2013; 36 Cai (10.1016/j.tust.2020.103648_b0045) 2019; 29 Lu (10.1016/j.tust.2020.103648_b0170) 2007; 26 Tating (10.1016/j.tust.2020.103648_b0245) 2015; 74 Fan (10.1016/j.tust.2020.103648_b0100) 2015; 49 Cao (10.1016/j.tust.2020.103648_b0050) 2016; 53 10.1016/j.tust.2020.103648_b0135 Zhao (10.1016/j.tust.2020.103648_b0280) 2014; 38 Chen (10.1016/j.tust.2020.103648_b0055) 2016; 20 Zhu (10.1016/j.tust.2020.103648_b0300) 2013; 46 Yang (10.1016/j.tust.2020.103648_b0265) 2014; 43 10.1016/j.tust.2020.103648_b0250 10.1016/j.tust.2020.103648_b0130 10.1016/j.tust.2020.103648_b0295 Zhu (10.1016/j.tust.2020.103648_b0305) 2016; 49 10.1016/j.tust.2020.103648_b0095 Lysmer (10.1016/j.tust.2020.103648_b0185) 1973; 99 Xing (10.1016/j.tust.2020.103648_b0260) 2017; 35 10.1016/j.tust.2020.103648_b0005 Shang (10.1016/j.tust.2020.103648_b0220) 2016; 49 Deng (10.1016/j.tust.2020.103648_b0070) 2014; 43 Kulatilake (10.1016/j.tust.2020.103648_b0155) 2016; 34 10.1016/j.tust.2020.103648_b0200 Pyrak-Nolte (10.1016/j.tust.2020.103648_b0215) 1990; 95 Aydan (10.1016/j.tust.2020.103648_b0025) 2010; 43 Hao (10.1016/j.tust.2020.103648_b0110) 2001; 21 Cundall (10.1016/j.tust.2020.103648_b0065) 1971; 1 10.1016/j.tust.2020.103648_b0085 Aoi (10.1016/j.tust.2020.103648_b0010) 2008; 322 Tao (10.1016/j.tust.2020.103648_b0240) 2013; 54 10.1016/j.tust.2020.103648_b0120 Tao (10.1016/j.tust.2020.103648_b0235) 2012; 45 Zhang (10.1016/j.tust.2020.103648_b0275) 2017 10.1016/j.tust.2020.103648_b0285 Jaeger (10.1016/j.tust.2020.103648_b0145) 2007 Zhu (10.1016/j.tust.2020.103648_b0310) 2018; 82 Barla (10.1016/j.tust.2020.103648_b0030) 2010; 43 Mortazavi (10.1016/j.tust.2020.103648_b0210) 2013; 54 Luo (10.1016/j.tust.2020.103648_b0175) 2017; 65 Duan (10.1016/j.tust.2020.103648_b0090) 2019; 122 Shen (10.1016/j.tust.2020.103648_b0225) 1997; 34 10.1016/j.tust.2020.103648_b0190 Yu (10.1016/j.tust.2020.103648_b0270) 2018; 2018 Dowding (10.1016/j.tust.2020.103648_b0080) 1984; 4 Chen (10.1016/j.tust.2020.103648_b0060) 1998; 35 Lysmer (10.1016/j.tust.2020.103648_b0180) 1969; 95 10.1016/j.tust.2020.103648_b0230 Asprone (10.1016/j.tust.2020.103648_b0015) 2009; 46 |
References_xml | – volume: 34 start-page: 1185 year: 1986 end-page: 1199 ident: b0150 article-title: Experimental studies of elastic-wave propagation in a columnar-jointed rock mass publication-title: Geophys. Prospect. – reference: Tang, C.A., Liao, Z.Y., 2018. Spalling in extreme ground motion and evidence from the 2008 Wenchuan earthquake. Rock Dynamics and Applications 3: Proceedings of the 3rd International Conference on Rock Dynamics and Applications (RocDyn-3), Trondheim, Norway. – volume: 4 start-page: 113 year: 1984 end-page: 119 ident: b0080 article-title: Estimating earthquake damage from explosion testing of full-scale tunnels publication-title: Adv. Tunnell. Technol. Subsurface Use – volume: 99 start-page: 421 year: 1973 end-page: 427 ident: b0185 article-title: Finite element method accuracy for wave propagation problems publication-title: J. Soil Mech. Foundat. Div. – volume: 43 start-page: 857 year: 2010 end-page: 875 ident: b0025 article-title: Response and stability of underground structures in rock mass during earthquakes publication-title: Rock Mech. Rock Eng. – volume: 34 start-page: 1723 year: 2016 end-page: 1735 ident: b0155 article-title: Laboratory estimation of rock joint stiffness and frictional parameters publication-title: Geotech. Geol. Eng. – reference: Zhou, Y.X., Zhao, J., 2011. Explosion Loading and Tunnel Response. In: Zhou, Y.X., Zhao., J., (Eds.). Advances in rock dynamics and applications. Taylor and Francis Group, London, 457–481. – volume: 35 start-page: 97 year: 2008 end-page: 104 ident: b0290 article-title: UDEC modelling on wave propagation across fractured rock masses publication-title: Comput. Geotech. – volume: 48 start-page: 883 year: 2015 end-page: 905 ident: b0125 article-title: Assessing the shear strength of rock discontinuities at laboratory and field scales publication-title: Rock Mech. Rock Eng. – reference: AUTODYN User Manual, 2005. Version 6.1. Century dynamics. – volume: 47 start-page: 396 year: 2010 end-page: 404 ident: b0160 article-title: A new energy-absorbing bolt for rock support in high stress rock masses publication-title: Int. J. Rock Mech. Min. Sci. – reference: Achenbach, J.D., 1973.Wave propagation in elastic solids. North-Holland Publishing Company - Amsterdam, London, American Elsevier Publishing Company, Inc., New York. – volume: 38 start-page: 92 year: 2014 end-page: 110 ident: b0280 article-title: Application of the numerical manifold method for stress wave propagation across rock masses publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 45 start-page: 83 year: 2012 end-page: 92 ident: b0235 article-title: Characteristics of the unloading process of rocks under high initial stress publication-title: Comput. Geotech. – volume: 322 start-page: 727 year: 2008 end-page: 730 ident: b0010 article-title: Trampoline effect in extreme ground motion publication-title: Science – volume: 35 start-page: 227 year: 2013 end-page: 234 ident: b0165 article-title: Assessment of underground tunnel stability to adjacent tunnel explosion publication-title: Tunn. Undergr. Space Technol. – volume: 54 start-page: 33 year: 2013 end-page: 45 ident: b0240 article-title: 3D numerical model for dynamic loading-induced multiple fracture zones around underground cavity faces publication-title: Comput. Geotech. – volume: 20 start-page: 933 year: 2016 end-page: 942 ident: b0055 article-title: Blasting excavation induced damage of surrounding rock masses in deep-buried tunnels publication-title: KSCE J. Civ. Eng. – volume: 54 start-page: 66 year: 2013 end-page: 72 ident: b0210 article-title: A numerical study of the behavior of fully grouted rockbolts under dynamic loading publication-title: Soil Dyn. Earthq. Eng. – volume: 74 start-page: 427 year: 2015 end-page: 441 ident: b0245 article-title: Weathering effects on discontinuity properties in sandstone in a tropical environment: case study at Kota Kinabalu. Sabah Malaysia publication-title: Bull. Eng. Geol. Environ. – volume: 37 start-page: 661 year: 2000 end-page: 682 ident: b0035 article-title: Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses publication-title: Int. J. Rock Mech. Min. Sci. – volume: 35 start-page: 45 year: 2017 end-page: 67 ident: b0260 article-title: Rock mass stability investigation around tunnels in an underground mine in USA publication-title: Geotech. Geol. Eng. – volume: 53 start-page: 78 year: 2016 end-page: 95 ident: b0050 article-title: Vibrations induced by high initial stress release during underground excavations publication-title: Tunn. Undergr. Space Technol. – reference: Hendron, A.J., 1977. Engineering of rock blasting on civil projects. In: Hall, W. J., (ed.). Structural and Geotechnical Mechanics: A Volume Honoring N. M. Newmark. Englewood Cliffs, Prentice-Hall, New Jersey, 242–277. – reference: Ma, G.W., Hao, H., Zhou, Y.X., 2000. Assessment of structure damage to blasting induced ground motions. Engineering Structures. 22 (10), 1378–1389. – volume: 49 start-page: 9 year: 2015 end-page: 17 ident: b0100 article-title: Transient characters of energy changes induced by blasting excavation of deep-buried tunnels publication-title: Tunnell. Undergr. Space Technol. Incorporat. Trenchless Technol. Res. – reference: Dowding, C. H., 1985. Restrained response: tunnels, pipelines, and basement walls. In: Dowding, C. H., (ed.). Blast vibration monitoring and control. Englewood Cliffs, Prentice Hall, New Jersy, 166-176. – volume: 95 start-page: 859 year: 1969 end-page: 878 ident: b0180 article-title: Finite dynamic model for infinite media publication-title: J. Eng. Mech. Div. – volume: 49 start-page: 4213 year: 2016 end-page: 4225 ident: b0220 article-title: Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins publication-title: Rock Mech. Rock Eng. – volume: 46 start-page: 1429 year: 2013 end-page: 1442 ident: b0300 article-title: A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC publication-title: Rock Mech. Rock Eng. – volume: 46 start-page: 514 year: 2009 end-page: 520 ident: b0015 article-title: Dynamic behavior of a mediterranean natural stone under tensile loading publication-title: Int. J. Rock Mech. Min. Sci. – volume: 29 start-page: 529 year: 2019 end-page: 534 ident: b0045 article-title: Rock support in strainburst-prone ground publication-title: Int. J. Min. Sci. Technol. – year: 2007 ident: b0145 article-title: Fundamentals of rock mechanics – volume: 34 start-page: 117 year: 1997 end-page: 125 ident: b0225 article-title: The disturbed zone around tunnels in jointed rock masses publication-title: Int. J. Rock Mech. Min. Sci. – volume: 35 start-page: 93 year: 1998 end-page: 99 ident: b0060 article-title: A study of UDEC modelling for blast wave propagation in jointed rock masses publication-title: Int. J. Rock Mech. Min. Sci. – volume: 95 start-page: 11345 year: 1990 end-page: 11358 ident: b0215 article-title: Anisotropy in seismic velocities and amplitudes from multiple parallel fractures publication-title: J. Geophys. Res. – volume: 43 start-page: 88 year: 2014 end-page: 100 ident: b0070 article-title: Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses publication-title: Tunn. Undergr. Space Technol. – reference: Goodman, R.E., 1989. Introduction to Rock Mechanics (Second Edition). Wiley India Pvt. Ltd., New Delhi. – reference: Hansson, H., Forsén, R., 1997. Mitigation effects of water on ground shock: Large scale testing in Älvdalen, FOA-R--97-00510-311--SE, FOA, Tumba. – reference: ISRM, 1978. Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 15, 319–368. – reference: Zhao, X.B., 2004. Theoretical and numerical studies of wave attenuation across parallel fractures. PhD Thesis. Nanyang Technological University, Singapore. – volume: 48 start-page: 737 year: 2015 end-page: 747 ident: b0075 article-title: UDEC–AUTODYN hybrid modeling of a large-scale underground explosion test publication-title: Rock Mech. Rock Eng. – volume: 32 start-page: 34 year: 2012 end-page: 43 ident: b0115 article-title: Deep-hole directional fracturing of thick hard roof for rockburst prevention publication-title: Tunn. Undergr. Space Technol. – volume: 122 year: 2019 ident: b0090 article-title: Dynamic responses and failure modes of stratified sedimentary rocks publication-title: Int. J. Rock Mech. Min. Sci. – reference: Ma, G.W., Hao, H., Zhou, Y.X., 1998. Modeling of wave propagation induced by under- ground explosion. Computers and Geotechnics. 22 (3–4), 283–303. – volume: 36 start-page: 46 year: 2013 end-page: 56 ident: b0040 article-title: Principles of rock support in burst-prone ground publication-title: Tunn. Undergr. Space Technol. – volume: 43 start-page: 123 year: 2014 end-page: 132 ident: b0265 article-title: Safety distance for secondary shotcrete subjected to blasting vibration in jinping-II deep-buried tunnels publication-title: Tunn. Undergr. Space Technol. – volume: 2018 start-page: 1 year: 2018 end-page: 18 ident: b0270 article-title: Stability of close chambers surrounding rock in deep and comprehensive control technology publication-title: Adv. Civil Eng. – volume: 26 start-page: 3329 year: 2007 end-page: 3334 ident: b0170 article-title: Study on vibration characteristics of surrounding rock induced by tunnel excavation under high in-situ stress publication-title: Chinese J. Rock Mech. Eng. – volume: 43 start-page: 877 year: 2010 end-page: 890 ident: b0030 article-title: Distinct element modelling in static and dynamic conditions with application to an underground archaeological site publication-title: Rock Mech. Rock Eng. – reference: UDEC Manual., 2005. Version 4.0. Itasca Consulting Group, Inc. – volume: 1 start-page: 11 year: 1971 end-page: 18 ident: b0065 article-title: A computer model for simulating progressive, large-scale movements in blocky rock systems publication-title: Sympos. Int. Soc. Rock Mech. – start-page: 1 year: 2017 end-page: 59 ident: b0275 article-title: A rapid and non-destructive method to determine normal and shear stiffness of a single rock joint based on one-dimensional wave propagation theory publication-title: Geophysics – volume: 65 start-page: 215 year: 2017 end-page: 224 ident: b0175 article-title: Mechanical behavior of rock-shotcrete interface under static and dynamic tensile loads publication-title: Tunn. Undergr. Space Technol. – reference: Hudson, J.A, Harrison, J.P., 1997. Engineering rock mechanics: An introduction to the principles. Elsevier Science, PP. 41-69. – volume: 21 start-page: 85 year: 2001 end-page: 98 ident: b0110 article-title: Characteristics of surface ground motions induced by blasts in jointed rock mass publication-title: Soil Dyn. Earthq. Eng. – volume: 82 start-page: 442 year: 2018 end-page: 454 ident: b0310 article-title: Decoupled explosion in an underground opening and dynamic responses of surrounding rock masses and structures and induced ground motions: a FEM-DEM numerical study publication-title: Tunn. Undergr. Space Technol. – volume: 49 start-page: 3935 year: 2016 end-page: 3946 ident: b0305 article-title: Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses publication-title: Rock Mech. Rock Eng. – reference: Hoddeson, L., Henriksen, P. W., Meade, R. A., Westfall, C., Neushul, P., 2004. Critical assembly: A technical history of Los Alamos during the oppenheimer years, 1943-1945, Cambridge University Press. – volume: 37 start-page: 661 issue: 4 year: 2000 ident: 10.1016/j.tust.2020.103648_b0035 article-title: Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/S1365-1609(00)00013-7 – volume: 34 start-page: 117 issue: 1 year: 1997 ident: 10.1016/j.tust.2020.103648_b0225 article-title: The disturbed zone around tunnels in jointed rock masses publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/S1365-1609(97)80037-8 – volume: 49 start-page: 3935 year: 2016 ident: 10.1016/j.tust.2020.103648_b0305 article-title: Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-016-0993-1 – volume: 34 start-page: 1723 issue: 6 year: 2016 ident: 10.1016/j.tust.2020.103648_b0155 article-title: Laboratory estimation of rock joint stiffness and frictional parameters publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-016-9984-y – volume: 54 start-page: 66 issue: 11 year: 2013 ident: 10.1016/j.tust.2020.103648_b0210 article-title: A numerical study of the behavior of fully grouted rockbolts under dynamic loading publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2013.08.003 – volume: 49 start-page: 4213 issue: 11 year: 2016 ident: 10.1016/j.tust.2020.103648_b0220 article-title: Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-016-1041-x – volume: 21 start-page: 85 issue: 2 year: 2001 ident: 10.1016/j.tust.2020.103648_b0110 article-title: Characteristics of surface ground motions induced by blasts in jointed rock mass publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/S0267-7261(00)00104-4 – volume: 122 year: 2019 ident: 10.1016/j.tust.2020.103648_b0090 article-title: Dynamic responses and failure modes of stratified sedimentary rocks publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2019.104060 – volume: 35 start-page: 97 issue: 1 year: 2008 ident: 10.1016/j.tust.2020.103648_b0290 article-title: UDEC modelling on wave propagation across fractured rock masses publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2007.01.001 – ident: 10.1016/j.tust.2020.103648_b0085 – ident: 10.1016/j.tust.2020.103648_b0200 doi: 10.1016/S0141-0296(99)00072-3 – volume: 45 start-page: 83 year: 2012 ident: 10.1016/j.tust.2020.103648_b0235 article-title: Characteristics of the unloading process of rocks under high initial stress publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2012.05.002 – volume: 43 start-page: 123 year: 2014 ident: 10.1016/j.tust.2020.103648_b0265 article-title: Safety distance for secondary shotcrete subjected to blasting vibration in jinping-II deep-buried tunnels publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2014.04.008 – volume: 65 start-page: 215 year: 2017 ident: 10.1016/j.tust.2020.103648_b0175 article-title: Mechanical behavior of rock-shotcrete interface under static and dynamic tensile loads publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2017.03.005 – volume: 74 start-page: 427 issue: 2 year: 2015 ident: 10.1016/j.tust.2020.103648_b0245 article-title: Weathering effects on discontinuity properties in sandstone in a tropical environment: case study at Kota Kinabalu. Sabah Malaysia publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-014-0625-5 – ident: 10.1016/j.tust.2020.103648_b0095 – volume: 35 start-page: 227 issue: 35 year: 2013 ident: 10.1016/j.tust.2020.103648_b0165 article-title: Assessment of underground tunnel stability to adjacent tunnel explosion publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2012.07.005 – ident: 10.1016/j.tust.2020.103648_b0135 doi: 10.1016/B978-008043864-1/50005-7 – volume: 35 start-page: 45 issue: 1 year: 2017 ident: 10.1016/j.tust.2020.103648_b0260 article-title: Rock mass stability investigation around tunnels in an underground mine in USA publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-016-0084-9 – volume: 32 start-page: 34 issue: 6 year: 2012 ident: 10.1016/j.tust.2020.103648_b0115 article-title: Deep-hole directional fracturing of thick hard roof for rockburst prevention publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2012.05.002 – ident: 10.1016/j.tust.2020.103648_b0250 – volume: 95 start-page: 11345 year: 1990 ident: 10.1016/j.tust.2020.103648_b0215 article-title: Anisotropy in seismic velocities and amplitudes from multiple parallel fractures publication-title: J. Geophys. Res. doi: 10.1029/JB095iB07p11345 – year: 2007 ident: 10.1016/j.tust.2020.103648_b0145 – ident: 10.1016/j.tust.2020.103648_b0285 – volume: 48 start-page: 737 issue: 2 year: 2015 ident: 10.1016/j.tust.2020.103648_b0075 article-title: UDEC–AUTODYN hybrid modeling of a large-scale underground explosion test publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-014-0600-2 – ident: 10.1016/j.tust.2020.103648_b0140 doi: 10.1016/0148-9062(78)90979-8 – volume: 4 start-page: 113 issue: 3 year: 1984 ident: 10.1016/j.tust.2020.103648_b0080 article-title: Estimating earthquake damage from explosion testing of full-scale tunnels publication-title: Adv. Tunnell. Technol. Subsurface Use – volume: 1 start-page: 11 issue: ii-b year: 1971 ident: 10.1016/j.tust.2020.103648_b0065 article-title: A computer model for simulating progressive, large-scale movements in blocky rock systems publication-title: Sympos. Int. Soc. Rock Mech. – ident: 10.1016/j.tust.2020.103648_b0105 – ident: 10.1016/j.tust.2020.103648_b0130 – ident: 10.1016/j.tust.2020.103648_b0120 – volume: 34 start-page: 1185 issue: 8 year: 1986 ident: 10.1016/j.tust.2020.103648_b0150 article-title: Experimental studies of elastic-wave propagation in a columnar-jointed rock mass publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.1986.tb00522.x – volume: 99 start-page: 421 year: 1973 ident: 10.1016/j.tust.2020.103648_b0185 article-title: Finite element method accuracy for wave propagation problems publication-title: J. Soil Mech. Foundat. Div. doi: 10.1061/JSFEAQ.0001885 – volume: 46 start-page: 1429 issue: 6 year: 2013 ident: 10.1016/j.tust.2020.103648_b0300 article-title: A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-012-0352-9 – volume: 95 start-page: 859 issue: 4 year: 1969 ident: 10.1016/j.tust.2020.103648_b0180 article-title: Finite dynamic model for infinite media publication-title: J. Eng. Mech. Div. doi: 10.1061/JMCEA3.0001144 – volume: 43 start-page: 88 issue: 6 year: 2014 ident: 10.1016/j.tust.2020.103648_b0070 article-title: Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2014.04.004 – volume: 53 start-page: 78 year: 2016 ident: 10.1016/j.tust.2020.103648_b0050 article-title: Vibrations induced by high initial stress release during underground excavations publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.01.017 – ident: 10.1016/j.tust.2020.103648_b0005 – volume: 43 start-page: 877 issue: 6 year: 2010 ident: 10.1016/j.tust.2020.103648_b0030 article-title: Distinct element modelling in static and dynamic conditions with application to an underground archaeological site publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-010-0106-5 – volume: 29 start-page: 529 year: 2019 ident: 10.1016/j.tust.2020.103648_b0045 article-title: Rock support in strainburst-prone ground publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2019.06.008 – ident: 10.1016/j.tust.2020.103648_b0295 – ident: 10.1016/j.tust.2020.103648_b0190 doi: 10.1016/S0266-352X(98)00011-1 – volume: 49 start-page: 9 year: 2015 ident: 10.1016/j.tust.2020.103648_b0100 article-title: Transient characters of energy changes induced by blasting excavation of deep-buried tunnels publication-title: Tunnell. Undergr. Space Technol. Incorporat. Trenchless Technol. Res. doi: 10.1016/j.tust.2015.04.003 – volume: 43 start-page: 857 issue: 6 year: 2010 ident: 10.1016/j.tust.2020.103648_b0025 article-title: Response and stability of underground structures in rock mass during earthquakes publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-010-0105-6 – ident: 10.1016/j.tust.2020.103648_b0020 – ident: 10.1016/j.tust.2020.103648_b0230 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.tust.2020.103648_b0270 article-title: Stability of close chambers surrounding rock in deep and comprehensive control technology publication-title: Adv. Civil Eng. doi: 10.1155/2018/6275941 – start-page: 1 year: 2017 ident: 10.1016/j.tust.2020.103648_b0275 article-title: A rapid and non-destructive method to determine normal and shear stiffness of a single rock joint based on one-dimensional wave propagation theory publication-title: Geophysics – volume: 47 start-page: 396 issue: 3 year: 2010 ident: 10.1016/j.tust.2020.103648_b0160 article-title: A new energy-absorbing bolt for rock support in high stress rock masses publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2010.01.005 – volume: 46 start-page: 514 issue: 3 year: 2009 ident: 10.1016/j.tust.2020.103648_b0015 article-title: Dynamic behavior of a mediterranean natural stone under tensile loading publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2008.09.010 – volume: 26 start-page: 3329 issue: a01 year: 2007 ident: 10.1016/j.tust.2020.103648_b0170 article-title: Study on vibration characteristics of surrounding rock induced by tunnel excavation under high in-situ stress publication-title: Chinese J. Rock Mech. Eng. – volume: 82 start-page: 442 year: 2018 ident: 10.1016/j.tust.2020.103648_b0310 article-title: Decoupled explosion in an underground opening and dynamic responses of surrounding rock masses and structures and induced ground motions: a FEM-DEM numerical study publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2018.08.057 – volume: 35 start-page: 93 issue: 1 year: 1998 ident: 10.1016/j.tust.2020.103648_b0060 article-title: A study of UDEC modelling for blast wave propagation in jointed rock masses publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/S0148-9062(97)00322-7 – volume: 322 start-page: 727 year: 2008 ident: 10.1016/j.tust.2020.103648_b0010 article-title: Trampoline effect in extreme ground motion publication-title: Science doi: 10.1126/science.1163113 – volume: 20 start-page: 933 issue: 2 year: 2016 ident: 10.1016/j.tust.2020.103648_b0055 article-title: Blasting excavation induced damage of surrounding rock masses in deep-buried tunnels publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-015-0480-3 – volume: 54 start-page: 33 issue: 10 year: 2013 ident: 10.1016/j.tust.2020.103648_b0240 article-title: 3D numerical model for dynamic loading-induced multiple fracture zones around underground cavity faces publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2013.06.002 – volume: 38 start-page: 92 year: 2014 ident: 10.1016/j.tust.2020.103648_b0280 article-title: Application of the numerical manifold method for stress wave propagation across rock masses publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.2209 – volume: 36 start-page: 46 year: 2013 ident: 10.1016/j.tust.2020.103648_b0040 article-title: Principles of rock support in burst-prone ground publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2013.02.003 – volume: 48 start-page: 883 issue: 3 year: 2015 ident: 10.1016/j.tust.2020.103648_b0125 article-title: Assessing the shear strength of rock discontinuities at laboratory and field scales publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-014-0633-6 |
SSID | ssj0005229 |
Score | 2.4800055 |
Snippet | •Extension/compression-first wave transmission differs owing to joint opening.•Joint tensile strength determines stress wave propagation under dynamic... Rock joints are prone to open and fail when subject to severe dynamic extension, which might result in spalling of surrounding rock and collapse of underground... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103648 |
SubjectTerms | Dynamic extension Dynamic response Jointed rock Longitudinal waves Propagation Rock bolts Rock joint Rock masses Rocks Spalling Stability analysis Stiffness Stress propagation Stress waves Supporting Tensile strength Tensile stress Underground construction Underground opening Wave power Wave propagation |
Title | Stress wave propagation across jointed rock mass under dynamic extension and its effect on dynamic response and supporting of underground opening |
URI | https://dx.doi.org/10.1016/j.tust.2020.103648 https://www.proquest.com/docview/2491613418 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEYUSQ_ezAql-6BHQiSokQuSeGu63TbBBxBY9OZ_8B870-4aNIaDt0132m463Zlp830zhFxwCyZPCRakociCMOFhILSFJw7eNOFRzA1eDdwP48E4vH2MHiukV3JhEFZZ2H5v0521LlqaxWo255NJcwT_R5wkAlwYhL1wukIGe5jgLr_6WId5uEplKBygdEGc8RivHGkNcPx33PMYawD97Zx-mWnne_p7ZLcIGmnXf9c-qZjpAdlZSyV4SD5HjvRB39WboTAO2Am35lS5qejTDBNDZBT81TN9hYiZIntsQTNfkZ66y_Cl6zDN6CRfUo_0oNBSyiw8ntY4keVqjqE7TE5n1g-GDBF4gwW5oPmIjPvXD71BUJRbCBSPWI5AjbbOuAoZ07yVMqGR4SSEzcC9McNaqWDa6lQr3elwo2KhYmNTiDlYK2sry49JdTqbmhNCWWq51mArRCzCxAisaJ4lMIFtp1GHxzXCynWWushFjiUxXmQJOnuSqBuJupFeNzVy-d1n7jNxbJSOSvXJH_tJgqvY2K9e6loWf_NSwhEVAmPw953Tfw57RrbbCIZxcO86qeaLlTmHaCZPG267NshW9-ZuMPwCE_T2YQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB3R5EA5oLaASklbH3qrVonX-xEfEQKFJuQCSNwsr9eWAjSJkgV-B_-4M7YXAUIcelt5PfbK450ZW-_NAPwSDk2eljypMlknWSmyRBqHTwK9aSnyQli6GjibFqPL7M9VfrUBRy0XhmCV0fYHm-6tdWzpx9XsL2ez_jn-H0VZSnRhGPbi6eoDdCk7Vd6B7uHpeDR9hvTwxcqof0ICkTsTYF4NMRtSDJqIfl5QGaC3_dMrS-3dz8kn2I5xIzsMn_YZNuz8C2w9yya4A4_nnvfBHvS9ZTgOmgq_7Ez7qdj1gnJD1Axd1g37i0EzIwLZitWhKD3z9-FrLzCv2axZswD2YNjS9lkFSK31XdZ3S4recXK2cGEwIongG6rJhc27cHlyfHE0SmLFhUSLnDeE1UhNLXTGuRGDiktDJCcpXY0ejls-qCQ3zlRGm-FQWF1IXVhXYdjBB3WqndiDznwxt1-B8coJY9BcyEJmpZVU1LwucQKXVvlQFPvA23VWJqYjp6oYt6rFnV0r0o0i3aigm334_SSzDMk43u2dt-pTL7aUQm_xrlyv1bWKP_Ra4SkVY2N0-cNv_znsT9gcXZxN1OR0Oj6AjylhYzz6uwedZnVnv2Nw01Q_4ub9B33e-RI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+wave+propagation+across+jointed+rock+mass+under+dynamic+extension+and+its+effect+on+dynamic+response+and+supporting+of+underground+opening&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Zhu%2C+Jianbo&rft.au=Li%2C+Yashi&rft.au=Peng%2C+Qi&rft.au=Deng%2C+Xifei&rft.date=2021-02-01&rft.issn=0886-7798&rft.volume=108&rft.spage=103648&rft_id=info:doi/10.1016%2Fj.tust.2020.103648&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tust_2020_103648 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |