Hamiltonian Monte Carlo-Based D‑Vine Copula Regression Model for Soft Sensor Modeling of Complex Chemical Processes

Nonlinear processes and non-Gaussian properties are challenging subjects for soft sensor modeling of chemical processes. In this paper, we propose a D-vine copula regression method based on a Hamiltonian Monte Carlo (HMC) sampling strategy (HMCCR). In the data pretreatment process, the rolling pin m...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 59; no. 4; pp. 1607 - 1618
Main Authors Ni, Jianeng, Zhou, Yang, Li, Shaojun
Format Journal Article
LanguageEnglish
Published American Chemical Society 29.01.2020
Subjects
Online AccessGet full text
ISSN0888-5885
1520-5045
1520-5045
DOI10.1021/acs.iecr.9b05370

Cover

Abstract Nonlinear processes and non-Gaussian properties are challenging subjects for soft sensor modeling of chemical processes. In this paper, we propose a D-vine copula regression method based on a Hamiltonian Monte Carlo (HMC) sampling strategy (HMCCR). In the data pretreatment process, the rolling pin monotonic transformation method is used to ensure that the data have a monotonic relationship. Subsequently, a D-vine copula model is established to obtain the conditional probability density of the key variables based on the auxiliary variables. The expected value, the variance, and the prediction uncertainty of the query data set are calculated using the HMC method. The proposed regression method can successfully approximate the nonlinear and non-Gaussian relationship between the output and input variables using the vine copula function. In addition, we also propose a supplementary sampling strategy based on the HMCCR model to remind operators to supplement the manual analysis. The validity and performance of the proposed method are demonstrated using two industrial examples.
AbstractList Nonlinear processes and non-Gaussian properties are challenging subjects for soft sensor modeling of chemical processes. In this paper, we propose a D-vine copula regression method based on a Hamiltonian Monte Carlo (HMC) sampling strategy (HMCCR). In the data pretreatment process, the rolling pin monotonic transformation method is used to ensure that the data have a monotonic relationship. Subsequently, a D-vine copula model is established to obtain the conditional probability density of the key variables based on the auxiliary variables. The expected value, the variance, and the prediction uncertainty of the query data set are calculated using the HMC method. The proposed regression method can successfully approximate the nonlinear and non-Gaussian relationship between the output and input variables using the vine copula function. In addition, we also propose a supplementary sampling strategy based on the HMCCR model to remind operators to supplement the manual analysis. The validity and performance of the proposed method are demonstrated using two industrial examples.
Author Zhou, Yang
Ni, Jianeng
Li, Shaojun
Author_xml – sequence: 1
  givenname: Jianeng
  surname: Ni
  fullname: Ni, Jianeng
– sequence: 2
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
– sequence: 3
  givenname: Shaojun
  orcidid: 0000-0002-2891-2330
  surname: Li
  fullname: Li, Shaojun
  email: lishaojun@ecust.edu.cn
BookMark eNp9kLFOHDEQhi1EJA5CT-kyRfYy67U5bxkOEiKBEgVEu5rzjsHIax_2rgQdr8Ar5kni46iQkmqs3_830nz7bDfEQIwd1TCvQdRf0OS5I5Pm7QpUs4AdNquVgEqBVLtsBlrrSmmt9th-zvcAoJSUMzad4-D8GIPDwC9jGIkvMflYnWCmnp_-eX65caGEcT155L_pNlHOLm7KPXluY-JX0Y78ikIu79fUhVsebWGGtadHvryjwRn0_FeKptCUP7IPFn2mw7d5wK6_nV0vz6uLn99_LL9eVNgoGCuLRlq7MkZbIVD0ZlEL3S5wZXTJew1N2_e0gqYxxyBEi0r2LWiJdd82smkO2Kft2nWKDxPlsRtcNuQ9BopT7oQsGgq9kKV6vK2aFHNOZDvjRhzLoWNC57sauo3mrmjuNpq7N80FhHfgOrkB09P_kM9bZPNzH6cUioN_1_8CT5CVxQ
CitedBy_id crossref_primary_10_1016_j_jprocont_2022_11_004
crossref_primary_10_1016_j_jtice_2022_104483
crossref_primary_10_1016_j_compchemeng_2022_107788
crossref_primary_10_1016_j_measurement_2024_115253
crossref_primary_10_3390_pr9040721
crossref_primary_10_1108_MABR_02_2022_0006
Cites_doi 10.1021/acs.iecr.8b06095
10.1093/biomet/57.1.97
10.1016/j.jprocont.2017.06.002
10.1021/acs.iecr.5b01267
10.1109/access.2018.2889873
10.18637/jss.v052.i03
10.3934/geosci.2015.1.41
10.1021/acs.iecr.9b02513
10.1016/0370-2693(87)91197-x
10.1021/ie101356c
10.1080/03610918.2013.804557
10.3390/atmos9060213
10.1016/s0009-2509(98)00523-5
10.1016/s0959-1524(01)00044-0
10.1016/j.jmva.2019.03.004
10.1002/aic.11648
10.1021/ie501863u
10.1109/tetci.2017.2769111
10.1109/tie.2014.2385042
10.1016/j.cherd.2015.08.026
10.1021/ie503584q
10.1080/01621459.2013.783842
10.1021/ie800386v
10.1021/ie4020793
10.1109/tie.2007.907672
10.1109/access.2018.2798664
10.1016/j.chemolab.2014.07.013
10.1016/j.insmatheco.2007.02.001
10.1214/aos/1176345528
10.1021/ie4041252
10.1029/1999wr900028
10.1016/s0898-1221(00)85018-x
10.1016/s0140-6736(69)91563-3
10.1007/s00477-019-01662-6
10.1109/tim.2014.2313035
10.1016/j.jocs.2017.09.002
10.1021/ie503585m
10.1109/tcst.2016.2576999
10.1016/j.chemolab.2015.12.011
10.1214/lnms/1215452614
10.1080/01621459.2014.916577
10.1111/risa.12471
10.1002/aic.14937
10.1021/ie3020186
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.iecr.9b05370
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 1618
ExternalDocumentID 10_1021_acs_iecr_9b05370
c332990547
GroupedDBID 02
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
X
-~X
.DC
.K2
4.4
5VS
6TJ
AAYXX
ABBLG
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
~02
7S9
L.6
ID FETCH-LOGICAL-a350t-fac4ffbcc8f22a2dc712897abc84ffd8039ddeb033c60229a54d9084a1d93433
IEDL.DBID ACS
ISSN 0888-5885
1520-5045
IngestDate Thu Jul 10 22:39:37 EDT 2025
Tue Jul 01 00:49:14 EDT 2025
Thu Apr 24 23:06:16 EDT 2025
Thu Aug 27 22:10:43 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a350t-fac4ffbcc8f22a2dc712897abc84ffd8039ddeb033c60229a54d9084a1d93433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2891-2330
PQID 2400503374
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2400503374
crossref_citationtrail_10_1021_acs_iecr_9b05370
crossref_primary_10_1021_acs_iecr_9b05370
acs_journals_10_1021_acs_iecr_9b05370
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-29
PublicationDateYYYYMMDD 2020-01-29
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-29
  day: 29
PublicationDecade 2020
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1021/acs.iecr.8b06095
– ident: ref36/cit36
  doi: 10.1093/biomet/57.1.97
– ident: ref18/cit18
  doi: 10.1016/j.jprocont.2017.06.002
– ident: ref20/cit20
  doi: 10.1021/acs.iecr.5b01267
– ident: ref16/cit16
  doi: 10.1109/access.2018.2889873
– ident: ref21/cit21
– ident: ref31/cit31
  doi: 10.18637/jss.v052.i03
– ident: ref39/cit39
  doi: 10.3934/geosci.2015.1.41
– ident: ref14/cit14
  doi: 10.1021/acs.iecr.9b02513
– ident: ref37/cit37
  doi: 10.1016/0370-2693(87)91197-x
– ident: ref10/cit10
  doi: 10.1021/ie101356c
– ident: ref25/cit25
  doi: 10.1080/03610918.2013.804557
– ident: ref38/cit38
  doi: 10.3390/atmos9060213
– ident: ref8/cit8
  doi: 10.1016/s0009-2509(98)00523-5
– ident: ref5/cit5
  doi: 10.1016/s0959-1524(01)00044-0
– ident: ref23/cit23
  doi: 10.1016/j.jmva.2019.03.004
– ident: ref44/cit44
  doi: 10.1002/aic.11648
– ident: ref32/cit32
  doi: 10.1021/ie501863u
– ident: ref45/cit45
  doi: 10.1109/tetci.2017.2769111
– ident: ref9/cit9
  doi: 10.1109/tie.2014.2385042
– ident: ref35/cit35
  doi: 10.1016/j.cherd.2015.08.026
– ident: ref29/cit29
  doi: 10.1021/ie503584q
– ident: ref19/cit19
  doi: 10.1080/01621459.2013.783842
– ident: ref3/cit3
  doi: 10.1021/ie800386v
– ident: ref2/cit2
  doi: 10.1021/ie4020793
– ident: ref15/cit15
  doi: 10.1109/tie.2007.907672
– ident: ref1/cit1
  doi: 10.1109/access.2018.2798664
– ident: ref6/cit6
  doi: 10.1016/j.chemolab.2014.07.013
– ident: ref30/cit30
  doi: 10.1016/j.insmatheco.2007.02.001
– ident: ref33/cit33
  doi: 10.1214/aos/1176345528
– ident: ref12/cit12
  doi: 10.1021/ie4041252
– ident: ref43/cit43
  doi: 10.1029/1999wr900028
– ident: ref40/cit40
  doi: 10.1016/s0898-1221(00)85018-x
– ident: ref41/cit41
  doi: 10.1016/s0140-6736(69)91563-3
– ident: ref27/cit27
  doi: 10.1007/s00477-019-01662-6
– ident: ref42/cit42
  doi: 10.1109/tim.2014.2313035
– ident: ref26/cit26
  doi: 10.1016/j.jocs.2017.09.002
– ident: ref34/cit34
  doi: 10.1021/ie503585m
– ident: ref17/cit17
  doi: 10.1109/tcst.2016.2576999
– ident: ref4/cit4
  doi: 10.1016/j.chemolab.2015.12.011
– ident: ref22/cit22
  doi: 10.1214/lnms/1215452614
– ident: ref28/cit28
  doi: 10.1080/01621459.2014.916577
– ident: ref24/cit24
  doi: 10.1111/risa.12471
– ident: ref7/cit7
  doi: 10.1002/aic.14937
– ident: ref13/cit13
  doi: 10.1021/ie3020186
SSID ssj0005544
Score 2.356849
Snippet Nonlinear processes and non-Gaussian properties are challenging subjects for soft sensor modeling of chemical processes. In this paper, we propose a D-vine...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1607
SubjectTerms data collection
prediction
probability distribution
regression analysis
rolling
uncertainty
variance
vines
Title Hamiltonian Monte Carlo-Based D‑Vine Copula Regression Model for Soft Sensor Modeling of Complex Chemical Processes
URI http://dx.doi.org/10.1021/acs.iecr.9b05370
https://www.proquest.com/docview/2400503374
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iFz34FtcXEfTgIWubpI8cdVUWQQ-uireSV0VcdmXbBfHkX_Av-kuc6XZ9I95KSEJJ5_FNZ_INITsuBg1KdcKczWMmvfJMB2HOwBekThuFmS-stjiP21fy9Ca6-aDJ-Z7B5-G-tkXzDiBUUxnkHoHwfIrHIGUIg1qdj3KOqGrcCkqDN4nSqE5J_rYDOiJbfHVEX-1w5VxO5kZdioqKkxBrSu6bw9I07dNPxsZ_vPc8ma0xJj0YCcUCmfC9RTLziXlwiQzb-GMDcB9IBz1Dhira0oNunx2CV3P06PX55Rpm01bV34te-NtRvSxOdr5LAerSDlhw2oEwGJ6rUdiZ9nOKJqbrH-mYi4DWlxF8sUwuT44vW21Wd2BgWkRByXJtZZ4ba9Occ82dTcCdqUQbm8K4SwOhwDyaQAgbAxhQOpJOBanUoVNCCrFCJnv9nl8l1EottU2siPNEeoA9wscGwjMdhsYL7hpkFw4sqxWoyKrcOA8zHMRTzOpTbJD98VfLbM1ijs00un-s2Htf8TBi8Phj7vZYEDJQM8yd6J7vD4sMS20x45vItX--6TqZ5hibByHjaoNMloOh3wQAU5qtSnLfAMPJ7dg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUqOAAHdsSOkeDAwSWJncXHUkBlPdCCuEXeghBVi0grIU78Ar_IlzCTpmxCCG7RyLFGzqyZ8RtCtmwEGpSomFmTRUw46Zjy_IyBL0is0hIrX9htcR41LsXxdXhdIf7wLgwwkcNOeVHE_0AX8HeRdguRVFVqhCCBLH0UYpEApzXU6s2Pro6wmN8KuoMXipKwrEz-tAP6I5N_9UdfzXHhYw6nyMU7d0VryV2139NV8_QNuPFf7E-TyTLipLWBiMyQiuvMkolPOIRzpN_A3xwQBYKs0DPEq6J19dDusj3wcZbuvz6_XMFqWi-mfdELdzPonsXF1rUpBL60CfacNiEphueCCjvTbkbR4LTdIx0iE9DyaoLL50nr8KBVb7ByHgNTPPR6LFNGZJk2JsmCQAXWxODcZKy0SYBuE49LMJba49xEEBpIFQorvUQo30ouOF8gI51uxy0SaoQSysSGR1ksHARB3EUakjXl-9rxwC6RbTiwtFSnPC0q5YGfIhFPMS1PcYnsDj9eakpMcxyt0f7ljZ33N-4HeB6_rN0cykMKSoeVFNVx3X6eYuMt1n9jsfxHTjfIWKN1dpqeHp2frJDxALN2z2eBXCUjvYe-W4PQpqfXC2F-A5Tw9jk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYikFA5QB8gArR1JTj04GR37X34SANRgIJQQ1FuKz8RIkoQm0iIE3-Bv8gvYWazSaFCCG6rkW15vfPcGX9DyJZNQIIylTJrfMKEk46pIPQMbEFmlZaY-cJqi-Ok81cc9OJejcTTuzCwiQJWKsokPkr1lfUVwkDYRPoFeFMNqRGGBCL1eczaYceGnVb3X2VHXPZwBfnBS0VZXGUnX1oBbZIpntuk5yq5tDPtZXI222FZXnLZGI90w9z-B9747lf4SJYqz5PuTFjlE6m5wWey-ASP8AsZd_B3B3iDwDP0CHGraEtd94fsF9g6S3cf7u7PYDRtlV2_6B93PqmixcHW9Sk4wLQLep12ITiG55IKK9Ohp6h4-u6GThEKaHVFwRUr5LS9d9rqsKovA1M8DkbMKyO818ZkPopUZE0KRk6mSpsM6DYLuASlqQPOTQIuglSxsDLIhAqt5ILzVTI3GA7cGqFGKKFManjiU-HAGeIu0RC0qTDUjke2TrbhwPJKrIq8zJhHYY5EPMW8OsU6aU4_YG4qbHNssdF_ZcbP2YyrCa7HK2N_THkiB-HDjIoauOG4yLEAF_PAqVh_406_k4WT3Xb-e__4cIN8iDB4D0IWyU0yN7oeu6_g4Yz0t5KfHwGCpvi8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hamiltonian+Monte+Carlo-Based+D%E2%80%91Vine+Copula+Regression+Model+for+Soft+Sensor+Modeling+of+Complex+Chemical+Processes&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Ni%2C+Jianeng&rft.au=Zhou%2C+Yang&rft.au=Li%2C+Shaojun&rft.date=2020-01-29&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=59&rft.issue=4&rft.spage=1607&rft.epage=1618&rft_id=info:doi/10.1021%2Facs.iecr.9b05370&rft.externalDocID=c332990547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon