Hard-rock TBM jamming subject to adverse geological conditions: Influencing factor, hazard mode and a case study of Gaoligongshan Tunnel
•Influencing factors of TBM jamming were statistically investigated.•Hazard modes of TBM jamming were proposed.•Countermeasures for TBM jamming were developed. Adverse geological conditions, the major challenge of tunnel construction, affect the excavation rate and even cause the hard-rock tunnel bo...
Saved in:
Published in | Tunnelling and underground space technology Vol. 108; p. 103683 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Influencing factors of TBM jamming were statistically investigated.•Hazard modes of TBM jamming were proposed.•Countermeasures for TBM jamming were developed.
Adverse geological conditions, the major challenge of tunnel construction, affect the excavation rate and even cause the hard-rock tunnel boring machine (TBM) jamming. Firstly, 121 cases of TBM jamming are analyzed in this study (detailed information can be found in Appendix A). The influencing factors of TBM jamming are studied and the hazard modes are classified into six categories. The selection of shield TBM takes up 77.69% of the 121 cases, occurring in 94 cases. In terms of adverse geological conditions, the fractured zone is one of the most commonly met adverse geological conditions for TBM jamming cases. In addition, groundwater often plays an indirect catalytic role in jamming hazards. It is found that collapse of surrounding rocks is the most common hazard mode for TBM jamming, appearing in 52 cases. Secondly, Gaoligongshan Tunnel, one of the longest railway tunnels in China, is presented as a representative case. The possibility, geological conditions and locations of TBM jamming occurring in the Gaoligongshan Tunnel are studied in site, which verifies the results of case statistics and the geological laws proposed above. The specific steps to predict and control TBM jamming in Gaoligongshan Tunnel are proposed. Finally, the lessons learned are summarized, and the countermeasures for TBM jamming are developed regarding three stages of TBM tunnel construction. The results of this study provide a reference for the mechanism of TBM jamming and share certain practical countermeasures to ensure a safe and efficient TBM excavation in adverse geological conditions. |
---|---|
AbstractList | Adverse geological conditions, the major challenge of tunnel construction, affect the excavation rate and even cause the hard-rock tunnel boring machine (TBM) jamming. Firstly, 121 cases of TBM jamming are analyzed in this study (detailed information can be found in Appendix A). The influencing factors of TBM jamming are studied and the hazard modes are classified into six categories. The selection of shield TBM takes up 77.69% of the 121 cases, occurring in 94 cases. In terms of adverse geological conditions, the fractured zone is one of the most commonly met adverse geological conditions for TBM jamming cases. In addition, groundwater often plays an indirect catalytic role in jamming hazards. It is found that collapse of surrounding rocks is the most common hazard mode for TBM jamming, appearing in 52 cases. Secondly, Gaoligongshan Tunnel, one of the longest railway tunnels in China, is presented as a representative case. The possibility, geological conditions and locations of TBM jamming occurring in the Gaoligongshan Tunnel are studied in site, which verifies the results of case statistics and the geological laws proposed above. The specific steps to predict and control TBM jamming in Gaoligongshan Tunnel are proposed. Finally, the lessons learned are summarized, and the countermeasures for TBM jamming are developed regarding three stages of TBM tunnel construction. The results of this study provide a reference for the mechanism of TBM jamming and share certain practical countermeasures to ensure a safe and efficient TBM excavation in adverse geological conditions. •Influencing factors of TBM jamming were statistically investigated.•Hazard modes of TBM jamming were proposed.•Countermeasures for TBM jamming were developed. Adverse geological conditions, the major challenge of tunnel construction, affect the excavation rate and even cause the hard-rock tunnel boring machine (TBM) jamming. Firstly, 121 cases of TBM jamming are analyzed in this study (detailed information can be found in Appendix A). The influencing factors of TBM jamming are studied and the hazard modes are classified into six categories. The selection of shield TBM takes up 77.69% of the 121 cases, occurring in 94 cases. In terms of adverse geological conditions, the fractured zone is one of the most commonly met adverse geological conditions for TBM jamming cases. In addition, groundwater often plays an indirect catalytic role in jamming hazards. It is found that collapse of surrounding rocks is the most common hazard mode for TBM jamming, appearing in 52 cases. Secondly, Gaoligongshan Tunnel, one of the longest railway tunnels in China, is presented as a representative case. The possibility, geological conditions and locations of TBM jamming occurring in the Gaoligongshan Tunnel are studied in site, which verifies the results of case statistics and the geological laws proposed above. The specific steps to predict and control TBM jamming in Gaoligongshan Tunnel are proposed. Finally, the lessons learned are summarized, and the countermeasures for TBM jamming are developed regarding three stages of TBM tunnel construction. The results of this study provide a reference for the mechanism of TBM jamming and share certain practical countermeasures to ensure a safe and efficient TBM excavation in adverse geological conditions. |
ArticleNumber | 103683 |
Author | Xu, Z.H. Lin, P. Wang, W.Y. Wu, J. Nie, L.C. Li, Z.M. |
Author_xml | – sequence: 1 givenname: Z.H. surname: Xu fullname: Xu, Z.H. email: zhenhao_xu@sdu.edu.cn organization: Geotechnical & Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China – sequence: 2 givenname: W.Y. surname: Wang fullname: Wang, W.Y. email: sduwwy@163.com organization: Geotechnical & Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China – sequence: 3 givenname: P. surname: Lin fullname: Lin, P. email: sddxytlp@sdu.edu.cn organization: Geotechnical & Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China – sequence: 4 givenname: L.C. surname: Nie fullname: Nie, L.C. email: lichaonie@163.com organization: Geotechnical & Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China – sequence: 5 givenname: J. surname: Wu fullname: Wu, J. email: a1475305730@163.com organization: Geotechnical & Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China – sequence: 6 givenname: Z.M. surname: Li fullname: Li, Z.M. email: kxyz002@163.com organization: Shanxi Water Conservancy Construction Engineering Bureau Co., Ltd, Taiyuan, Shanxi 030006, China |
BookMark | eNp9kc9q3DAQh0VIIZttX6AnQa_1Vn9s2S69tCFNAim9bM9iLI0duV4pleRA8gR97NhsTjnkNDDM9xvmm3Ny6oNHQj5ytuOMqy_jLs8p7wQTa0OqRp6QDW_qpiilKk_JhjWNKuq6bc7IeUojY6wSot2Q_9cQbRGD-Uv3P37REQ4H5wea5m5Ek2kOFOwDxoR0wDCFwRmYqAneuuyCT1_pje-nGb1ZqR5MDvEzvYOnJZUegkUK3lKgBpaElGf7SENPryBMbgh-SHfg6X72Hqf35F0PU8IPL3VL_vy83F9cF7e_r24uvt8WICuei7LuWNV1HdStqKxQvOtL2QMgF6CANVwaVnHTd1Cxqi5LVAwZk9Yib03HUG7Jp2PufQz_ZkxZj2GOflmpRdlyxaVa7G2JOE6ZGFKK2Ov76A4QHzVnejWuR70a16txfTS-QM0ryLgMq6ccwU1vo9-OKC6nPziMOhm3WEXr4vIHbYN7C38GU5ygcw |
CitedBy_id | crossref_primary_10_1016_j_tust_2021_104360 crossref_primary_10_1088_1755_1315_861_7_072047 crossref_primary_10_1144_qjegh2022_053 crossref_primary_10_1016_j_jhydrol_2022_129018 crossref_primary_10_1007_s10064_025_04122_4 crossref_primary_10_1007_s00603_021_02560_6 crossref_primary_10_3390_app12094590 crossref_primary_10_1061_IJGNAI_GMENG_7982 crossref_primary_10_1016_j_compgeo_2023_105251 crossref_primary_10_1016_j_tust_2024_105968 crossref_primary_10_1109_LGRS_2022_3179623 crossref_primary_10_3390_app15052258 crossref_primary_10_1007_s12517_022_09537_x crossref_primary_10_1016_j_csite_2023_103392 crossref_primary_10_1016_j_tust_2024_105589 crossref_primary_10_1016_j_engfailanal_2024_109036 crossref_primary_10_1016_j_undsp_2024_01_008 crossref_primary_10_1007_s10706_022_02137_2 crossref_primary_10_1038_s41598_025_86051_6 crossref_primary_10_1177_16878132231159971 crossref_primary_10_1007_s12517_022_09803_y crossref_primary_10_3390_w15030479 crossref_primary_10_1007_s11709_023_0002_1 crossref_primary_10_1016_j_eng_2022_09_013 crossref_primary_10_1016_j_tust_2022_104453 crossref_primary_10_1016_j_tust_2022_104650 crossref_primary_10_1016_j_cageo_2021_104799 crossref_primary_10_1007_s10064_021_02511_z crossref_primary_10_1016_j_petrol_2021_108853 crossref_primary_10_1007_s12205_022_2129_3 crossref_primary_10_1007_s42524_024_0082_1 crossref_primary_10_1016_j_tust_2022_104448 crossref_primary_10_1111_risa_17651 crossref_primary_10_1016_j_optlaseng_2024_108450 crossref_primary_10_1016_j_enggeo_2023_107279 crossref_primary_10_1061__ASCE_GM_1943_5622_0002344 crossref_primary_10_1002_dug2_12083 crossref_primary_10_1016_j_tust_2024_106128 crossref_primary_10_21595_jve_2022_22913 crossref_primary_10_1016_j_engfailanal_2024_108355 crossref_primary_10_1016_j_tust_2024_106329 crossref_primary_10_1016_j_jrmge_2022_05_009 crossref_primary_10_3390_s24196320 crossref_primary_10_3389_feart_2022_857463 crossref_primary_10_1007_s12517_024_11878_8 crossref_primary_10_3390_app14041381 crossref_primary_10_1002_nag_3534 crossref_primary_10_1016_j_aej_2023_08_032 crossref_primary_10_1016_j_trgeo_2025_101489 crossref_primary_10_1680_jgere_21_00028 crossref_primary_10_1007_s10064_021_02548_0 crossref_primary_10_1007_s11709_023_0948_z crossref_primary_10_1016_j_tust_2022_104819 crossref_primary_10_1016_j_tust_2023_105025 crossref_primary_10_1088_1742_6596_1885_2_022041 crossref_primary_10_1007_s12205_022_0284_1 crossref_primary_10_1016_j_tust_2024_105923 crossref_primary_10_3390_buildings14030625 crossref_primary_10_1016_j_trgeo_2024_101408 crossref_primary_10_1016_j_compgeo_2024_106573 crossref_primary_10_3390_infrastructures7110155 crossref_primary_10_1016_j_heliyon_2023_e12924 crossref_primary_10_1007_s12065_021_00606_w crossref_primary_10_1016_j_compgeo_2022_104756 crossref_primary_10_3390_w14091521 |
Cites_doi | 10.1007/s00603-018-1476-3 10.1016/j.tust.2017.12.010 10.1016/j.tust.2008.12.006 10.1007/s00603-018-1730-8 10.1007/s10064-018-1294-6 10.1016/j.tust.2019.103045 10.1007/s00603-012-0224-3 10.1016/j.tust.2016.04.002 10.1016/S0013-7952(03)00134-0 10.1016/j.tust.2016.01.034 10.1007/s10064-019-01609-9 10.1016/j.tust.2016.12.011 10.1016/j.tust.2016.01.013 10.1016/j.tust.2016.12.006 10.1016/j.tust.2013.09.012 10.1007/s10064-018-1241-6 10.1007/s00603-019-01759-y 10.1007/s10064-015-0743-8 10.1016/j.tust.2016.01.038 10.1080/19648189.2018.1498396 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Feb 2021 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Feb 2021 |
DBID | AAYXX CITATION 8FD FR3 KR7 |
DOI | 10.1016/j.tust.2020.103683 |
DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Geology |
EISSN | 1878-4364 |
ExternalDocumentID | 10_1016_j_tust_2020_103683 S0886779820306374 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SST SSZ T5K WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-a351t-47b05bbba7925d261bf43faae12a6a0813c051cfba505744e60e003dde19cb0e3 |
IEDL.DBID | .~1 |
ISSN | 0886-7798 |
IngestDate | Fri Jul 25 03:21:47 EDT 2025 Tue Jul 01 01:06:28 EDT 2025 Thu Apr 24 22:57:50 EDT 2025 Fri Feb 23 02:48:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TBM jamming Countermeasure Tunnel boring machine Adverse geological conditions Gaoligongshan Tunnel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a351t-47b05bbba7925d261bf43faae12a6a0813c051cfba505744e60e003dde19cb0e3 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
PQID | 2491613668 |
PQPubID | 2045384 |
ParticipantIDs | proquest_journals_2491613668 crossref_primary_10_1016_j_tust_2020_103683 crossref_citationtrail_10_1016_j_tust_2020_103683 elsevier_sciencedirect_doi_10_1016_j_tust_2020_103683 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Tunnelling and underground space technology |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Farrokh, Rostami (b0035) 2009; 24 Hasanpour, Rohola, Rostami, Jamal, ünver, Bahtiyar, 2014. “3D finite difference model for simulation of double shield TBM tunneling in squeezing grounds.” Tunnel. Undergr. Space Technol., 40(2), 109-126. Swannell, Palmer, Barla, Barla (b0130) 2016; 57 Qi (b0095) 2018; 32 Barla, Pelizza (b0005) 2000 Bilgin, Copur, Balci (b0020) 2016 Yanxi, Zhongxian (b0150) 2019; 490 Shang, Xue, Wang, Yang, Jie (b0105) 2004; 71 Wang, Li, Xu (bib168) 2019; 78 Huang, Liu, Shi, Pan, Liu (b0050) 2018; 73 Marinos, Stoumpos, Papouli, Papazachos (b0090) 2019; 78 Gong, Yin, Ma, Zhao (b0040) 2016; 57 Li, Song, Zhao (b0065) 2019; 39 Liu, Liu, Huang, Pan, Luo, Sang (b0085) 2019; 52 Rasouli, Narimani (b0100) 2018; 51 Li, Liu, Xu, Nie, Liu, Song, Sun, Chen, Fan (b0060) 2017; 63 Xu, Huang, Li (bib167) 2020; 79 Bayati, Hamidi (b0010) 2017; 63 Xu, Lin, Xing, Wang (b0145) 2020 Liu, Guo, Liu, Wang, Nie, Xu, Chen (b0075) 2019; 93 Shaterpour-Mamaghani, Tumac, Avunduk (b0115) 2016; 75 Zhao, Janutolo, Barla (b0165) 2012; 45 Sun, Feng (b0125) 2020; 40 Liu, Huang, Gong (bib170) 2016; 57 Chen, K., Sun, Z., Li, T., 2018. TBM Design and Construction. Zhang (b0160) 2006; 43 Wang, Chen, Liu, Liang (b0135) 2019; 218 Sun, Yang (b0120) 2019; 52 Shang, Yang, Zeng, Sun, Shi, Yuan (b0110) 2007; 26 Jiang, Tan, Zhang (bib169) 2020; 24 Bilgin (b0015) 2016; 57 Shang (10.1016/j.tust.2020.103683_b0105) 2004; 71 Jiang (10.1016/j.tust.2020.103683_bib169) 2020; 24 Gong (10.1016/j.tust.2020.103683_b0040) 2016; 57 Liu (10.1016/j.tust.2020.103683_bib170) 2016; 57 Barla (10.1016/j.tust.2020.103683_b0005) 2000 10.1016/j.tust.2020.103683_b0025 Sun (10.1016/j.tust.2020.103683_b0120) 2019; 52 Farrokh (10.1016/j.tust.2020.103683_b0035) 2009; 24 Xu (10.1016/j.tust.2020.103683_b0145) 2020 Zhang (10.1016/j.tust.2020.103683_b0160) 2006; 43 10.1016/j.tust.2020.103683_b0045 Yanxi (10.1016/j.tust.2020.103683_b0150) 2019; 490 Shaterpour-Mamaghani (10.1016/j.tust.2020.103683_b0115) 2016; 75 Xu (10.1016/j.tust.2020.103683_bib167) 2020; 79 Bilgin (10.1016/j.tust.2020.103683_b0015) 2016; 57 Shang (10.1016/j.tust.2020.103683_b0110) 2007; 26 Swannell (10.1016/j.tust.2020.103683_b0130) 2016; 57 Sun (10.1016/j.tust.2020.103683_b0125) 2020; 40 Liu (10.1016/j.tust.2020.103683_b0075) 2019; 93 Rasouli (10.1016/j.tust.2020.103683_b0100) 2018; 51 Wang (10.1016/j.tust.2020.103683_b0135) 2019; 218 Li (10.1016/j.tust.2020.103683_b0060) 2017; 63 Marinos (10.1016/j.tust.2020.103683_b0090) 2019; 78 Huang (10.1016/j.tust.2020.103683_b0050) 2018; 73 Li (10.1016/j.tust.2020.103683_b0065) 2019; 39 Bayati (10.1016/j.tust.2020.103683_b0010) 2017; 63 Bilgin (10.1016/j.tust.2020.103683_b0020) 2016 Wang (10.1016/j.tust.2020.103683_bib168) 2019; 78 Zhao (10.1016/j.tust.2020.103683_b0165) 2012; 45 Liu (10.1016/j.tust.2020.103683_b0085) 2019; 52 Qi (10.1016/j.tust.2020.103683_b0095) 2018; 32 |
References_xml | – volume: 63 start-page: 162 year: 2017 end-page: 170 ident: b0010 article-title: A case study on TBM tunnelling in fault zones and lessons learned from ground improvement publication-title: Tunn. Undergr. Space Technol. – volume: 57 start-page: 201 year: 2016 end-page: 210 ident: b0130 article-title: Geotechnical risk management approach for TBM tunnelling in squeezing ground conditions publication-title: Tunn. Undergr. Space Technol. – reference: Chen, K., Sun, Z., Li, T., 2018. TBM Design and Construction. – volume: 218 start-page: 1 year: 2019 end-page: 16 ident: b0135 article-title: Study on technology of surface pre-grouting for vertical shaft in broken and water-rich granite strata of Gaoligong Mountain Tunnel of Dali-Ruili Railway publication-title: IOP Conf. Ser.: Earth Environ. Sci. – volume: 78 start-page: 1795 year: 2019 end-page: 1813 ident: b0090 article-title: Selection of TBM and geotechnical assessment of a microtunnel in a difficult geological environment: a case of a natural gas pipeline beneath an active landslide (Albania) publication-title: Bull. Eng. Geol. Environ. – volume: 52 start-page: 2481 year: 2019 end-page: 2488 ident: b0120 article-title: An improved 3D finite difference model for simulation ofdouble shield TBM tunnelling in heavily jointed rock masses: the DXL Tunnel case publication-title: Rock Mech. Rock Eng. – volume: 78 start-page: 3783 year: 2019 end-page: 3983 ident: bib168 article-title: Risk assessment of water inrush in karst tunnels excavation based on normal cloud model publication-title: Bull. Eng. Geol. Environ. – volume: 73 start-page: 105 year: 2018 end-page: 126 ident: b0050 article-title: Application and prospect of hard rock TBM for deep roadway construction in coal mines publication-title: Tunn. Undergr. Space Technol. – volume: 32 start-page: 2013 year: 2018 end-page: 2018 ident: b0095 article-title: Discussion on constuction technology and management of TBM boring in extremely-bad geological conditions publication-title: Tunnel Constr. – volume: 45 start-page: 475 year: 2012 end-page: 497 ident: b0165 article-title: A completely 3D model for the simulation of mechanized tunnel excavation publication-title: Rock Mech. Rock Eng. – volume: 63 start-page: 69 year: 2017 end-page: 94 ident: b0060 article-title: An overview of ahead geological prospecting in tunneling publication-title: Tunnel. Undergr. Space Technol. – volume: 93 year: 2019 ident: b0075 article-title: Comprehensive ahead prospecting for hard rock TBM tunneling in complex limestone geology: A case study in Jilin, China publication-title: Tunn. Undergr. Space Technol. – volume: 24 start-page: 2010 year: 2020 end-page: 2031 ident: bib169 article-title: Distinct element modeling of rock fragmentation by TBM cutter publication-title: Eur. J. Environ. Civ. Eng. – year: 2000 ident: b0005 article-title: TBM tunnelling in difficult ground conditions publication-title: GeoEng2000. – volume: 57 start-page: 33 year: 2016 end-page: 46 ident: bib170 article-title: Application and development of hard rock TBM and its prospect in China publication-title: Tunn. Undergr. Space Technol. – volume: 39 start-page: 876 year: 2019 end-page: 883 ident: b0065 article-title: Shield extension technology of TBM ssed in paralledl adit of Gaoligongshan tunnel publication-title: Tunnel Constr. – volume: 490 start-page: 032027 year: 2019 end-page: 032031 ident: b0150 article-title: Research on TBM type selection risk for long draw water tunnel publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 52 start-page: 3241 year: 2019 end-page: 3260 ident: b0085 article-title: Inverse analysis approach to identify the loads on the external TBM shield surface and its application publication-title: Rock Mech. Rock Eng. – volume: 24 start-page: 436 year: 2009 end-page: 446 ident: b0035 article-title: Effect of adverse geological condition on TBM operation in Ghomroud tunnel conveyance project publication-title: Tunn. Undergr. Space Technol. – volume: 71 start-page: 199 year: 2004 end-page: 211 ident: b0105 article-title: A case history of Tunnel Boring Machine jamming in an inter-layer shear zone at the Yellow River Diversion Project in China publication-title: Eng. Geol. – reference: Hasanpour, Rohola, Rostami, Jamal, ünver, Bahtiyar, 2014. “3D finite difference model for simulation of double shield TBM tunneling in squeezing grounds.” Tunnel. Undergr. Space Technol., 40(2), 109-126. – year: 2016 ident: b0020 article-title: TBM Excavation in Difficult Ground Conditions: Case Studies from Turkey – volume: 51 start-page: 2911 year: 2018 end-page: 2933 ident: b0100 article-title: Influence of discontinuities on the squeezing intensity in high in situ stresses (a tunnelling case study; actual evidences and TBM release techniques) publication-title: Rock Mech. Rock Eng. – volume: 75 start-page: 251 year: 2016 end-page: 262 ident: b0115 article-title: Double shield TBM performance analysis in difficult ground conditions: a case study in the Gerede water tunnel, Turkey publication-title: Bull. Eng. Geol. Environ. – volume: 43 start-page: 76 year: 2006 end-page: 79 ident: b0160 article-title: Analysis of the breakdowns of TBMs in boring hard rocks and their corresponding countermeasures publication-title: Modern Tunnel. Technol. – volume: 79 start-page: 1097 year: 2020 end-page: 1111 ident: bib167 article-title: A new slice-based method for calculating the minimum safe thickness for a filled-type karst cave publication-title: Bull. Eng. Geol. Environ. – volume: 57 start-page: 4 year: 2016 end-page: 17 ident: b0040 article-title: TBM tunnelling under adverse geological conditions: An overview publication-title: Tunn. Undergr. Space Technol. – volume: 40 start-page: 925 year: 2020 end-page: 928 ident: b0125 article-title: Statistics on global super-large diameter tunnel boring machines publication-title: Tunnel Constr. – volume: 57 start-page: 265 year: 2016 end-page: 276 ident: b0015 article-title: An appraisal of TBM performances in Turkey in difficult ground conditions and some recommendations publication-title: Tunn. Undergr. Space Technol. – start-page: 1 year: 2020 end-page: 11 ident: b0145 article-title: Mathematical modelling of cumulative erosion ratio for suffusion in soils publication-title: Proceedings of the Institution of Civil Engineers - Geotechnical Engineering – volume: 26 start-page: 2404 year: 2007 end-page: 2411 ident: b0110 article-title: Retrospective analysis of tbm accidents from its poor flexibility to complicated geological conditions publication-title: Chin. J. Rock Mech. Eng. – volume: 51 start-page: 2911 issue: 9 year: 2018 ident: 10.1016/j.tust.2020.103683_b0100 article-title: Influence of discontinuities on the squeezing intensity in high in situ stresses (a tunnelling case study; actual evidences and TBM release techniques) publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-018-1476-3 – volume: 73 start-page: 105 year: 2018 ident: 10.1016/j.tust.2020.103683_b0050 article-title: Application and prospect of hard rock TBM for deep roadway construction in coal mines publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2017.12.010 – volume: 24 start-page: 436 issue: 4 year: 2009 ident: 10.1016/j.tust.2020.103683_b0035 article-title: Effect of adverse geological condition on TBM operation in Ghomroud tunnel conveyance project publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2008.12.006 – volume: 26 start-page: 2404 issue: 12 year: 2007 ident: 10.1016/j.tust.2020.103683_b0110 article-title: Retrospective analysis of tbm accidents from its poor flexibility to complicated geological conditions publication-title: Chin. J. Rock Mech. Eng. – volume: 52 start-page: 2481 issue: 7 year: 2019 ident: 10.1016/j.tust.2020.103683_b0120 article-title: An improved 3D finite difference model for simulation ofdouble shield TBM tunnelling in heavily jointed rock masses: the DXL Tunnel case publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-018-1730-8 – volume: 40 start-page: 925 issue: 6 year: 2020 ident: 10.1016/j.tust.2020.103683_b0125 article-title: Statistics on global super-large diameter tunnel boring machines publication-title: Tunnel Constr. – ident: 10.1016/j.tust.2020.103683_b0025 – volume: 78 start-page: 3783 year: 2019 ident: 10.1016/j.tust.2020.103683_bib168 article-title: Risk assessment of water inrush in karst tunnels excavation based on normal cloud model publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1294-6 – volume: 39 start-page: 876 issue: 5 year: 2019 ident: 10.1016/j.tust.2020.103683_b0065 article-title: Shield extension technology of TBM ssed in paralledl adit of Gaoligongshan tunnel publication-title: Tunnel Constr. – volume: 93 year: 2019 ident: 10.1016/j.tust.2020.103683_b0075 article-title: Comprehensive ahead prospecting for hard rock TBM tunneling in complex limestone geology: A case study in Jilin, China publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2019.103045 – volume: 45 start-page: 475 issue: 4 year: 2012 ident: 10.1016/j.tust.2020.103683_b0165 article-title: A completely 3D model for the simulation of mechanized tunnel excavation publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-012-0224-3 – volume: 57 start-page: 4 year: 2016 ident: 10.1016/j.tust.2020.103683_b0040 article-title: TBM tunnelling under adverse geological conditions: An overview publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.04.002 – volume: 71 start-page: 199 issue: 3 year: 2004 ident: 10.1016/j.tust.2020.103683_b0105 article-title: A case history of Tunnel Boring Machine jamming in an inter-layer shear zone at the Yellow River Diversion Project in China publication-title: Eng. Geol. doi: 10.1016/S0013-7952(03)00134-0 – volume: 32 start-page: 2013 issue: 12 year: 2018 ident: 10.1016/j.tust.2020.103683_b0095 article-title: Discussion on constuction technology and management of TBM boring in extremely-bad geological conditions publication-title: Tunnel Constr. – volume: 57 start-page: 33 year: 2016 ident: 10.1016/j.tust.2020.103683_bib170 article-title: Application and development of hard rock TBM and its prospect in China publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.01.034 – volume: 79 start-page: 1097 year: 2020 ident: 10.1016/j.tust.2020.103683_bib167 article-title: A new slice-based method for calculating the minimum safe thickness for a filled-type karst cave publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-019-01609-9 – volume: 63 start-page: 69 year: 2017 ident: 10.1016/j.tust.2020.103683_b0060 article-title: An overview of ahead geological prospecting in tunneling publication-title: Tunnel. Undergr. Space Technol. doi: 10.1016/j.tust.2016.12.011 – volume: 57 start-page: 201 year: 2016 ident: 10.1016/j.tust.2020.103683_b0130 article-title: Geotechnical risk management approach for TBM tunnelling in squeezing ground conditions publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.01.013 – volume: 43 start-page: 76 issue: 6 year: 2006 ident: 10.1016/j.tust.2020.103683_b0160 article-title: Analysis of the breakdowns of TBMs in boring hard rocks and their corresponding countermeasures publication-title: Modern Tunnel. Technol. – volume: 63 start-page: 162 year: 2017 ident: 10.1016/j.tust.2020.103683_b0010 article-title: A case study on TBM tunnelling in fault zones and lessons learned from ground improvement publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.12.006 – ident: 10.1016/j.tust.2020.103683_b0045 doi: 10.1016/j.tust.2013.09.012 – year: 2000 ident: 10.1016/j.tust.2020.103683_b0005 article-title: TBM tunnelling in difficult ground conditions publication-title: GeoEng2000. – start-page: 1 year: 2020 ident: 10.1016/j.tust.2020.103683_b0145 article-title: Mathematical modelling of cumulative erosion ratio for suffusion in soils – year: 2016 ident: 10.1016/j.tust.2020.103683_b0020 – volume: 78 start-page: 1795 issue: 3 year: 2019 ident: 10.1016/j.tust.2020.103683_b0090 article-title: Selection of TBM and geotechnical assessment of a microtunnel in a difficult geological environment: a case of a natural gas pipeline beneath an active landslide (Albania) publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1241-6 – volume: 52 start-page: 3241 issue: 9 year: 2019 ident: 10.1016/j.tust.2020.103683_b0085 article-title: Inverse analysis approach to identify the loads on the external TBM shield surface and its application publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-019-01759-y – volume: 490 start-page: 032027 year: 2019 ident: 10.1016/j.tust.2020.103683_b0150 article-title: Research on TBM type selection risk for long draw water tunnel publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 218 start-page: 1 year: 2019 ident: 10.1016/j.tust.2020.103683_b0135 article-title: Study on technology of surface pre-grouting for vertical shaft in broken and water-rich granite strata of Gaoligong Mountain Tunnel of Dali-Ruili Railway publication-title: IOP Conf. Ser.: Earth Environ. Sci. – volume: 75 start-page: 251 issue: 1 year: 2016 ident: 10.1016/j.tust.2020.103683_b0115 article-title: Double shield TBM performance analysis in difficult ground conditions: a case study in the Gerede water tunnel, Turkey publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-015-0743-8 – volume: 57 start-page: 265 year: 2016 ident: 10.1016/j.tust.2020.103683_b0015 article-title: An appraisal of TBM performances in Turkey in difficult ground conditions and some recommendations publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.01.038 – volume: 24 start-page: 2010 issue: 12 year: 2020 ident: 10.1016/j.tust.2020.103683_bib169 article-title: Distinct element modeling of rock fragmentation by TBM cutter publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2018.1498396 |
SSID | ssj0005229 |
Score | 2.5349033 |
Snippet | •Influencing factors of TBM jamming were statistically investigated.•Hazard modes of TBM jamming were proposed.•Countermeasures for TBM jamming were developed.... Adverse geological conditions, the major challenge of tunnel construction, affect the excavation rate and even cause the hard-rock tunnel boring machine (TBM)... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103683 |
SubjectTerms | Adverse geological conditions Boring machines Countermeasure Drilling & boring machinery Excavation Gaoligongshan Tunnel Geology Groundwater Jamming Railway tunnels Rocks TBM jamming Tunnel boring machine Tunnel construction Tunnels Underground construction |
Title | Hard-rock TBM jamming subject to adverse geological conditions: Influencing factor, hazard mode and a case study of Gaoligongshan Tunnel |
URI | https://dx.doi.org/10.1016/j.tust.2020.103683 https://www.proquest.com/docview/2491613668 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvbSHqk-VlqI5cGvTTWLnxY0i6NIKLl0kbtbYsZelkKBu9tIDZ342M4mDaCU49BrZVuTPnkfyzXxCbBfWlk6VcVSnlhIUb0uWeZFRrIwnD2tz9FyNfHScT0_U99PsdE3sjbUwTKsMtn-w6b21Dk8mYTcnV4vF5Cfdj7woKnJhFPbKgnuCKlXwKf9yfZ_m0SuV8eCIR4fCmYHj1XFZA6X_fe15XsqHnNM_Zrr3PQcvxPMQNMLu8F4vxZprXoln91oJvhY3_As-Im_0C2Zfj-AcLy_pOSxXhj-0QNcCsvTy0sHcjfYOKBeuB8rWDhwGtRKeNYjwfIYz_EOrAqvlADY1IFhyetC3pIXWwzdsLxbztpkvz7CB2Yo5M2_EycH-bG8aBZWFCGWWdJEqTJwZY7Co0qymhMp4JT2iS1LMkSIGaeniWm-QcxmlXB47QpPMYlJZEzv5Vqw3bePeCfB1Urq4sljVlVKYVj5WTqpKYmoJd7UhknF7tQ0tyFkJ40KPXLNzzZBohkQPkGyIT3dzroYGHI-OzkbU9F_HSJOHeHTe5gixDpd4qSkzpXhY5nn5_j-X_SCepsyB6Vnem2K9-71yHymI6cxWf0q3xJPdwx_T41u2KfLW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gA9VDxFaYE5cINok9h5cSsVZZd298JW6s0aO852S5tU3eyFX8DPZiZxUEGiB66Wx7I89jySb-YT4l1mbe5UHgZlbClBqWzONC8yCJWpyMPaFCuuRp7N08mZ-nqenG-Jo6EWhmGV3vb3Nr2z1n5k7E9zfLNajb_R-0izrCAXRmGvzNQDsc3dqZKR2D6cnkzmd5AeHVkZzw9YwNfO9DCvlisbYgqauPw8zeW__NNflrpzP8ePxa6PG-Gw39oTseXqp2LnTjfBZ-In_4UPyCF9h8WnGVzi9TWNw3pj-FsLtA0gsy-vHSzdYPKA0uGyR219hKknLGGpnofnA1zgD1oVmDAHsC4BwZLfg64rLTQVfMHmarVs6uX6AmtYbBg281ycHX9eHE0CT7QQoEyiNlCZCRNjDGZFnJSUU5lKyQrRRTGmSEGDtPR2bWWQ0xmlXBo6UihZxqiwJnTyhRjVTe1eCqjKKHdhYbEoC6UwLqpQOakKibEl1as9EQ3Hq63vQs5kGFd6gJtdalaJZpXoXiV74v1vmZu-B8e9s5NBa_qPm6TJSdwrdzCoWPt3vNaUnFJILNM0f_Wfy74VDyeL2ak-nc5P9sWjmCExHej7QIza2417TTFNa974O_sLBw71hw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hard-rock+TBM+jamming+subject+to+adverse+geological+conditions%3A+Influencing+factor%2C+hazard+mode+and+a+case+study+of+Gaoligongshan+Tunnel&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Xu%2C+Z.H.&rft.au=Wang%2C+W.Y.&rft.au=Lin%2C+P.&rft.au=Nie%2C+L.C.&rft.date=2021-02-01&rft.issn=0886-7798&rft.volume=108&rft.spage=103683&rft_id=info:doi/10.1016%2Fj.tust.2020.103683&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tust_2020_103683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |