Molecular Origin and Electrochemical Influence of Capacitive Surface States on Iron Oxide Photoanodes
The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have been under scrutiny for several decades. In the present study, the surface of hematite films is treated with an oxygen plasma and then subject t...
Saved in:
Published in | Journal of physical chemistry. C Vol. 120; no. 6; pp. 3250 - 3258 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
18.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-7447 1932-7455 1932-7455 |
DOI | 10.1021/acs.jpcc.5b08013 |
Cover
Abstract | The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have been under scrutiny for several decades. In the present study, the surface of hematite films is treated with an oxygen plasma and then subject to a detailed investigation with electroanalytical methods and element orbital specific X-ray spectroscopy. We observe a systemic variation of photoelectrochemical properties with oxygen treatment time. Fe 2p and O 1s core level X-ray photoelectron spectra and resonant valence band photoemission at the Fe 3p edge reveal the filling of prevalent oxygen vacancies with concomitant oxidation of Fe2+ to Fe3+ upon the oxygen treatment. The dc bias dependent impedance spectra confirm how a prevalent capacitive surface state, which evolves parallel with the photocurrent onset potential, becomes diminished upon oxygen treatment. Surface states of iron induce higher reactivity toward water oxidation than oxygen surface states. The correlation between oxygen vacancy filling, concentration of surface states, and photocurrent density in the course of treatment confirms that the surface defects are of a capacitive nature and that the onset of water splitting can be considered as a result of dielectric breakdown in an interfacial hydroxide layer between photoanode and water. |
---|---|
AbstractList | The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have been under scrutiny for several decades. In the present study, the surface of hematite films is treated with an oxygen plasma and then subject to a detailed investigation with electroanalytical methods and element orbital specific X-ray spectroscopy. We observe a systemic variation of photoelectrochemical properties with oxygen treatment time. Fe 2p and O 1s core level X-ray photoelectron spectra and resonant valence band photoemission at the Fe 3p edge reveal the filling of prevalent oxygen vacancies with concomitant oxidation of Fe2+ to Fe3+ upon the oxygen treatment. The dc bias dependent impedance spectra confirm how a prevalent capacitive surface state, which evolves parallel with the photocurrent onset potential, becomes diminished upon oxygen treatment. Surface states of iron induce higher reactivity toward water oxidation than oxygen surface states. The correlation between oxygen vacancy filling, concentration of surface states, and photocurrent density in the course of treatment confirms that the surface defects are of a capacitive nature and that the onset of water splitting can be considered as a result of dielectric breakdown in an interfacial hydroxide layer between photoanode and water. The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have been under scrutiny for several decades. In the present study, the surface of hematite films is treated with an oxygen plasma and then subject to a detailed investigation with electroanalytical methods and element orbital specific X-ray spectroscopy. We observe a systemic variation of photoelectrochemical properties with oxygen treatment time. Fe 2p and O 1s core level X-ray photoelectron spectra and resonant valence band photoemission at the Fe 3p edge reveal the filling of prevalent oxygen vacancies with concomitant oxidation of Fe²⁺ to Fe³⁺ upon the oxygen treatment. The dc bias dependent impedance spectra confirm how a prevalent capacitive surface state, which evolves parallel with the photocurrent onset potential, becomes diminished upon oxygen treatment. Surface states of iron induce higher reactivity toward water oxidation than oxygen surface states. The correlation between oxygen vacancy filling, concentration of surface states, and photocurrent density in the course of treatment confirms that the surface defects are of a capacitive nature and that the onset of water splitting can be considered as a result of dielectric breakdown in an interfacial hydroxide layer between photoanode and water. |
Author | Tsekouras, George Braun, Artur Bogdanoff, Peter Hermann-Geppert, Iris Boudoire, Florent Mun, Bongjin Simon Fortunato, Giuseppino Graetzel, Michael Hu, Yelin |
AuthorAffiliation | Institute for Materials Technology University of Basel Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering Helmholtz-Zentrum Geesthacht Gwangju Institute of Science and Technology Department of Chemistry Department of Physics and Photon Science, Ertl Center for Electrochemistry and Catalysis Protection and Physiology, Empa Helmut-Schmidt University Swiss Federal Laboratories for Materials Science and Technology Helmholtz-Zentrum Berlin für Materialien und Energie Institute for Materials Research, Sustainable Energy Technology Swiss Federal Institute of Technology Institute for Solar Fuels Laboratory for High Performance Ceramics, Empa |
AuthorAffiliation_xml | – name: Swiss Federal Institute of Technology – name: Department of Chemistry – name: Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering – name: Helmut-Schmidt University – name: Institute for Materials Technology – name: Helmholtz-Zentrum Geesthacht – name: Gwangju Institute of Science and Technology – name: Swiss Federal Laboratories for Materials Science and Technology – name: Laboratory for High Performance Ceramics, Empa – name: Protection and Physiology, Empa – name: Institute for Solar Fuels – name: University of Basel – name: Institute for Materials Research, Sustainable Energy Technology – name: Helmholtz-Zentrum Berlin für Materialien und Energie – name: Department of Physics and Photon Science, Ertl Center for Electrochemistry and Catalysis |
Author_xml | – sequence: 1 givenname: Yelin surname: Hu fullname: Hu, Yelin – sequence: 2 givenname: Florent surname: Boudoire fullname: Boudoire, Florent – sequence: 3 givenname: Iris surname: Hermann-Geppert fullname: Hermann-Geppert, Iris – sequence: 4 givenname: Peter surname: Bogdanoff fullname: Bogdanoff, Peter – sequence: 5 givenname: George surname: Tsekouras fullname: Tsekouras, George – sequence: 6 givenname: Bongjin Simon surname: Mun fullname: Mun, Bongjin Simon – sequence: 7 givenname: Giuseppino surname: Fortunato fullname: Fortunato, Giuseppino – sequence: 8 givenname: Michael surname: Graetzel fullname: Graetzel, Michael – sequence: 9 givenname: Artur surname: Braun fullname: Braun, Artur email: artur.braun@alumni.ethz.ch |
BookMark | eNp9kEFPAjEQRhuDiYDePfboQbDddrdwNASVBIMJet7MllkpWVpsu0b_vUWIBxO9tM3X900yr0c61lkk5JKzIWcZvwEdhpud1sO8YiPGxQnp8rHIBkrmeefnLdUZ6YWwYSwXCeoSfHQN6rYBTxfevBpLwa7oNGXRO73GrdHQ0JmtmxatRupqOoEdaBPNO9Jl62tI6TJCxECdpTOfjsWHWSF9WrvowLoVhnNyWkMT8OJ498nL3fR58jCYL-5nk9v5AETO4qASCGMhZa6VEDCusoopwUBLXagiB5VVBTItYFQwLgVXejQCZDJPMK9UJUWfXB3m7rx7azHEcmuCxqYBi64NZcYKlSmZSZHQ4oBq70LwWJdpJ4jG2ejBNCVn5d5rmbyWe6_l0Wsqsl_FnTdb8J__Va4Ple8f13qbJPyNfwGYd45r |
CitedBy_id | crossref_primary_10_1039_C9SC04853G crossref_primary_10_1021_acscatal_6b03162 crossref_primary_10_1021_acs_cgd_0c00496 crossref_primary_10_1021_acsomega_8b03349 crossref_primary_10_1021_acs_jpcc_8b06580 crossref_primary_10_1088_0953_8984_28_39_394001 crossref_primary_10_1016_j_electacta_2024_145149 crossref_primary_10_1016_j_materresbull_2021_111549 crossref_primary_10_1021_acs_jpcc_1c01809 crossref_primary_10_1557_jmr_2017_465 crossref_primary_10_1021_acsanm_8b01936 crossref_primary_10_1016_j_electacta_2017_11_117 crossref_primary_10_1038_s41467_024_54796_9 crossref_primary_10_1039_D3QM01100C crossref_primary_10_1016_j_jcis_2022_11_134 crossref_primary_10_1016_j_cej_2020_126163 crossref_primary_10_1016_j_inoche_2020_108040 crossref_primary_10_1039_D0TA06524B crossref_primary_10_1002_aenm_202003569 crossref_primary_10_1088_2515_7655_abf81c crossref_primary_10_1038_s41929_022_00845_9 crossref_primary_10_1039_C9SE00145J crossref_primary_10_1016_j_ceramint_2022_04_170 crossref_primary_10_1002_admi_201700542 crossref_primary_10_1016_j_solener_2021_11_049 crossref_primary_10_1016_j_mssp_2017_06_016 crossref_primary_10_1016_j_ijhydene_2021_10_115 crossref_primary_10_1002_aenm_201800545 |
Cites_doi | 10.1103/PhysRevB.39.13478 10.1038/srep02772 10.1007/978-3-662-02853-7 10.1021/ja01348a011 10.1103/PhysRevB.34.7318 10.1103/PhysRevB.48.11573 10.1016/0167-5729(82)90003-6 10.1088/0022-3727/40/4/034 10.1103/PhysRevB.50.2576 10.1016/j.ssc.2007.08.034 10.1021/acsami.5b06131 10.1515/green-2013-0007 10.1149/1.3702427 10.1021/cm202296p 10.1103/PhysRevB.59.3195 10.1149/04520.0137ecst 10.1021/ac50019a016 10.1021/cm401977p 10.1016/j.elspec.2012.11.009 10.1103/PhysRevB.36.6691 10.1016/j.susc.2008.04.021 10.1021/jz3010909 10.1021/nl303101n 10.1149/1.2108503 10.1002/cphc.201200074 10.1021/ja210755h 10.1021/jp200751j 10.1088/0957-4484/17/10/039 10.1088/0953-8984/21/48/486004 10.1039/C2CP42651J 10.1103/PhysRevB.63.125117 10.1063/1.3294620 10.1021/cm301829y 10.1021/jp304254k 10.1039/C2CP42597A 10.1039/f19837902027 10.1007/978-3-662-09280-4 10.1016/j.susc.2007.04.059 10.1038/physci244042a0 10.1039/c3dt50257k 10.1038/srep01021 10.1021/jp202375h 10.1021/jp908875t 10.1021/jp108230r 10.1039/b310907k 10.1142/7506 10.1021/bk-1981-0146.ch001 10.1016/j.elspec.2006.12.059 10.1557/JMR.2010.0020 10.1039/C2CP42601C 10.1021/ja301567f 10.1149/1.2131532 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.jpcc.5b08013 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 3258 |
ExternalDocumentID | 10_1021_acs_jpcc_5b08013 c399196494 |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL UI2 UKR VF5 VG9 VQA W1F 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a350t-b3ea93445c733a9b2b0730ac4c6765a72b6e0c3a86014317c88ae04533a1b7b43 |
IEDL.DBID | ACS |
ISSN | 1932-7447 1932-7455 |
IngestDate | Fri Jul 11 05:05:53 EDT 2025 Tue Jul 01 03:01:22 EDT 2025 Thu Apr 24 23:00:48 EDT 2025 Thu Aug 27 13:42:48 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a350t-b3ea93445c733a9b2b0730ac4c6765a72b6e0c3a86014317c88ae04533a1b7b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2067274243 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2067274243 crossref_citationtrail_10_1021_acs_jpcc_5b08013 crossref_primary_10_1021_acs_jpcc_5b08013 acs_journals_10_1021_acs_jpcc_5b08013 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-18 |
PublicationDateYYYYMMDD | 2016-02-18 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-18 day: 18 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref27/cit27 Hüfner S. (ref45/cit45) 2003 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref46/cit46 ref13/cit13 Stöhr J. (ref31/cit31) 1992 Sugano S. (ref47/cit47) 1970 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 Tossell J. A. (ref49/cit49) 1974; 59 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 Tamm I. (ref5/cit5) 1932; 1 ref22/cit22 ref33/cit33 Spencer N. D. (ref42/cit42) 2011 ref4/cit4 ref30/cit30 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref50/cit50 doi: 10.1103/PhysRevB.39.13478 – ident: ref23/cit23 doi: 10.1038/srep02772 – volume-title: NEXAFS Spectroscopy year: 1992 ident: ref31/cit31 doi: 10.1007/978-3-662-02853-7 – ident: ref39/cit39 doi: 10.1021/ja01348a011 – ident: ref46/cit46 doi: 10.1103/PhysRevB.34.7318 – ident: ref38/cit38 doi: 10.1103/PhysRevB.48.11573 – ident: ref20/cit20 doi: 10.1016/0167-5729(82)90003-6 – ident: ref30/cit30 doi: 10.1088/0022-3727/40/4/034 – ident: ref40/cit40 doi: 10.1103/PhysRevB.50.2576 – ident: ref33/cit33 doi: 10.1016/j.ssc.2007.08.034 – ident: ref16/cit16 doi: 10.1021/acsami.5b06131 – ident: ref1/cit1 doi: 10.1515/green-2013-0007 – ident: ref15/cit15 doi: 10.1149/1.3702427 – ident: ref12/cit12 doi: 10.1021/cm202296p – ident: ref19/cit19 doi: 10.1103/PhysRevB.59.3195 – ident: ref14/cit14 doi: 10.1149/04520.0137ecst – ident: ref22/cit22 doi: 10.1021/ac50019a016 – ident: ref25/cit25 doi: 10.1021/cm401977p – ident: ref11/cit11 doi: 10.1016/j.elspec.2012.11.009 – ident: ref52/cit52 doi: 10.1103/PhysRevB.36.6691 – ident: ref57/cit57 doi: 10.1016/j.susc.2008.04.021 – ident: ref9/cit9 doi: 10.1021/jz3010909 – ident: ref3/cit3 doi: 10.1021/nl303101n – ident: ref7/cit7 doi: 10.1149/1.2108503 – ident: ref44/cit44 doi: 10.1002/cphc.201200074 – volume: 59 start-page: 319 year: 1974 ident: ref49/cit49 publication-title: Am. Mineral. – ident: ref8/cit8 doi: 10.1021/ja210755h – ident: ref54/cit54 doi: 10.1021/jp200751j – ident: ref32/cit32 doi: 10.1088/0957-4484/17/10/039 – ident: ref36/cit36 doi: 10.1088/0953-8984/21/48/486004 – ident: ref13/cit13 doi: 10.1039/C2CP42651J – ident: ref41/cit41 doi: 10.1103/PhysRevB.63.125117 – ident: ref51/cit51 doi: 10.1063/1.3294620 – ident: ref28/cit28 doi: 10.1021/cm301829y – ident: ref43/cit43 – ident: ref10/cit10 doi: 10.1021/jp304254k – volume-title: Multiplets of Transition-Metal Ions in Crystals year: 1970 ident: ref47/cit47 – ident: ref24/cit24 doi: 10.1039/C2CP42597A – ident: ref4/cit4 doi: 10.1039/f19837902027 – volume-title: Photoelectron Spectroscopy: Principles and Applications year: 2003 ident: ref45/cit45 doi: 10.1007/978-3-662-09280-4 – ident: ref21/cit21 – ident: ref56/cit56 doi: 10.1016/j.susc.2007.04.059 – ident: ref48/cit48 doi: 10.1038/physci244042a0 – ident: ref34/cit34 doi: 10.1039/c3dt50257k – ident: ref35/cit35 doi: 10.1038/srep01021 – ident: ref26/cit26 doi: 10.1021/jp202375h – ident: ref27/cit27 doi: 10.1021/jp908875t – ident: ref17/cit17 doi: 10.1021/jp108230r – ident: ref53/cit53 doi: 10.1039/b310907k – volume-title: Tailoring Surfaces: Modifying Surface Composition and Structure for Applica-tions in Tribology, Biology and Catalysis year: 2011 ident: ref42/cit42 doi: 10.1142/7506 – ident: ref6/cit6 doi: 10.1021/bk-1981-0146.ch001 – ident: ref29/cit29 doi: 10.1016/j.elspec.2006.12.059 – ident: ref18/cit18 doi: 10.1557/JMR.2010.0020 – ident: ref37/cit37 doi: 10.1039/C2CP42601C – ident: ref55/cit55 doi: 10.1021/ja301567f – ident: ref2/cit2 doi: 10.1149/1.2131532 – volume: 1 start-page: 733 year: 1932 ident: ref5/cit5 publication-title: Phys. Z. Soviet Union |
SSID | ssj0053013 |
Score | 2.3423598 |
Snippet | The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3250 |
SubjectTerms | electric current electrochemistry hematite iron oxidation oxygen physical chemistry X-radiation X-ray photoelectron spectroscopy |
Title | Molecular Origin and Electrochemical Influence of Capacitive Surface States on Iron Oxide Photoanodes |
URI | http://dx.doi.org/10.1021/acs.jpcc.5b08013 https://www.proquest.com/docview/2067274243 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD3rxW5xfRNCDh25rkjbLUcbGJuiEOditJFmKX7Rj7UD8631JW2Uqw0sPIQkh7-W9X3mP3w-hSyMtDZoQnglbymNGSE9BGPQ4teRXjFvGD9ttcR_2x-x2Eky-aXJ-VvCJ35Q6a7zMtG4ECtCNFahdJyF4mYVBnVEVdQNwVFpUkAExMsbLkuRfO9hEpLPlRLQch11y6W0XKkWZ4yS0PSWvjUWuGvrjN2PjP869g7ZKjIlvCqfYRWsm2UMbnUrabR-Zu0oUFw-dMBaWyRR3C0UcXVII4EGlX4LTGHcgqWrXZ4RHi3ksYbTAqThN8GAOn-H789Tgh6c0T2WSTk12gMa97mOn75V6C56kQSv3FDVSUMYCzSmVQhFl37_UTIc8DCQnKjQtTWU7tKSAPtfttjQACWGyr7hi9BDVkjQxRwhTwUhLkxjgF2ciZBJ-jJQfB0LEXAAGqaMruJ-ofC9Z5ErhxI_cIFxaVF5aHTUrI0W6JC232hlvK1Zcf62YFYQdK-ZeVHaPwAK2VCITky6yiLgKNSOMHv_zpCdoE7CUa-j226eols8X5gzwSq7OnaN-Ano544c |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jHvTitzg_I-jBQ-fapM1ylOHY1G3iFLyVJEvxi3asHYh_vS9pO5nI0EsPIQmPvPS9X3mvvx9Cp1oYGjTOHR00pEM1F46EMOgwYsivKDOMH6bboh90Hun1k_9UQW75LwwYkcJOqS3if7MLuBdm7HWsVN2XAHKMTu0SYBHPqDVctoZl8PXhvpK8kAzAkVJWVCZ_28HkI5XO56P5cGxzTHsN3c-ss60lb_VpJuvq8wdx47_MX0erBeLEl_kV2UAVHW-i5VYp9LaFdK-UyMUDK5OFRTzCV7k-jioIBXC3VDPBSYRbkGKV7TrCw-kkEjCao1acxLg7gcfg42Wk8d1zkiUiTkY63UaP7auHVscp1BccQfxG5kiiBSeU-ooRIrj0pIkGQlEVsMAXzJOBbigimoGhCHSZajaFBoAIk13JJCU7qBonsd5FmHDqNZQXARhjlAdUwGeSdCOf84hxQCQ1dAbnExZvTxrawrjnhnYQDi0sDq2GLkpfhaqgMDdKGu8LVpzPVoxz-o4Fc09K94fgAVM4EbFOpmno2Xo19SjZ-6Olx2i589C7DW-7_Zt9tAIoy7Z6u80DVM0mU30ISCaTR_bufgFj2-vo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jgvriXbwbQR986LY2abM8ytxw3jaYyt5KkqV4ox1rB-Kv9yRthYkMfelDSEKanJzzlXP6fQidamFo0Dh3dNCQDtVcOBLcoMOIIb-izDB-mGqL--DqkV4P_WEF-eW_MLCIFGZKbRLf3OrxKCoYBty6aX8dK1XzJQAdo1W7YLJ2RrHhojUoHbAPNkvyZDKAR0pZkZ38bQYTk1Q6G5NmXbKNM51V9PS9Qlte8labZrKmPn-QN_77FdbQSoE88UVuKuuoouMNtNQqBd82kb4rpXJxz8plYRGPcDvXyVEFsQDulqomOIlwC0KtstVHeDCdRAJac_SKkxh3J_DofbyMNO4_J1ki4mSk0y302Gk_tK6cQoXBEcRvZI4kWnBCqa8YIYJLTxqvIBRVAQt8wTwZ6IYiohkYqkCXqWZTaACK0NmVTFKyjapxEusdhAmnXkN5EYAyRnlABXwuSTfyOY8YB2Syi85gf8LiFqWhTZB7bmgbYdPCYtN2Ub08r1AVVOZGUeN9zojz7xHjnMZjTt-T0gRCOAGTQBGxTqZp6Nm8NfUo2fvjSo_RYv-yE95272_20TKALVvx7TYPUDWbTPUhAJpMHlnz_QIiw-5r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Origin+and+Electrochemical+Influence+of+Capacitive+Surface+States+on+Iron+Oxide+Photoanodes&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Hu%2C+Yelin&rft.au=Boudoire%2C+Florent&rft.au=Hermann-Geppert%2C+Iris&rft.au=Bogdanoff%2C+Peter&rft.date=2016-02-18&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=120&rft.issue=6&rft.spage=3250&rft.epage=3258&rft_id=info:doi/10.1021%2Facs.jpcc.5b08013&rft.externalDocID=c399196494 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |