Molecular Origin and Electrochemical Influence of Capacitive Surface States on Iron Oxide Photoanodes

The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have been under scrutiny for several decades. In the present study, the surface of hematite films is treated with an oxygen plasma and then subject t...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 120; no. 6; pp. 3250 - 3258
Main Authors Hu, Yelin, Boudoire, Florent, Hermann-Geppert, Iris, Bogdanoff, Peter, Tsekouras, George, Mun, Bongjin Simon, Fortunato, Giuseppino, Graetzel, Michael, Braun, Artur
Format Journal Article
LanguageEnglish
Published American Chemical Society 18.02.2016
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
1932-7455
DOI10.1021/acs.jpcc.5b08013

Cover

Abstract The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have been under scrutiny for several decades. In the present study, the surface of hematite films is treated with an oxygen plasma and then subject to a detailed investigation with electroanalytical methods and element orbital specific X-ray spectroscopy. We observe a systemic variation of photoelectrochemical properties with oxygen treatment time. Fe 2p and O 1s core level X-ray photoelectron spectra and resonant valence band photoemission at the Fe 3p edge reveal the filling of prevalent oxygen vacancies with concomitant oxidation of Fe2+ to Fe3+ upon the oxygen treatment. The dc bias dependent impedance spectra confirm how a prevalent capacitive surface state, which evolves parallel with the photocurrent onset potential, becomes diminished upon oxygen treatment. Surface states of iron induce higher reactivity toward water oxidation than oxygen surface states. The correlation between oxygen vacancy filling, concentration of surface states, and photocurrent density in the course of treatment confirms that the surface defects are of a capacitive nature and that the onset of water splitting can be considered as a result of dielectric breakdown in an interfacial hydroxide layer between photoanode and water.
AbstractList The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have been under scrutiny for several decades. In the present study, the surface of hematite films is treated with an oxygen plasma and then subject to a detailed investigation with electroanalytical methods and element orbital specific X-ray spectroscopy. We observe a systemic variation of photoelectrochemical properties with oxygen treatment time. Fe 2p and O 1s core level X-ray photoelectron spectra and resonant valence band photoemission at the Fe 3p edge reveal the filling of prevalent oxygen vacancies with concomitant oxidation of Fe2+ to Fe3+ upon the oxygen treatment. The dc bias dependent impedance spectra confirm how a prevalent capacitive surface state, which evolves parallel with the photocurrent onset potential, becomes diminished upon oxygen treatment. Surface states of iron induce higher reactivity toward water oxidation than oxygen surface states. The correlation between oxygen vacancy filling, concentration of surface states, and photocurrent density in the course of treatment confirms that the surface defects are of a capacitive nature and that the onset of water splitting can be considered as a result of dielectric breakdown in an interfacial hydroxide layer between photoanode and water.
The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have been under scrutiny for several decades. In the present study, the surface of hematite films is treated with an oxygen plasma and then subject to a detailed investigation with electroanalytical methods and element orbital specific X-ray spectroscopy. We observe a systemic variation of photoelectrochemical properties with oxygen treatment time. Fe 2p and O 1s core level X-ray photoelectron spectra and resonant valence band photoemission at the Fe 3p edge reveal the filling of prevalent oxygen vacancies with concomitant oxidation of Fe²⁺ to Fe³⁺ upon the oxygen treatment. The dc bias dependent impedance spectra confirm how a prevalent capacitive surface state, which evolves parallel with the photocurrent onset potential, becomes diminished upon oxygen treatment. Surface states of iron induce higher reactivity toward water oxidation than oxygen surface states. The correlation between oxygen vacancy filling, concentration of surface states, and photocurrent density in the course of treatment confirms that the surface defects are of a capacitive nature and that the onset of water splitting can be considered as a result of dielectric breakdown in an interfacial hydroxide layer between photoanode and water.
Author Tsekouras, George
Braun, Artur
Bogdanoff, Peter
Hermann-Geppert, Iris
Boudoire, Florent
Mun, Bongjin Simon
Fortunato, Giuseppino
Graetzel, Michael
Hu, Yelin
AuthorAffiliation Institute for Materials Technology
University of Basel
Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering
Helmholtz-Zentrum Geesthacht
Gwangju Institute of Science and Technology
Department of Chemistry
Department of Physics and Photon Science, Ertl Center for Electrochemistry and Catalysis
Protection and Physiology, Empa
Helmut-Schmidt University
Swiss Federal Laboratories for Materials Science and Technology
Helmholtz-Zentrum Berlin für Materialien und Energie
Institute for Materials Research, Sustainable Energy Technology
Swiss Federal Institute of Technology
Institute for Solar Fuels
Laboratory for High Performance Ceramics, Empa
AuthorAffiliation_xml – name: Swiss Federal Institute of Technology
– name: Department of Chemistry
– name: Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering
– name: Helmut-Schmidt University
– name: Institute for Materials Technology
– name: Helmholtz-Zentrum Geesthacht
– name: Gwangju Institute of Science and Technology
– name: Swiss Federal Laboratories for Materials Science and Technology
– name: Laboratory for High Performance Ceramics, Empa
– name: Protection and Physiology, Empa
– name: Institute for Solar Fuels
– name: University of Basel
– name: Institute for Materials Research, Sustainable Energy Technology
– name: Helmholtz-Zentrum Berlin für Materialien und Energie
– name: Department of Physics and Photon Science, Ertl Center for Electrochemistry and Catalysis
Author_xml – sequence: 1
  givenname: Yelin
  surname: Hu
  fullname: Hu, Yelin
– sequence: 2
  givenname: Florent
  surname: Boudoire
  fullname: Boudoire, Florent
– sequence: 3
  givenname: Iris
  surname: Hermann-Geppert
  fullname: Hermann-Geppert, Iris
– sequence: 4
  givenname: Peter
  surname: Bogdanoff
  fullname: Bogdanoff, Peter
– sequence: 5
  givenname: George
  surname: Tsekouras
  fullname: Tsekouras, George
– sequence: 6
  givenname: Bongjin Simon
  surname: Mun
  fullname: Mun, Bongjin Simon
– sequence: 7
  givenname: Giuseppino
  surname: Fortunato
  fullname: Fortunato, Giuseppino
– sequence: 8
  givenname: Michael
  surname: Graetzel
  fullname: Graetzel, Michael
– sequence: 9
  givenname: Artur
  surname: Braun
  fullname: Braun, Artur
  email: artur.braun@alumni.ethz.ch
BookMark eNp9kEFPAjEQRhuDiYDePfboQbDddrdwNASVBIMJet7MllkpWVpsu0b_vUWIBxO9tM3X900yr0c61lkk5JKzIWcZvwEdhpud1sO8YiPGxQnp8rHIBkrmeefnLdUZ6YWwYSwXCeoSfHQN6rYBTxfevBpLwa7oNGXRO73GrdHQ0JmtmxatRupqOoEdaBPNO9Jl62tI6TJCxECdpTOfjsWHWSF9WrvowLoVhnNyWkMT8OJ498nL3fR58jCYL-5nk9v5AETO4qASCGMhZa6VEDCusoopwUBLXagiB5VVBTItYFQwLgVXejQCZDJPMK9UJUWfXB3m7rx7azHEcmuCxqYBi64NZcYKlSmZSZHQ4oBq70LwWJdpJ4jG2ejBNCVn5d5rmbyWe6_l0Wsqsl_FnTdb8J__Va4Ple8f13qbJPyNfwGYd45r
CitedBy_id crossref_primary_10_1039_C9SC04853G
crossref_primary_10_1021_acscatal_6b03162
crossref_primary_10_1021_acs_cgd_0c00496
crossref_primary_10_1021_acsomega_8b03349
crossref_primary_10_1021_acs_jpcc_8b06580
crossref_primary_10_1088_0953_8984_28_39_394001
crossref_primary_10_1016_j_electacta_2024_145149
crossref_primary_10_1016_j_materresbull_2021_111549
crossref_primary_10_1021_acs_jpcc_1c01809
crossref_primary_10_1557_jmr_2017_465
crossref_primary_10_1021_acsanm_8b01936
crossref_primary_10_1016_j_electacta_2017_11_117
crossref_primary_10_1038_s41467_024_54796_9
crossref_primary_10_1039_D3QM01100C
crossref_primary_10_1016_j_jcis_2022_11_134
crossref_primary_10_1016_j_cej_2020_126163
crossref_primary_10_1016_j_inoche_2020_108040
crossref_primary_10_1039_D0TA06524B
crossref_primary_10_1002_aenm_202003569
crossref_primary_10_1088_2515_7655_abf81c
crossref_primary_10_1038_s41929_022_00845_9
crossref_primary_10_1039_C9SE00145J
crossref_primary_10_1016_j_ceramint_2022_04_170
crossref_primary_10_1002_admi_201700542
crossref_primary_10_1016_j_solener_2021_11_049
crossref_primary_10_1016_j_mssp_2017_06_016
crossref_primary_10_1016_j_ijhydene_2021_10_115
crossref_primary_10_1002_aenm_201800545
Cites_doi 10.1103/PhysRevB.39.13478
10.1038/srep02772
10.1007/978-3-662-02853-7
10.1021/ja01348a011
10.1103/PhysRevB.34.7318
10.1103/PhysRevB.48.11573
10.1016/0167-5729(82)90003-6
10.1088/0022-3727/40/4/034
10.1103/PhysRevB.50.2576
10.1016/j.ssc.2007.08.034
10.1021/acsami.5b06131
10.1515/green-2013-0007
10.1149/1.3702427
10.1021/cm202296p
10.1103/PhysRevB.59.3195
10.1149/04520.0137ecst
10.1021/ac50019a016
10.1021/cm401977p
10.1016/j.elspec.2012.11.009
10.1103/PhysRevB.36.6691
10.1016/j.susc.2008.04.021
10.1021/jz3010909
10.1021/nl303101n
10.1149/1.2108503
10.1002/cphc.201200074
10.1021/ja210755h
10.1021/jp200751j
10.1088/0957-4484/17/10/039
10.1088/0953-8984/21/48/486004
10.1039/C2CP42651J
10.1103/PhysRevB.63.125117
10.1063/1.3294620
10.1021/cm301829y
10.1021/jp304254k
10.1039/C2CP42597A
10.1039/f19837902027
10.1007/978-3-662-09280-4
10.1016/j.susc.2007.04.059
10.1038/physci244042a0
10.1039/c3dt50257k
10.1038/srep01021
10.1021/jp202375h
10.1021/jp908875t
10.1021/jp108230r
10.1039/b310907k
10.1142/7506
10.1021/bk-1981-0146.ch001
10.1016/j.elspec.2006.12.059
10.1557/JMR.2010.0020
10.1039/C2CP42601C
10.1021/ja301567f
10.1149/1.2131532
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.jpcc.5b08013
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 3258
ExternalDocumentID 10_1021_acs_jpcc_5b08013
c399196494
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7S9
L.6
ID FETCH-LOGICAL-a350t-b3ea93445c733a9b2b0730ac4c6765a72b6e0c3a86014317c88ae04533a1b7b43
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Fri Jul 11 05:05:53 EDT 2025
Tue Jul 01 03:01:22 EDT 2025
Thu Apr 24 23:00:48 EDT 2025
Thu Aug 27 13:42:48 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a350t-b3ea93445c733a9b2b0730ac4c6765a72b6e0c3a86014317c88ae04533a1b7b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2067274243
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2067274243
crossref_citationtrail_10_1021_acs_jpcc_5b08013
crossref_primary_10_1021_acs_jpcc_5b08013
acs_journals_10_1021_acs_jpcc_5b08013
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-18
PublicationDateYYYYMMDD 2016-02-18
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-18
  day: 18
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
Hüfner S. (ref45/cit45) 2003
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref46/cit46
ref13/cit13
Stöhr J. (ref31/cit31) 1992
Sugano S. (ref47/cit47) 1970
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
Tossell J. A. (ref49/cit49) 1974; 59
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
Tamm I. (ref5/cit5) 1932; 1
ref22/cit22
ref33/cit33
Spencer N. D. (ref42/cit42) 2011
ref4/cit4
ref30/cit30
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref50/cit50
  doi: 10.1103/PhysRevB.39.13478
– ident: ref23/cit23
  doi: 10.1038/srep02772
– volume-title: NEXAFS Spectroscopy
  year: 1992
  ident: ref31/cit31
  doi: 10.1007/978-3-662-02853-7
– ident: ref39/cit39
  doi: 10.1021/ja01348a011
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.34.7318
– ident: ref38/cit38
  doi: 10.1103/PhysRevB.48.11573
– ident: ref20/cit20
  doi: 10.1016/0167-5729(82)90003-6
– ident: ref30/cit30
  doi: 10.1088/0022-3727/40/4/034
– ident: ref40/cit40
  doi: 10.1103/PhysRevB.50.2576
– ident: ref33/cit33
  doi: 10.1016/j.ssc.2007.08.034
– ident: ref16/cit16
  doi: 10.1021/acsami.5b06131
– ident: ref1/cit1
  doi: 10.1515/green-2013-0007
– ident: ref15/cit15
  doi: 10.1149/1.3702427
– ident: ref12/cit12
  doi: 10.1021/cm202296p
– ident: ref19/cit19
  doi: 10.1103/PhysRevB.59.3195
– ident: ref14/cit14
  doi: 10.1149/04520.0137ecst
– ident: ref22/cit22
  doi: 10.1021/ac50019a016
– ident: ref25/cit25
  doi: 10.1021/cm401977p
– ident: ref11/cit11
  doi: 10.1016/j.elspec.2012.11.009
– ident: ref52/cit52
  doi: 10.1103/PhysRevB.36.6691
– ident: ref57/cit57
  doi: 10.1016/j.susc.2008.04.021
– ident: ref9/cit9
  doi: 10.1021/jz3010909
– ident: ref3/cit3
  doi: 10.1021/nl303101n
– ident: ref7/cit7
  doi: 10.1149/1.2108503
– ident: ref44/cit44
  doi: 10.1002/cphc.201200074
– volume: 59
  start-page: 319
  year: 1974
  ident: ref49/cit49
  publication-title: Am. Mineral.
– ident: ref8/cit8
  doi: 10.1021/ja210755h
– ident: ref54/cit54
  doi: 10.1021/jp200751j
– ident: ref32/cit32
  doi: 10.1088/0957-4484/17/10/039
– ident: ref36/cit36
  doi: 10.1088/0953-8984/21/48/486004
– ident: ref13/cit13
  doi: 10.1039/C2CP42651J
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.63.125117
– ident: ref51/cit51
  doi: 10.1063/1.3294620
– ident: ref28/cit28
  doi: 10.1021/cm301829y
– ident: ref43/cit43
– ident: ref10/cit10
  doi: 10.1021/jp304254k
– volume-title: Multiplets of Transition-Metal Ions in Crystals
  year: 1970
  ident: ref47/cit47
– ident: ref24/cit24
  doi: 10.1039/C2CP42597A
– ident: ref4/cit4
  doi: 10.1039/f19837902027
– volume-title: Photoelectron Spectroscopy: Principles and Applications
  year: 2003
  ident: ref45/cit45
  doi: 10.1007/978-3-662-09280-4
– ident: ref21/cit21
– ident: ref56/cit56
  doi: 10.1016/j.susc.2007.04.059
– ident: ref48/cit48
  doi: 10.1038/physci244042a0
– ident: ref34/cit34
  doi: 10.1039/c3dt50257k
– ident: ref35/cit35
  doi: 10.1038/srep01021
– ident: ref26/cit26
  doi: 10.1021/jp202375h
– ident: ref27/cit27
  doi: 10.1021/jp908875t
– ident: ref17/cit17
  doi: 10.1021/jp108230r
– ident: ref53/cit53
  doi: 10.1039/b310907k
– volume-title: Tailoring Surfaces: Modifying Surface Composition and Structure for Applica-tions in Tribology, Biology and Catalysis
  year: 2011
  ident: ref42/cit42
  doi: 10.1142/7506
– ident: ref6/cit6
  doi: 10.1021/bk-1981-0146.ch001
– ident: ref29/cit29
  doi: 10.1016/j.elspec.2006.12.059
– ident: ref18/cit18
  doi: 10.1557/JMR.2010.0020
– ident: ref37/cit37
  doi: 10.1039/C2CP42601C
– ident: ref55/cit55
  doi: 10.1021/ja301567f
– ident: ref2/cit2
  doi: 10.1149/1.2131532
– volume: 1
  start-page: 733
  year: 1932
  ident: ref5/cit5
  publication-title: Phys. Z. Soviet Union
SSID ssj0053013
Score 2.3423598
Snippet The origin, the nature, and the electronic structure of surface defects causing surface states on metal oxides and their role in solar water splitting have...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3250
SubjectTerms electric current
electrochemistry
hematite
iron
oxidation
oxygen
physical chemistry
X-radiation
X-ray photoelectron spectroscopy
Title Molecular Origin and Electrochemical Influence of Capacitive Surface States on Iron Oxide Photoanodes
URI http://dx.doi.org/10.1021/acs.jpcc.5b08013
https://www.proquest.com/docview/2067274243
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD3rxW5xfRNCDh25rkjbLUcbGJuiEOditJFmKX7Rj7UD8631JW2Uqw0sPIQkh7-W9X3mP3w-hSyMtDZoQnglbymNGSE9BGPQ4teRXjFvGD9ttcR_2x-x2Eky-aXJ-VvCJ35Q6a7zMtG4ECtCNFahdJyF4mYVBnVEVdQNwVFpUkAExMsbLkuRfO9hEpLPlRLQch11y6W0XKkWZ4yS0PSWvjUWuGvrjN2PjP869g7ZKjIlvCqfYRWsm2UMbnUrabR-Zu0oUFw-dMBaWyRR3C0UcXVII4EGlX4LTGHcgqWrXZ4RHi3ksYbTAqThN8GAOn-H789Tgh6c0T2WSTk12gMa97mOn75V6C56kQSv3FDVSUMYCzSmVQhFl37_UTIc8DCQnKjQtTWU7tKSAPtfttjQACWGyr7hi9BDVkjQxRwhTwUhLkxjgF2ciZBJ-jJQfB0LEXAAGqaMruJ-ofC9Z5ErhxI_cIFxaVF5aHTUrI0W6JC232hlvK1Zcf62YFYQdK-ZeVHaPwAK2VCITky6yiLgKNSOMHv_zpCdoE7CUa-j226eols8X5gzwSq7OnaN-Ano544c
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jHvTitzg_I-jBQ-fapM1ylOHY1G3iFLyVJEvxi3asHYh_vS9pO5nI0EsPIQmPvPS9X3mvvx9Cp1oYGjTOHR00pEM1F46EMOgwYsivKDOMH6bboh90Hun1k_9UQW75LwwYkcJOqS3if7MLuBdm7HWsVN2XAHKMTu0SYBHPqDVctoZl8PXhvpK8kAzAkVJWVCZ_28HkI5XO56P5cGxzTHsN3c-ss60lb_VpJuvq8wdx47_MX0erBeLEl_kV2UAVHW-i5VYp9LaFdK-UyMUDK5OFRTzCV7k-jioIBXC3VDPBSYRbkGKV7TrCw-kkEjCao1acxLg7gcfg42Wk8d1zkiUiTkY63UaP7auHVscp1BccQfxG5kiiBSeU-ooRIrj0pIkGQlEVsMAXzJOBbigimoGhCHSZajaFBoAIk13JJCU7qBonsd5FmHDqNZQXARhjlAdUwGeSdCOf84hxQCQ1dAbnExZvTxrawrjnhnYQDi0sDq2GLkpfhaqgMDdKGu8LVpzPVoxz-o4Fc09K94fgAVM4EbFOpmno2Xo19SjZ-6Olx2i589C7DW-7_Zt9tAIoy7Z6u80DVM0mU30ISCaTR_bufgFj2-vo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jgvriXbwbQR986LY2abM8ytxw3jaYyt5KkqV4ox1rB-Kv9yRthYkMfelDSEKanJzzlXP6fQidamFo0Dh3dNCQDtVcOBLcoMOIIb-izDB-mGqL--DqkV4P_WEF-eW_MLCIFGZKbRLf3OrxKCoYBty6aX8dK1XzJQAdo1W7YLJ2RrHhojUoHbAPNkvyZDKAR0pZkZ38bQYTk1Q6G5NmXbKNM51V9PS9Qlte8labZrKmPn-QN_77FdbQSoE88UVuKuuoouMNtNQqBd82kb4rpXJxz8plYRGPcDvXyVEFsQDulqomOIlwC0KtstVHeDCdRAJac_SKkxh3J_DofbyMNO4_J1ki4mSk0y302Gk_tK6cQoXBEcRvZI4kWnBCqa8YIYJLTxqvIBRVAQt8wTwZ6IYiohkYqkCXqWZTaACK0NmVTFKyjapxEusdhAmnXkN5EYAyRnlABXwuSTfyOY8YB2Syi85gf8LiFqWhTZB7bmgbYdPCYtN2Ub08r1AVVOZGUeN9zojz7xHjnMZjTt-T0gRCOAGTQBGxTqZp6Nm8NfUo2fvjSo_RYv-yE95272_20TKALVvx7TYPUDWbTPUhAJpMHlnz_QIiw-5r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Origin+and+Electrochemical+Influence+of+Capacitive+Surface+States+on+Iron+Oxide+Photoanodes&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Hu%2C+Yelin&rft.au=Boudoire%2C+Florent&rft.au=Hermann-Geppert%2C+Iris&rft.au=Bogdanoff%2C+Peter&rft.date=2016-02-18&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=120&rft.issue=6&rft.spage=3250&rft.epage=3258&rft_id=info:doi/10.1021%2Facs.jpcc.5b08013&rft.externalDocID=c399196494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon