Unraveling the Emission Pathways in Copper Indium Sulfide Quantum Dots
Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, t...
Saved in:
Published in | ACS nano Vol. 15; no. 11; pp. 17573 - 17581 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
23.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.1c04909 |
Cover
Abstract | Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-temperature single quantum dot spectroscopy on core–shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots. |
---|---|
AbstractList | Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-temperature single quantum dot spectroscopy on core-shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots.Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-temperature single quantum dot spectroscopy on core-shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots. Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-temperature single quantum dot spectroscopy on core–shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots. |
Author | Hou, Lei Meeldijk, Johannes D de Mello Donega, Celso Busatto, Serena Tamarat, Philippe Lounis, Brahim Xia, Chenghui |
AuthorAffiliation | Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science LP2N Electron Microscopy Utrecht, Debye Institute for Nanomaterials Science Institut d’Optique and CNRS Utrecht University |
AuthorAffiliation_xml | – name: Electron Microscopy Utrecht, Debye Institute for Nanomaterials Science – name: Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science – name: Institut d’Optique and CNRS – name: LP2N – name: Utrecht University |
Author_xml | – sequence: 1 givenname: Chenghui orcidid: 0000-0001-5087-8805 surname: Xia fullname: Xia, Chenghui organization: Institut d’Optique and CNRS – sequence: 2 givenname: Philippe surname: Tamarat fullname: Tamarat, Philippe organization: Institut d’Optique and CNRS – sequence: 3 givenname: Lei surname: Hou fullname: Hou, Lei organization: Institut d’Optique and CNRS – sequence: 4 givenname: Serena surname: Busatto fullname: Busatto, Serena organization: Utrecht University – sequence: 5 givenname: Johannes D surname: Meeldijk fullname: Meeldijk, Johannes D organization: Electron Microscopy Utrecht, Debye Institute for Nanomaterials Science – sequence: 6 givenname: Celso orcidid: 0000-0002-4403-3627 surname: de Mello Donega fullname: de Mello Donega, Celso organization: Utrecht University – sequence: 7 givenname: Brahim orcidid: 0000-0001-7501-0236 surname: Lounis fullname: Lounis, Brahim email: brahim.lounis@u-bordeaux.fr organization: Institut d’Optique and CNRS |
BookMark | eNp9kEFLAzEQRoNUsK2eveYoSNsku8l2j1JbLRRUtOAtzGazNmWbrElW6b93pcWDoKeZYb43DG-AetZZjdAlJWNKGJ2AChasG1NF0pzkJ6hP80SMyFS89n56Ts_QIIQtITybZqKPFmvr4UPXxr7huNF4vjMhGGfxI8TNJ-wDNhbPXNNoj5e2NO0OP7d1ZUqNn1qwsZtvXQzn6LSCOuiLYx2i9WL-MrsfrR7ulrOb1QgSTuOIpoTqHDQXqmTZtGQkq5KkLArFikKkRGuisrICBYQCpCWnmSooYxXJIWWEJ0N0dbjbePfe6hBl96_SdQ1WuzZIxjNORCoS0UUnh6jyLgSvK9l4swO_l5TIb2PyaEwejXUE_0UoEyF2NqIHU__DXR-4biG3rvW2U_Bn-gsJPoN0 |
CitedBy_id | crossref_primary_10_1002_ejic_202300303 crossref_primary_10_1039_D4NR02202E crossref_primary_10_1016_j_colsurfa_2023_131003 crossref_primary_10_1021_acs_jpclett_3c00467 crossref_primary_10_1021_acs_jpcc_3c03634 crossref_primary_10_1021_acs_jpclett_4c02126 crossref_primary_10_1039_D4NA00967C crossref_primary_10_1007_s12274_024_6926_5 crossref_primary_10_1021_acsnano_2c05130 crossref_primary_10_1364_OPTICA_502221 crossref_primary_10_1021_acsnano_4c06559 crossref_primary_10_1039_D4EE02603A crossref_primary_10_1039_D4NR01997K crossref_primary_10_1021_acsnano_4c03123 crossref_primary_10_3389_fnano_2023_1291338 crossref_primary_10_1021_acs_inorgchem_4c04037 crossref_primary_10_1016_j_apcatb_2023_122747 crossref_primary_10_1002_adom_202200226 crossref_primary_10_1021_acs_cgd_4c00150 crossref_primary_10_1063_5_0160787 crossref_primary_10_1021_acsomega_4c03802 |
Cites_doi | 10.1021/cm301211e 10.1021/cm202947n 10.1021/acs.jpcc.5b00204 10.1021/acsnano.6b05419 10.1021/acs.nanolett.6b05118 10.1021/acs.nanolett.8b04905 10.1021/acs.nanolett.0c04239 10.1021/nn9004507 10.1002/adfm.201906629 10.1021/acs.jpclett.6b00571 10.1021/acsnano.9b09181 10.1021/acs.chemmater.7b01258 10.1021/acs.chemrev.5b00739 10.1103/PhysRevLett.58.1475 10.1021/nn901421v 10.1021/acs.chemmater.8b00477 10.1126/science.287.5455.1011 10.1007/978-3-642-85236-7 10.1021/acs.jpclett.8b03653 10.1063/1.4820269 10.1021/acsnano.8b03641 10.1039/D0QI01228A 10.1021/acs.jpcc.6b06425 10.1103/PhysRevLett.103.037404 10.1021/jacs.5b08547 10.1021/acs.jpcc.0c09681 10.1021/jacs.8b01412 10.1021/cm900103b 10.1103/PhysRevB.100.081411 10.1103/PhysRevLett.105.157402 10.1021/acs.jpcc.8b05286 10.1103/PhysRevB.71.235409 10.1021/acs.chemrev.6b00048 10.1039/C9TC03875B 10.1021/acsnano.8b05843 10.1016/0031-8914(67)90062-6 10.1021/nl202506c 10.1038/nnano.2016.140 10.1021/jp411213d 10.1038/nnano.2015.178 10.1016/0022-2313(82)90029-1 10.1038/nchem.1654 10.1038/s41586-019-1771-5 10.1039/D0TA03764H 10.1021/acs.jpclett.5b02211 10.1021/ja108261h 10.1021/acs.nanolett.8b02707 10.1038/ncomms2300 10.1103/PhysRevLett.59.2705 10.1039/c0jm03194a 10.1038/nmat3539 10.1103/PhysRevB.92.035431 10.1103/PhysRevB.82.125320 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.1c04909 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 17581 |
ExternalDocumentID | 10_1021_acsnano_1c04909 i17417693 |
GroupedDBID | - 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ ED~ JG~ 7X8 |
ID | FETCH-LOGICAL-a351t-1401e9ae56cd278d207f33dbbc2bb640ee0c7dfaca01aa4d517cb122f09a42053 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 10:56:45 EDT 2025 Tue Jul 01 03:37:15 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Thu Nov 25 03:13:29 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | single dot spectroscopy exciton self-trapping fine structure exciton−phonon coupling exciton core−shell nanocrystals |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a351t-1401e9ae56cd278d207f33dbbc2bb640ee0c7dfaca01aa4d517cb122f09a42053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4403-3627 0000-0001-7501-0236 0000-0001-5087-8805 |
OpenAccessLink | https://dspace.library.uu.nl/handle/1874/416288 |
PQID | 2575064636 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2575064636 crossref_primary_10_1021_acsnano_1c04909 crossref_citationtrail_10_1021_acsnano_1c04909 acs_journals_10_1021_acsnano_1c04909 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211123 2021-11-23 |
PublicationDateYYYYMMDD | 2021-11-23 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211123 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref31/cit31 doi: 10.1021/cm301211e – ident: ref34/cit34 doi: 10.1021/cm202947n – ident: ref36/cit36 doi: 10.1021/acs.jpcc.5b00204 – ident: ref9/cit9 doi: 10.1021/acsnano.6b05419 – ident: ref18/cit18 doi: 10.1021/acs.nanolett.6b05118 – ident: ref20/cit20 doi: 10.1021/acs.nanolett.8b04905 – ident: ref21/cit21 doi: 10.1021/acs.nanolett.0c04239 – ident: ref43/cit43 doi: 10.1021/nn9004507 – ident: ref8/cit8 doi: 10.1002/adfm.201906629 – ident: ref30/cit30 doi: 10.1021/acs.jpclett.6b00571 – ident: ref22/cit22 doi: 10.1021/acsnano.9b09181 – ident: ref12/cit12 doi: 10.1021/acs.chemmater.7b01258 – ident: ref52/cit52 doi: 10.1021/acs.chemrev.5b00739 – ident: ref53/cit53 doi: 10.1103/PhysRevLett.58.1475 – ident: ref27/cit27 doi: 10.1021/nn901421v – ident: ref51/cit51 doi: 10.1021/acs.chemmater.8b00477 – ident: ref38/cit38 doi: 10.1126/science.287.5455.1011 – ident: ref50/cit50 doi: 10.1007/978-3-642-85236-7 – ident: ref2/cit2 doi: 10.1021/acs.jpclett.8b03653 – ident: ref35/cit35 doi: 10.1063/1.4820269 – ident: ref29/cit29 doi: 10.1021/acsnano.8b03641 – ident: ref5/cit5 doi: 10.1039/D0QI01228A – ident: ref17/cit17 doi: 10.1021/acs.jpcc.6b06425 – ident: ref44/cit44 doi: 10.1103/PhysRevLett.103.037404 – ident: ref16/cit16 doi: 10.1021/jacs.5b08547 – ident: ref23/cit23 doi: 10.1021/acs.jpcc.0c09681 – ident: ref32/cit32 doi: 10.1021/jacs.8b01412 – ident: ref10/cit10 doi: 10.1021/cm900103b – ident: ref48/cit48 doi: 10.1103/PhysRevB.100.081411 – ident: ref46/cit46 doi: 10.1103/PhysRevLett.105.157402 – ident: ref19/cit19 doi: 10.1021/acs.jpcc.8b05286 – ident: ref41/cit41 doi: 10.1103/PhysRevB.71.235409 – ident: ref1/cit1 doi: 10.1021/acs.chemrev.6b00048 – ident: ref4/cit4 doi: 10.1039/C9TC03875B – ident: ref24/cit24 doi: 10.1021/acsnano.8b05843 – ident: ref40/cit40 doi: 10.1016/0031-8914(67)90062-6 – ident: ref45/cit45 doi: 10.1021/nl202506c – ident: ref39/cit39 doi: 10.1038/nnano.2016.140 – ident: ref28/cit28 doi: 10.1021/jp411213d – ident: ref7/cit7 doi: 10.1038/nnano.2015.178 – ident: ref25/cit25 doi: 10.1016/0022-2313(82)90029-1 – ident: ref14/cit14 doi: 10.1038/nchem.1654 – ident: ref15/cit15 doi: 10.1038/s41586-019-1771-5 – ident: ref6/cit6 doi: 10.1039/D0TA03764H – ident: ref3/cit3 doi: 10.1021/acs.jpclett.5b02211 – ident: ref11/cit11 doi: 10.1021/ja108261h – ident: ref49/cit49 doi: 10.1021/acs.nanolett.8b02707 – ident: ref47/cit47 doi: 10.1038/ncomms2300 – ident: ref37/cit37 doi: 10.1103/PhysRevLett.59.2705 – ident: ref33/cit33 doi: 10.1039/c0jm03194a – ident: ref13/cit13 doi: 10.1038/nmat3539 – ident: ref26/cit26 doi: 10.1103/PhysRevB.92.035431 – ident: ref42/cit42 doi: 10.1103/PhysRevB.82.125320 |
SSID | ssj0057876 |
Score | 2.4869652 |
Snippet | Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17573 |
Title | Unraveling the Emission Pathways in Copper Indium Sulfide Quantum Dots |
URI | http://dx.doi.org/10.1021/acsnano.1c04909 https://www.proquest.com/docview/2575064636 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF58XPTgW3yzggcvqdndZGOOUluqoCi14C3sE4p1U5oE0V_vbJv6KqLHQCYs89j5JjP7LUInylLJo1AEwioWREpDSIFnBCGzgI55EsbCF4o3t7zTi64f48dPsuifHXxKzoQqnHB5gyjfpErn0SLl4GQeBTW7003X-x2fNJChQAYU8cHiM_MBn4ZU8T0Nfd-Fx6mlvToZyirGjIR-ouSpUZWyod5m-Rr_XvUaWqkBJr6YeMQ6mjNuAy1_oR3cRO2e85cO-YPoGPAfboGt_U8zfAdw8EW8FrjvcDMfDs0IXzndr55xtxrYvjb4vgJLwPNlXhZbqNduPTQ7QX2fQiBYTMrA11ImFSbmStPkXNMwsYxpKRWV3mDGhCrRVigREiEiHZNESUKpDVMRUYjWbbTgcmd2EBYmtUSGLLLcRpJFwgPL8ySRRDMJsrvoBDSQ1fFQZONWNyVZrZasVssuakytkKmak9xfjTH4XeD0Q2A4oeP4_dXjqVkzUKPvgwhn8qrIwBc9TR9nfO9_y9xHS9SPshASUHaAFspRZQ4Bi5TyaOyF7xxH2mg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOEAPLeWh0hZwJQ5csviRB3tEW1bLU0WwErfIT2lV6qxIIgS_nnE2u0ArpHJMFFujmbHnm4z9DcCudlylMZWRdFpEsTa4pNAzIiocouM0o4kMieL5RToYxic3yc0c0OldGBSixJnKpoj_zC7A9vGdl77oMB1qVd15WEQowkOzhsPe1XTvDe6XTurImCcjmJiR-fwzQYhGunwdjV5vxk2E6X-Cy5lszcGS3526Uh39-Bdt43uEX4GPLdwkhxP_-Axz1q_ChxckhGvQH_rQgihcSyeIBskRWj78QiO_EBzey4eSjDzpFeOxvSPH3ozqP-SqvnUjY8lljXbB559FVa7DsH903RtEbXeFSIqEVVHIrGxX2iTVhmcHhtPMCWGU0lwF81lLdWac1JIyKWOTsEwrxrmjXRlzXLsbsOALb78AkbbrmKIidqmLlYhlgJkHWaaYEQrHbsIuaiBvV0eZN4VvzvJWLXmrlk3oTI2R65ahPDTKuH17wN5swHhCzvH2pz-m1s1RjaEqIr0t6jJHzwykfalIv_6fmDuwNLg-P8vPji9Ov8EyD4dcGIu4-A4L1V1ttxClVGq7ccwn4mPiyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFLYGkxA8wAZDXDdP4oGXlNjOpX2sSivYBXWCSn2LfJUqwKlIIgS_nnPStAKmSttjohzLORf7s4_9HUJOtOMqiUIZSKdFEGkDIQWeEYTCATpO0jCWuFD8fZVcjKIf43jcXArDuzDQiQJaKuokPkb11LiGYYCdwXsvfd5iGvNVnRXyEZN2WLCh27uej7_ogskslwxrZQAUC0KfvxrAGUkXb2ektwNyPcsMtsho0b_6cMltqypVSz-_o2783x_4RDYb2Em7Mz_5TD5Yv002XpER7pDByGMpIryeTgEV0j54AG6l0SGAxEf5VNCJp718OrUP9NKbSXVPr6s7NzGW_qnAPvB8npfFFzIa9G96F0FTZSGQImZlgCss25E2TrThadvwMHVCGKU0V2hGa0OdGie1DJmUkYlZqhXj3IUdGXGI4V2y6nNv9wiVtuOYCkXkEhcpEUmEm-00VcwIBbL75AQ0kDVRUmR1ApyzrFFL1qhln7TmBsl0w1SOBTPulgucLgSmM5KO5Z9-n1s4AzVidkR6m1dFBh6K5H2JSA7-rZvfyNrwfJD9urz6eUjWOZ51YSzg4oislg-VPQawUqqvtW--AEsB5Uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Emission+Pathways+in+Copper+Indium+Sulfide+Quantum+Dots&rft.jtitle=ACS+nano&rft.au=Xia%2C+Chenghui&rft.au=Tamarat%2C+Philippe&rft.au=Hou%2C+Lei&rft.au=Busatto%2C+Serena&rft.date=2021-11-23&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=11&rft.spage=17573&rft.epage=17581&rft_id=info:doi/10.1021%2Facsnano.1c04909&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_1c04909 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |