Unraveling the Emission Pathways in Copper Indium Sulfide Quantum Dots

Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, t...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 11; pp. 17573 - 17581
Main Authors Xia, Chenghui, Tamarat, Philippe, Hou, Lei, Busatto, Serena, Meeldijk, Johannes D, de Mello Donega, Celso, Lounis, Brahim
Format Journal Article
LanguageEnglish
Published American Chemical Society 23.11.2021
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.1c04909

Cover

Abstract Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-temperature single quantum dot spectroscopy on core–shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots.
AbstractList Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-temperature single quantum dot spectroscopy on core-shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots.Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-temperature single quantum dot spectroscopy on core-shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots.
Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-temperature single quantum dot spectroscopy on core–shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots.
Author Hou, Lei
Meeldijk, Johannes D
de Mello Donega, Celso
Busatto, Serena
Tamarat, Philippe
Lounis, Brahim
Xia, Chenghui
AuthorAffiliation Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science
LP2N
Electron Microscopy Utrecht, Debye Institute for Nanomaterials Science
Institut d’Optique and CNRS
Utrecht University
AuthorAffiliation_xml – name: Electron Microscopy Utrecht, Debye Institute for Nanomaterials Science
– name: Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science
– name: Institut d’Optique and CNRS
– name: LP2N
– name: Utrecht University
Author_xml – sequence: 1
  givenname: Chenghui
  orcidid: 0000-0001-5087-8805
  surname: Xia
  fullname: Xia, Chenghui
  organization: Institut d’Optique and CNRS
– sequence: 2
  givenname: Philippe
  surname: Tamarat
  fullname: Tamarat, Philippe
  organization: Institut d’Optique and CNRS
– sequence: 3
  givenname: Lei
  surname: Hou
  fullname: Hou, Lei
  organization: Institut d’Optique and CNRS
– sequence: 4
  givenname: Serena
  surname: Busatto
  fullname: Busatto, Serena
  organization: Utrecht University
– sequence: 5
  givenname: Johannes D
  surname: Meeldijk
  fullname: Meeldijk, Johannes D
  organization: Electron Microscopy Utrecht, Debye Institute for Nanomaterials Science
– sequence: 6
  givenname: Celso
  orcidid: 0000-0002-4403-3627
  surname: de Mello Donega
  fullname: de Mello Donega, Celso
  organization: Utrecht University
– sequence: 7
  givenname: Brahim
  orcidid: 0000-0001-7501-0236
  surname: Lounis
  fullname: Lounis, Brahim
  email: brahim.lounis@u-bordeaux.fr
  organization: Institut d’Optique and CNRS
BookMark eNp9kEFLAzEQRoNUsK2eveYoSNsku8l2j1JbLRRUtOAtzGazNmWbrElW6b93pcWDoKeZYb43DG-AetZZjdAlJWNKGJ2AChasG1NF0pzkJ6hP80SMyFS89n56Ts_QIIQtITybZqKPFmvr4UPXxr7huNF4vjMhGGfxI8TNJ-wDNhbPXNNoj5e2NO0OP7d1ZUqNn1qwsZtvXQzn6LSCOuiLYx2i9WL-MrsfrR7ulrOb1QgSTuOIpoTqHDQXqmTZtGQkq5KkLArFikKkRGuisrICBYQCpCWnmSooYxXJIWWEJ0N0dbjbePfe6hBl96_SdQ1WuzZIxjNORCoS0UUnh6jyLgSvK9l4swO_l5TIb2PyaEwejXUE_0UoEyF2NqIHU__DXR-4biG3rvW2U_Bn-gsJPoN0
CitedBy_id crossref_primary_10_1002_ejic_202300303
crossref_primary_10_1039_D4NR02202E
crossref_primary_10_1016_j_colsurfa_2023_131003
crossref_primary_10_1021_acs_jpclett_3c00467
crossref_primary_10_1021_acs_jpcc_3c03634
crossref_primary_10_1021_acs_jpclett_4c02126
crossref_primary_10_1039_D4NA00967C
crossref_primary_10_1007_s12274_024_6926_5
crossref_primary_10_1021_acsnano_2c05130
crossref_primary_10_1364_OPTICA_502221
crossref_primary_10_1021_acsnano_4c06559
crossref_primary_10_1039_D4EE02603A
crossref_primary_10_1039_D4NR01997K
crossref_primary_10_1021_acsnano_4c03123
crossref_primary_10_3389_fnano_2023_1291338
crossref_primary_10_1021_acs_inorgchem_4c04037
crossref_primary_10_1016_j_apcatb_2023_122747
crossref_primary_10_1002_adom_202200226
crossref_primary_10_1021_acs_cgd_4c00150
crossref_primary_10_1063_5_0160787
crossref_primary_10_1021_acsomega_4c03802
Cites_doi 10.1021/cm301211e
10.1021/cm202947n
10.1021/acs.jpcc.5b00204
10.1021/acsnano.6b05419
10.1021/acs.nanolett.6b05118
10.1021/acs.nanolett.8b04905
10.1021/acs.nanolett.0c04239
10.1021/nn9004507
10.1002/adfm.201906629
10.1021/acs.jpclett.6b00571
10.1021/acsnano.9b09181
10.1021/acs.chemmater.7b01258
10.1021/acs.chemrev.5b00739
10.1103/PhysRevLett.58.1475
10.1021/nn901421v
10.1021/acs.chemmater.8b00477
10.1126/science.287.5455.1011
10.1007/978-3-642-85236-7
10.1021/acs.jpclett.8b03653
10.1063/1.4820269
10.1021/acsnano.8b03641
10.1039/D0QI01228A
10.1021/acs.jpcc.6b06425
10.1103/PhysRevLett.103.037404
10.1021/jacs.5b08547
10.1021/acs.jpcc.0c09681
10.1021/jacs.8b01412
10.1021/cm900103b
10.1103/PhysRevB.100.081411
10.1103/PhysRevLett.105.157402
10.1021/acs.jpcc.8b05286
10.1103/PhysRevB.71.235409
10.1021/acs.chemrev.6b00048
10.1039/C9TC03875B
10.1021/acsnano.8b05843
10.1016/0031-8914(67)90062-6
10.1021/nl202506c
10.1038/nnano.2016.140
10.1021/jp411213d
10.1038/nnano.2015.178
10.1016/0022-2313(82)90029-1
10.1038/nchem.1654
10.1038/s41586-019-1771-5
10.1039/D0TA03764H
10.1021/acs.jpclett.5b02211
10.1021/ja108261h
10.1021/acs.nanolett.8b02707
10.1038/ncomms2300
10.1103/PhysRevLett.59.2705
10.1039/c0jm03194a
10.1038/nmat3539
10.1103/PhysRevB.92.035431
10.1103/PhysRevB.82.125320
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.1c04909
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 17581
ExternalDocumentID 10_1021_acsnano_1c04909
i17417693
GroupedDBID -
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
7X8
ID FETCH-LOGICAL-a351t-1401e9ae56cd278d207f33dbbc2bb640ee0c7dfaca01aa4d517cb122f09a42053
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 10:56:45 EDT 2025
Tue Jul 01 03:37:15 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Thu Nov 25 03:13:29 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords single dot spectroscopy
exciton self-trapping
fine structure
exciton−phonon coupling
exciton
core−shell nanocrystals
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a351t-1401e9ae56cd278d207f33dbbc2bb640ee0c7dfaca01aa4d517cb122f09a42053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4403-3627
0000-0001-7501-0236
0000-0001-5087-8805
OpenAccessLink https://dspace.library.uu.nl/handle/1874/416288
PQID 2575064636
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2575064636
crossref_primary_10_1021_acsnano_1c04909
crossref_citationtrail_10_1021_acsnano_1c04909
acs_journals_10_1021_acsnano_1c04909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211123
2021-11-23
PublicationDateYYYYMMDD 2021-11-23
PublicationDate_xml – month: 11
  year: 2021
  text: 20211123
  day: 23
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref31/cit31
  doi: 10.1021/cm301211e
– ident: ref34/cit34
  doi: 10.1021/cm202947n
– ident: ref36/cit36
  doi: 10.1021/acs.jpcc.5b00204
– ident: ref9/cit9
  doi: 10.1021/acsnano.6b05419
– ident: ref18/cit18
  doi: 10.1021/acs.nanolett.6b05118
– ident: ref20/cit20
  doi: 10.1021/acs.nanolett.8b04905
– ident: ref21/cit21
  doi: 10.1021/acs.nanolett.0c04239
– ident: ref43/cit43
  doi: 10.1021/nn9004507
– ident: ref8/cit8
  doi: 10.1002/adfm.201906629
– ident: ref30/cit30
  doi: 10.1021/acs.jpclett.6b00571
– ident: ref22/cit22
  doi: 10.1021/acsnano.9b09181
– ident: ref12/cit12
  doi: 10.1021/acs.chemmater.7b01258
– ident: ref52/cit52
  doi: 10.1021/acs.chemrev.5b00739
– ident: ref53/cit53
  doi: 10.1103/PhysRevLett.58.1475
– ident: ref27/cit27
  doi: 10.1021/nn901421v
– ident: ref51/cit51
  doi: 10.1021/acs.chemmater.8b00477
– ident: ref38/cit38
  doi: 10.1126/science.287.5455.1011
– ident: ref50/cit50
  doi: 10.1007/978-3-642-85236-7
– ident: ref2/cit2
  doi: 10.1021/acs.jpclett.8b03653
– ident: ref35/cit35
  doi: 10.1063/1.4820269
– ident: ref29/cit29
  doi: 10.1021/acsnano.8b03641
– ident: ref5/cit5
  doi: 10.1039/D0QI01228A
– ident: ref17/cit17
  doi: 10.1021/acs.jpcc.6b06425
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.103.037404
– ident: ref16/cit16
  doi: 10.1021/jacs.5b08547
– ident: ref23/cit23
  doi: 10.1021/acs.jpcc.0c09681
– ident: ref32/cit32
  doi: 10.1021/jacs.8b01412
– ident: ref10/cit10
  doi: 10.1021/cm900103b
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.100.081411
– ident: ref46/cit46
  doi: 10.1103/PhysRevLett.105.157402
– ident: ref19/cit19
  doi: 10.1021/acs.jpcc.8b05286
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.71.235409
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.6b00048
– ident: ref4/cit4
  doi: 10.1039/C9TC03875B
– ident: ref24/cit24
  doi: 10.1021/acsnano.8b05843
– ident: ref40/cit40
  doi: 10.1016/0031-8914(67)90062-6
– ident: ref45/cit45
  doi: 10.1021/nl202506c
– ident: ref39/cit39
  doi: 10.1038/nnano.2016.140
– ident: ref28/cit28
  doi: 10.1021/jp411213d
– ident: ref7/cit7
  doi: 10.1038/nnano.2015.178
– ident: ref25/cit25
  doi: 10.1016/0022-2313(82)90029-1
– ident: ref14/cit14
  doi: 10.1038/nchem.1654
– ident: ref15/cit15
  doi: 10.1038/s41586-019-1771-5
– ident: ref6/cit6
  doi: 10.1039/D0TA03764H
– ident: ref3/cit3
  doi: 10.1021/acs.jpclett.5b02211
– ident: ref11/cit11
  doi: 10.1021/ja108261h
– ident: ref49/cit49
  doi: 10.1021/acs.nanolett.8b02707
– ident: ref47/cit47
  doi: 10.1038/ncomms2300
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.59.2705
– ident: ref33/cit33
  doi: 10.1039/c0jm03194a
– ident: ref13/cit13
  doi: 10.1038/nmat3539
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.92.035431
– ident: ref42/cit42
  doi: 10.1103/PhysRevB.82.125320
SSID ssj0057876
Score 2.4869652
Snippet Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17573
Title Unraveling the Emission Pathways in Copper Indium Sulfide Quantum Dots
URI http://dx.doi.org/10.1021/acsnano.1c04909
https://www.proquest.com/docview/2575064636
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF58XPTgW3yzggcvqdndZGOOUluqoCi14C3sE4p1U5oE0V_vbJv6KqLHQCYs89j5JjP7LUInylLJo1AEwioWREpDSIFnBCGzgI55EsbCF4o3t7zTi64f48dPsuifHXxKzoQqnHB5gyjfpErn0SLl4GQeBTW7003X-x2fNJChQAYU8cHiM_MBn4ZU8T0Nfd-Fx6mlvToZyirGjIR-ouSpUZWyod5m-Rr_XvUaWqkBJr6YeMQ6mjNuAy1_oR3cRO2e85cO-YPoGPAfboGt_U8zfAdw8EW8FrjvcDMfDs0IXzndr55xtxrYvjb4vgJLwPNlXhZbqNduPTQ7QX2fQiBYTMrA11ImFSbmStPkXNMwsYxpKRWV3mDGhCrRVigREiEiHZNESUKpDVMRUYjWbbTgcmd2EBYmtUSGLLLcRpJFwgPL8ySRRDMJsrvoBDSQ1fFQZONWNyVZrZasVssuakytkKmak9xfjTH4XeD0Q2A4oeP4_dXjqVkzUKPvgwhn8qrIwBc9TR9nfO9_y9xHS9SPshASUHaAFspRZQ4Bi5TyaOyF7xxH2mg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOEAPLeWh0hZwJQ5csviRB3tEW1bLU0WwErfIT2lV6qxIIgS_nnE2u0ArpHJMFFujmbHnm4z9DcCudlylMZWRdFpEsTa4pNAzIiocouM0o4kMieL5RToYxic3yc0c0OldGBSixJnKpoj_zC7A9vGdl77oMB1qVd15WEQowkOzhsPe1XTvDe6XTurImCcjmJiR-fwzQYhGunwdjV5vxk2E6X-Cy5lszcGS3526Uh39-Bdt43uEX4GPLdwkhxP_-Axz1q_ChxckhGvQH_rQgihcSyeIBskRWj78QiO_EBzey4eSjDzpFeOxvSPH3ozqP-SqvnUjY8lljXbB559FVa7DsH903RtEbXeFSIqEVVHIrGxX2iTVhmcHhtPMCWGU0lwF81lLdWac1JIyKWOTsEwrxrmjXRlzXLsbsOALb78AkbbrmKIidqmLlYhlgJkHWaaYEQrHbsIuaiBvV0eZN4VvzvJWLXmrlk3oTI2R65ahPDTKuH17wN5swHhCzvH2pz-m1s1RjaEqIr0t6jJHzwykfalIv_6fmDuwNLg-P8vPji9Ov8EyD4dcGIu4-A4L1V1ttxClVGq7ccwn4mPiyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFLYGkxA8wAZDXDdP4oGXlNjOpX2sSivYBXWCSn2LfJUqwKlIIgS_nnPStAKmSttjohzLORf7s4_9HUJOtOMqiUIZSKdFEGkDIQWeEYTCATpO0jCWuFD8fZVcjKIf43jcXArDuzDQiQJaKuokPkb11LiGYYCdwXsvfd5iGvNVnRXyEZN2WLCh27uej7_ogskslwxrZQAUC0KfvxrAGUkXb2ektwNyPcsMtsho0b_6cMltqypVSz-_o2783x_4RDYb2Em7Mz_5TD5Yv002XpER7pDByGMpIryeTgEV0j54AG6l0SGAxEf5VNCJp718OrUP9NKbSXVPr6s7NzGW_qnAPvB8npfFFzIa9G96F0FTZSGQImZlgCss25E2TrThadvwMHVCGKU0V2hGa0OdGie1DJmUkYlZqhXj3IUdGXGI4V2y6nNv9wiVtuOYCkXkEhcpEUmEm-00VcwIBbL75AQ0kDVRUmR1ApyzrFFL1qhln7TmBsl0w1SOBTPulgucLgSmM5KO5Z9-n1s4AzVidkR6m1dFBh6K5H2JSA7-rZvfyNrwfJD9urz6eUjWOZ51YSzg4oislg-VPQawUqqvtW--AEsB5Uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Emission+Pathways+in+Copper+Indium+Sulfide+Quantum+Dots&rft.jtitle=ACS+nano&rft.au=Xia%2C+Chenghui&rft.au=Tamarat%2C+Philippe&rft.au=Hou%2C+Lei&rft.au=Busatto%2C+Serena&rft.date=2021-11-23&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=11&rft.spage=17573&rft.epage=17581&rft_id=info:doi/10.1021%2Facsnano.1c04909&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_1c04909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon