Hamiltonian Monte Carlo-Based D‑Vine Copula Regression Model for Soft Sensor Modeling of Complex Chemical Processes
Nonlinear processes and non-Gaussian properties are challenging subjects for soft sensor modeling of chemical processes. In this paper, we propose a D-vine copula regression method based on a Hamiltonian Monte Carlo (HMC) sampling strategy (HMCCR). In the data pretreatment process, the rolling pin m...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 59; no. 4; pp. 1607 - 1618 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
29.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0888-5885 1520-5045 1520-5045 |
DOI | 10.1021/acs.iecr.9b05370 |
Cover
Abstract | Nonlinear processes and non-Gaussian properties are challenging subjects for soft sensor modeling of chemical processes. In this paper, we propose a D-vine copula regression method based on a Hamiltonian Monte Carlo (HMC) sampling strategy (HMCCR). In the data pretreatment process, the rolling pin monotonic transformation method is used to ensure that the data have a monotonic relationship. Subsequently, a D-vine copula model is established to obtain the conditional probability density of the key variables based on the auxiliary variables. The expected value, the variance, and the prediction uncertainty of the query data set are calculated using the HMC method. The proposed regression method can successfully approximate the nonlinear and non-Gaussian relationship between the output and input variables using the vine copula function. In addition, we also propose a supplementary sampling strategy based on the HMCCR model to remind operators to supplement the manual analysis. The validity and performance of the proposed method are demonstrated using two industrial examples. |
---|---|
AbstractList | Nonlinear processes and non-Gaussian properties are challenging subjects for soft sensor modeling of chemical processes. In this paper, we propose a D-vine copula regression method based on a Hamiltonian Monte Carlo (HMC) sampling strategy (HMCCR). In the data pretreatment process, the rolling pin monotonic transformation method is used to ensure that the data have a monotonic relationship. Subsequently, a D-vine copula model is established to obtain the conditional probability density of the key variables based on the auxiliary variables. The expected value, the variance, and the prediction uncertainty of the query data set are calculated using the HMC method. The proposed regression method can successfully approximate the nonlinear and non-Gaussian relationship between the output and input variables using the vine copula function. In addition, we also propose a supplementary sampling strategy based on the HMCCR model to remind operators to supplement the manual analysis. The validity and performance of the proposed method are demonstrated using two industrial examples. |
Author | Zhou, Yang Ni, Jianeng Li, Shaojun |
Author_xml | – sequence: 1 givenname: Jianeng surname: Ni fullname: Ni, Jianeng – sequence: 2 givenname: Yang surname: Zhou fullname: Zhou, Yang – sequence: 3 givenname: Shaojun orcidid: 0000-0002-2891-2330 surname: Li fullname: Li, Shaojun email: lishaojun@ecust.edu.cn |
BookMark | eNp9kLFOHDEQhi1EJA5CT-kyRfYy67U5bxkOEiKBEgVEu5rzjsHIax_2rgQdr8Ar5kni46iQkmqs3_830nz7bDfEQIwd1TCvQdRf0OS5I5Pm7QpUs4AdNquVgEqBVLtsBlrrSmmt9th-zvcAoJSUMzad4-D8GIPDwC9jGIkvMflYnWCmnp_-eX65caGEcT155L_pNlHOLm7KPXluY-JX0Y78ikIu79fUhVsebWGGtadHvryjwRn0_FeKptCUP7IPFn2mw7d5wK6_nV0vz6uLn99_LL9eVNgoGCuLRlq7MkZbIVD0ZlEL3S5wZXTJew1N2_e0gqYxxyBEi0r2LWiJdd82smkO2Kft2nWKDxPlsRtcNuQ9BopT7oQsGgq9kKV6vK2aFHNOZDvjRhzLoWNC57sauo3mrmjuNpq7N80FhHfgOrkB09P_kM9bZPNzH6cUioN_1_8CT5CVxQ |
CitedBy_id | crossref_primary_10_1016_j_jprocont_2022_11_004 crossref_primary_10_1016_j_jtice_2022_104483 crossref_primary_10_1016_j_compchemeng_2022_107788 crossref_primary_10_1016_j_measurement_2024_115253 crossref_primary_10_3390_pr9040721 crossref_primary_10_1108_MABR_02_2022_0006 |
Cites_doi | 10.1021/acs.iecr.8b06095 10.1093/biomet/57.1.97 10.1016/j.jprocont.2017.06.002 10.1021/acs.iecr.5b01267 10.1109/access.2018.2889873 10.18637/jss.v052.i03 10.3934/geosci.2015.1.41 10.1021/acs.iecr.9b02513 10.1016/0370-2693(87)91197-x 10.1021/ie101356c 10.1080/03610918.2013.804557 10.3390/atmos9060213 10.1016/s0009-2509(98)00523-5 10.1016/s0959-1524(01)00044-0 10.1016/j.jmva.2019.03.004 10.1002/aic.11648 10.1021/ie501863u 10.1109/tetci.2017.2769111 10.1109/tie.2014.2385042 10.1016/j.cherd.2015.08.026 10.1021/ie503584q 10.1080/01621459.2013.783842 10.1021/ie800386v 10.1021/ie4020793 10.1109/tie.2007.907672 10.1109/access.2018.2798664 10.1016/j.chemolab.2014.07.013 10.1016/j.insmatheco.2007.02.001 10.1214/aos/1176345528 10.1021/ie4041252 10.1029/1999wr900028 10.1016/s0898-1221(00)85018-x 10.1016/s0140-6736(69)91563-3 10.1007/s00477-019-01662-6 10.1109/tim.2014.2313035 10.1016/j.jocs.2017.09.002 10.1021/ie503585m 10.1109/tcst.2016.2576999 10.1016/j.chemolab.2015.12.011 10.1214/lnms/1215452614 10.1080/01621459.2014.916577 10.1111/risa.12471 10.1002/aic.14937 10.1021/ie3020186 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.iecr.9b05370 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 1618 |
ExternalDocumentID | 10_1021_acs_iecr_9b05370 c332990547 |
GroupedDBID | 02 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC .K2 4.4 5VS 6TJ AAYXX ABBLG ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a350t-fac4ffbcc8f22a2dc712897abc84ffd8039ddeb033c60229a54d9084a1d93433 |
IEDL.DBID | ACS |
ISSN | 0888-5885 1520-5045 |
IngestDate | Thu Jul 10 22:39:37 EDT 2025 Tue Jul 01 00:49:14 EDT 2025 Thu Apr 24 23:06:16 EDT 2025 Thu Aug 27 22:10:43 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a350t-fac4ffbcc8f22a2dc712897abc84ffd8039ddeb033c60229a54d9084a1d93433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2891-2330 |
PQID | 2400503374 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2400503374 crossref_citationtrail_10_1021_acs_iecr_9b05370 crossref_primary_10_1021_acs_iecr_9b05370 acs_journals_10_1021_acs_iecr_9b05370 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-29 |
PublicationDateYYYYMMDD | 2020-01-29 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-29 day: 29 |
PublicationDecade | 2020 |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1021/acs.iecr.8b06095 – ident: ref36/cit36 doi: 10.1093/biomet/57.1.97 – ident: ref18/cit18 doi: 10.1016/j.jprocont.2017.06.002 – ident: ref20/cit20 doi: 10.1021/acs.iecr.5b01267 – ident: ref16/cit16 doi: 10.1109/access.2018.2889873 – ident: ref21/cit21 – ident: ref31/cit31 doi: 10.18637/jss.v052.i03 – ident: ref39/cit39 doi: 10.3934/geosci.2015.1.41 – ident: ref14/cit14 doi: 10.1021/acs.iecr.9b02513 – ident: ref37/cit37 doi: 10.1016/0370-2693(87)91197-x – ident: ref10/cit10 doi: 10.1021/ie101356c – ident: ref25/cit25 doi: 10.1080/03610918.2013.804557 – ident: ref38/cit38 doi: 10.3390/atmos9060213 – ident: ref8/cit8 doi: 10.1016/s0009-2509(98)00523-5 – ident: ref5/cit5 doi: 10.1016/s0959-1524(01)00044-0 – ident: ref23/cit23 doi: 10.1016/j.jmva.2019.03.004 – ident: ref44/cit44 doi: 10.1002/aic.11648 – ident: ref32/cit32 doi: 10.1021/ie501863u – ident: ref45/cit45 doi: 10.1109/tetci.2017.2769111 – ident: ref9/cit9 doi: 10.1109/tie.2014.2385042 – ident: ref35/cit35 doi: 10.1016/j.cherd.2015.08.026 – ident: ref29/cit29 doi: 10.1021/ie503584q – ident: ref19/cit19 doi: 10.1080/01621459.2013.783842 – ident: ref3/cit3 doi: 10.1021/ie800386v – ident: ref2/cit2 doi: 10.1021/ie4020793 – ident: ref15/cit15 doi: 10.1109/tie.2007.907672 – ident: ref1/cit1 doi: 10.1109/access.2018.2798664 – ident: ref6/cit6 doi: 10.1016/j.chemolab.2014.07.013 – ident: ref30/cit30 doi: 10.1016/j.insmatheco.2007.02.001 – ident: ref33/cit33 doi: 10.1214/aos/1176345528 – ident: ref12/cit12 doi: 10.1021/ie4041252 – ident: ref43/cit43 doi: 10.1029/1999wr900028 – ident: ref40/cit40 doi: 10.1016/s0898-1221(00)85018-x – ident: ref41/cit41 doi: 10.1016/s0140-6736(69)91563-3 – ident: ref27/cit27 doi: 10.1007/s00477-019-01662-6 – ident: ref42/cit42 doi: 10.1109/tim.2014.2313035 – ident: ref26/cit26 doi: 10.1016/j.jocs.2017.09.002 – ident: ref34/cit34 doi: 10.1021/ie503585m – ident: ref17/cit17 doi: 10.1109/tcst.2016.2576999 – ident: ref4/cit4 doi: 10.1016/j.chemolab.2015.12.011 – ident: ref22/cit22 doi: 10.1214/lnms/1215452614 – ident: ref28/cit28 doi: 10.1080/01621459.2014.916577 – ident: ref24/cit24 doi: 10.1111/risa.12471 – ident: ref7/cit7 doi: 10.1002/aic.14937 – ident: ref13/cit13 doi: 10.1021/ie3020186 |
SSID | ssj0005544 |
Score | 2.356849 |
Snippet | Nonlinear processes and non-Gaussian properties are challenging subjects for soft sensor modeling of chemical processes. In this paper, we propose a D-vine... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1607 |
SubjectTerms | data collection prediction probability distribution regression analysis rolling uncertainty variance vines |
Title | Hamiltonian Monte Carlo-Based D‑Vine Copula Regression Model for Soft Sensor Modeling of Complex Chemical Processes |
URI | http://dx.doi.org/10.1021/acs.iecr.9b05370 https://www.proquest.com/docview/2400503374 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iFz34FtcXEfTgIWubpI8cdVUWQQ-uireSV0VcdmXbBfHkX_Av-kuc6XZ9I95KSEJJ5_FNZ_INITsuBg1KdcKczWMmvfJMB2HOwBekThuFmS-stjiP21fy9Ca6-aDJ-Z7B5-G-tkXzDiBUUxnkHoHwfIrHIGUIg1qdj3KOqGrcCkqDN4nSqE5J_rYDOiJbfHVEX-1w5VxO5kZdioqKkxBrSu6bw9I07dNPxsZ_vPc8ma0xJj0YCcUCmfC9RTLziXlwiQzb-GMDcB9IBz1Dhira0oNunx2CV3P06PX55Rpm01bV34te-NtRvSxOdr5LAerSDlhw2oEwGJ6rUdiZ9nOKJqbrH-mYi4DWlxF8sUwuT44vW21Wd2BgWkRByXJtZZ4ba9Occ82dTcCdqUQbm8K4SwOhwDyaQAgbAxhQOpJOBanUoVNCCrFCJnv9nl8l1EottU2siPNEeoA9wscGwjMdhsYL7hpkFw4sqxWoyKrcOA8zHMRTzOpTbJD98VfLbM1ijs00un-s2Htf8TBi8Phj7vZYEDJQM8yd6J7vD4sMS20x45vItX--6TqZ5hibByHjaoNMloOh3wQAU5qtSnLfAMPJ7dg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUqOAAHdsSOkeDAwSWJncXHUkBlPdCCuEXeghBVi0grIU78Ar_IlzCTpmxCCG7RyLFGzqyZ8RtCtmwEGpSomFmTRUw46Zjy_IyBL0is0hIrX9htcR41LsXxdXhdIf7wLgwwkcNOeVHE_0AX8HeRdguRVFVqhCCBLH0UYpEApzXU6s2Pro6wmN8KuoMXipKwrEz-tAP6I5N_9UdfzXHhYw6nyMU7d0VryV2139NV8_QNuPFf7E-TyTLipLWBiMyQiuvMkolPOIRzpN_A3xwQBYKs0DPEq6J19dDusj3wcZbuvz6_XMFqWi-mfdELdzPonsXF1rUpBL60CfacNiEphueCCjvTbkbR4LTdIx0iE9DyaoLL50nr8KBVb7ByHgNTPPR6LFNGZJk2JsmCQAXWxODcZKy0SYBuE49LMJba49xEEBpIFQorvUQo30ouOF8gI51uxy0SaoQSysSGR1ksHARB3EUakjXl-9rxwC6RbTiwtFSnPC0q5YGfIhFPMS1PcYnsDj9eakpMcxyt0f7ljZ33N-4HeB6_rN0cykMKSoeVFNVx3X6eYuMt1n9jsfxHTjfIWKN1dpqeHp2frJDxALN2z2eBXCUjvYe-W4PQpqfXC2F-A5Tw9jk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYikFA5QB8gArR1JTj04GR37X34SANRgIJQQ1FuKz8RIkoQm0iIE3-Bv8gvYWazSaFCCG6rkW15vfPcGX9DyJZNQIIylTJrfMKEk46pIPQMbEFmlZaY-cJqi-Ok81cc9OJejcTTuzCwiQJWKsokPkr1lfUVwkDYRPoFeFMNqRGGBCL1eczaYceGnVb3X2VHXPZwBfnBS0VZXGUnX1oBbZIpntuk5yq5tDPtZXI222FZXnLZGI90w9z-B9747lf4SJYqz5PuTFjlE6m5wWey-ASP8AsZd_B3B3iDwDP0CHGraEtd94fsF9g6S3cf7u7PYDRtlV2_6B93PqmixcHW9Sk4wLQLep12ITiG55IKK9Ohp6h4-u6GThEKaHVFwRUr5LS9d9rqsKovA1M8DkbMKyO818ZkPopUZE0KRk6mSpsM6DYLuASlqQPOTQIuglSxsDLIhAqt5ILzVTI3GA7cGqFGKKFManjiU-HAGeIu0RC0qTDUjke2TrbhwPJKrIq8zJhHYY5EPMW8OsU6aU4_YG4qbHNssdF_ZcbP2YyrCa7HK2N_THkiB-HDjIoauOG4yLEAF_PAqVh_406_k4WT3Xb-e__4cIN8iDB4D0IWyU0yN7oeu6_g4Yz0t5KfHwGCpvi8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hamiltonian+Monte+Carlo-Based+D%E2%80%91Vine+Copula+Regression+Model+for+Soft+Sensor+Modeling+of+Complex+Chemical+Processes&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Ni%2C+Jianeng&rft.au=Zhou%2C+Yang&rft.au=Li%2C+Shaojun&rft.date=2020-01-29&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=59&rft.issue=4&rft.spage=1607&rft.epage=1618&rft_id=info:doi/10.1021%2Facs.iecr.9b05370&rft.externalDocID=c332990547 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |