Techno-economic Analysis of Biogas Conversion to Liquid Hydrocarbon Fuels through Production of Lean-Hydrogen Syngas
Large-scale biogas plants are a viable source of CH4 and CO2 to be converted efficiently into high-value products. Specifically, production of liquid hydrocarbons can enhance the availability of green fuels while achieving significant CO2 reductions on site. In this study, the production of liquid h...
Saved in:
Published in | ACS Engineering Au Vol. 2; no. 5; pp. 450 - 460 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
19.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large-scale biogas plants are a viable source of CH4 and CO2 to be converted efficiently into high-value products. Specifically, production of liquid hydrocarbons can enhance the availability of green fuels while achieving significant CO2 reductions on site. In this study, the production of liquid hydrocarbons is simulated by dry reforming of biogas into lean-hydrogen syngas, further converted in CO hydrogenation and oligomerization reactors. The process was modeled by using CHEMCAD based on published experimental results with the projected feed composition. A high molar feed ratio of CO2/CH4 (>1.7) was set for the reformer to minimize steam requirement while avoiding carbon formation and reaching an optimal H2 to CO molar ratio (0.7). Two options were techno-economically evaluated based on a biogas plant with a capacity of 5000 N m3/h that produces between 13.8 and 15.7 million liters per year of blending stock for transportation fuels. The economics of the process depends mainly on the cost and availability of the biogas. The minimum selling price of the liquid fuels is $1.47/L and $1.37/L for options 1 (once-through conversion of syngas to liquid fuels) and 2 (recycle of tail gas from oligomerization reactor), respectively, and can be significantly reduced in case the biogas throughput is increased to >20 000 N m3/h. Recycling of the tail gas (option 2) yielded higher productivity, resulting in higher carbon yield (77.9% on the basis of methane) and energy efficiency (67.1%). The economic viability of the process can be improved by implementing CO2 tax or other incentives to reduce capital investment. It provides a potential route for efficient conversion of biogas into liquid hydrocarbons to meet the increased demand for renewable fuels as blending stock in the transportation sector while improving the sustainability of the plant. |
---|---|
AbstractList | Large-scale biogas plants are a viable source of CH4 and CO2 to be converted efficiently into high-value products. Specifically, production of liquid hydrocarbons can enhance the availability of green fuels while achieving significant CO2 reductions on site. In this study, the production of liquid hydrocarbons is simulated by dry reforming of biogas into lean-hydrogen syngas, further converted in CO hydrogenation and oligomerization reactors. The process was modeled by using CHEMCAD based on published experimental results with the projected feed composition. A high molar feed ratio of CO2/CH4 (>1.7) was set for the reformer to minimize steam requirement while avoiding carbon formation and reaching an optimal H2 to CO molar ratio (0.7). Two options were techno-economically evaluated based on a biogas plant with a capacity of 5000 N m3/h that produces between 13.8 and 15.7 million liters per year of blending stock for transportation fuels. The economics of the process depends mainly on the cost and availability of the biogas. The minimum selling price of the liquid fuels is $1.47/L and $1.37/L for options 1 (once-through conversion of syngas to liquid fuels) and 2 (recycle of tail gas from oligomerization reactor), respectively, and can be significantly reduced in case the biogas throughput is increased to >20 000 N m3/h. Recycling of the tail gas (option 2) yielded higher productivity, resulting in higher carbon yield (77.9% on the basis of methane) and energy efficiency (67.1%). The economic viability of the process can be improved by implementing CO2 tax or other incentives to reduce capital investment. It provides a potential route for efficient conversion of biogas into liquid hydrocarbons to meet the increased demand for renewable fuels as blending stock in the transportation sector while improving the sustainability of the plant. |
Author | Hos, Tomy Herskowitz, Moti |
AuthorAffiliation | Chemical Engineering Department, Blechner Center for Industrial Catalysis and Process Development |
AuthorAffiliation_xml | – name: Chemical Engineering Department, Blechner Center for Industrial Catalysis and Process Development |
Author_xml | – sequence: 1 givenname: Tomy surname: Hos fullname: Hos, Tomy – sequence: 2 givenname: Moti orcidid: 0000-0002-5666-8937 surname: Herskowitz fullname: Herskowitz, Moti email: herskow@bgu.ac.il |
BookMark | eNqNkd1q3DAQhUVJoWmad9ALONWPf-SbQro0TWChhSTXYjwaebU4UivZhX37erMplNy0VzMM53yc4bxnZzFFYoxLcSWFkh8BC8UxRKIc4gjLlUIhhOzfsHPV9nWlamPO_trfsctS9qtENVKrVpyz-YFwF1NFmGJ6CsivI0yHEgpPnn8OaYTCNyn-olxCinxOfBt-LsHx24PLCSEP6_VmoanweZfTMu7495zcgvNRvjK2BLF6Fo8U-f1hjVk-sLcepkKXL_OCPd58edjcVttvX-8219sKdCPmqu91O9TohOlIdr0zQlDrXWdQClRGuoG0QFkbIk3ofOdlQw6bQanBtCj1Bbs7cV2Cvf2RwxPkg00Q7PMh5dFCngNOZH2tqQetUWNXm66H1gNgrU3jYUDRrqxPJxbmVEombzHMcPxyzhAmK4U9VmJfV2JfKlkB5hXgT6D_sNYn66qw-7TktaPyb9tvELKvdA |
CitedBy_id | crossref_primary_10_1002_ep_14335 crossref_primary_10_1016_j_ijhydene_2024_08_445 crossref_primary_10_1016_j_jcou_2023_102652 |
Cites_doi | 10.1016/j.cattod.2018.07.032 10.1016/j.scitotenv.2020.142753 10.1038/s41929-018-0144-z 10.3390/catal9030259 10.1016/j.jngse.2015.07.001 10.1002/cctc.201902142 10.1016/j.ijhydene.2020.10.240 10.1016/j.jclepro.2020.123052 10.1016/j.energy.2020.117437 10.1016/j.renene.2018.03.006 10.1016/j.memsci.2016.12.033 10.1016/j.cattod.2020.08.018 10.1016/j.rser.2021.110949 10.1016/j.energy.2019.03.062 10.1016/j.jcat.2017.01.020 10.1016/j.esr.2019.01.006 10.1016/j.cattod.2020.06.057 10.1039/D1SE00514F 10.1016/j.fuel.2018.08.147 10.1002/cssc.201301181 10.2172/1337555 10.3390/catal11030330 10.1016/j.ijhydene.2020.02.042 10.1016/j.rser.2014.08.008 10.1016/j.enconman.2018.05.083 10.1039/D0SE01125H 10.1002/bbb.1758 10.1016/j.fuproc.2010.11.027 10.1016/j.jclepro.2018.11.073 10.1016/j.enconman.2018.08.074 10.1021/ef950227t 10.1021/acsomega.9b03577 10.1016/j.enconman.2021.114233 10.1016/j.ijhydene.2018.08.074 10.1039/C5FD00039D 10.3390/en12061031 10.1038/s41467-021-26356-y 10.1016/j.ijhydene.2021.03.246 10.1016/j.apcata.2015.02.022 10.1016/j.renene.2013.12.004 10.1039/C8SE00344K 10.1016/j.rser.2019.03.054 10.1021/acs.iecr.1c04254 10.1595/205651320X15816756012040 10.1016/j.apenergy.2017.08.068 10.1016/j.ijhydene.2012.08.108 10.1016/j.renene.2020.10.072 10.1039/C5FD00174A 10.1016/j.jece.2019.103018 10.1016/j.jclepro.2017.05.176 10.3390/catal10010099 10.1016/j.jclepro.2020.122552 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION DOA |
DOI | 10.1021/acsengineeringau.2c00019 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2694-2488 |
EndPage | 460 |
ExternalDocumentID | oai_doaj_org_article_f43e9a33c3c74879a6faac4385fabc06 10_1021_acsengineeringau_2c00019 a635745709 |
GroupedDBID | ACS ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ N~. OK1 AAYXX ABBLG ADUCK AELXD CITATION EBS M~E |
ID | FETCH-LOGICAL-a350t-9936b4cd087e179d800e6fd78c10c281dbe30c148ee3ecdf7f15edc5b22b86c13 |
IEDL.DBID | N~. |
ISSN | 2694-2488 |
IngestDate | Wed Aug 27 01:09:06 EDT 2025 Thu Apr 24 22:50:07 EDT 2025 Tue Jul 01 00:23:10 EDT 2025 Fri Oct 21 05:36:56 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Renewable fuels Techno-economic analysis Dry reforming Biogas CO hydrogenation Carbon utilization |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a350t-9936b4cd087e179d800e6fd78c10c281dbe30c148ee3ecdf7f15edc5b22b86c13 |
ORCID | 0000-0002-5666-8937 |
OpenAccessLink | https://doaj.org/article/f43e9a33c3c74879a6faac4385fabc06 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f43e9a33c3c74879a6faac4385fabc06 crossref_citationtrail_10_1021_acsengineeringau_2c00019 crossref_primary_10_1021_acsengineeringau_2c00019 acs_journals_10_1021_acsengineeringau_2c00019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-19 |
PublicationDateYYYYMMDD | 2022-10-19 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | ACS Engineering Au |
PublicationTitleAlternate | ACS Eng. Au |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref20/cit20 ref48/cit48 ref60/cit60 Sinnott R. (ref66/cit66) 2005; 6 ref17/cit17 Merkel T. (ref69/cit69) 2015 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 Towler G. (ref67/cit67) 2012 ref13/cit13 ref61/cit61 Udengaard N. R. (ref37/cit37) 1992; 90 ref24/cit24 ref38/cit38 Dry M. E. (ref47/cit47) 2008; 6 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 Arias P. A (ref5/cit5) 2021 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ST C. T. (ref36/cit36) 2001; 3 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref34/cit34 doi: 10.1016/j.cattod.2018.07.032 – ident: ref62/cit62 doi: 10.1016/j.scitotenv.2020.142753 – ident: ref33/cit33 doi: 10.1038/s41929-018-0144-z – ident: ref48/cit48 doi: 10.3390/catal9030259 – ident: ref63/cit63 doi: 10.1016/j.jngse.2015.07.001 – ident: ref28/cit28 doi: 10.1002/cctc.201902142 – ident: ref35/cit35 doi: 10.1016/j.ijhydene.2020.10.240 – ident: ref14/cit14 doi: 10.1016/j.jclepro.2020.123052 – ident: ref4/cit4 – ident: ref55/cit55 – volume: 3 start-page: 44 year: 2001 ident: ref36/cit36 publication-title: Oil Gas Eur. Mag. – ident: ref52/cit52 doi: 10.1016/j.energy.2020.117437 – ident: ref10/cit10 doi: 10.1016/j.renene.2018.03.006 – volume: 6 start-page: 2965 volume-title: Handbook of Heterogeneous Catalysis year: 2008 ident: ref47/cit47 – ident: ref65/cit65 doi: 10.1016/j.memsci.2016.12.033 – ident: ref70/cit70 – ident: ref19/cit19 doi: 10.1016/j.cattod.2020.08.018 – volume: 6 volume-title: Chemical engineering design: Chemical engineering year: 2005 ident: ref66/cit66 – ident: ref11/cit11 – ident: ref18/cit18 doi: 10.1016/j.rser.2021.110949 – ident: ref53/cit53 doi: 10.1016/j.energy.2019.03.062 – ident: ref59/cit59 doi: 10.1016/j.jcat.2017.01.020 – ident: ref3/cit3 doi: 10.1016/j.esr.2019.01.006 – ident: ref8/cit8 – ident: ref68/cit68 – ident: ref24/cit24 doi: 10.1016/j.cattod.2020.06.057 – ident: ref54/cit54 doi: 10.1039/D1SE00514F – ident: ref72/cit72 doi: 10.1016/j.fuel.2018.08.147 – ident: ref58/cit58 doi: 10.1002/cssc.201301181 – start-page: 33 volume-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change year: 2021 ident: ref5/cit5 – volume-title: Pilot testing of a membrane system for postcombustion CO2 capture year: 2015 ident: ref69/cit69 doi: 10.2172/1337555 – ident: ref49/cit49 doi: 10.3390/catal11030330 – ident: ref27/cit27 – ident: ref41/cit41 doi: 10.1016/j.ijhydene.2020.02.042 – ident: ref9/cit9 doi: 10.1016/j.rser.2014.08.008 – ident: ref12/cit12 doi: 10.1016/j.enconman.2018.05.083 – ident: ref60/cit60 doi: 10.1039/D0SE01125H – ident: ref38/cit38 – ident: ref22/cit22 doi: 10.1002/bbb.1758 – ident: ref26/cit26 – ident: ref64/cit64 doi: 10.1016/j.fuproc.2010.11.027 – ident: ref23/cit23 doi: 10.1016/j.jclepro.2020.123052 – volume: 90 start-page: 62 issue: 10 year: 1992 ident: ref37/cit37 publication-title: Oil Gas J. – ident: ref61/cit61 doi: 10.1016/j.jclepro.2018.11.073 – volume-title: Chemical engineering design: Principles, practice and economics of plant and process design year: 2012 ident: ref67/cit67 – ident: ref71/cit71 doi: 10.1016/j.enconman.2018.08.074 – ident: ref13/cit13 – ident: ref40/cit40 doi: 10.1021/ef950227t – ident: ref46/cit46 doi: 10.1021/acsomega.9b03577 – ident: ref31/cit31 doi: 10.1016/j.enconman.2021.114233 – ident: ref42/cit42 doi: 10.1016/j.ijhydene.2018.08.074 – ident: ref57/cit57 doi: 10.1039/C5FD00039D – ident: ref1/cit1 – ident: ref25/cit25 doi: 10.3390/en12061031 – ident: ref2/cit2 doi: 10.1038/s41467-021-26356-y – ident: ref21/cit21 doi: 10.1016/j.ijhydene.2021.03.246 – ident: ref30/cit30 doi: 10.1016/j.apcata.2015.02.022 – ident: ref17/cit17 doi: 10.1016/j.renene.2013.12.004 – ident: ref39/cit39 – ident: ref50/cit50 doi: 10.1039/C8SE00344K – ident: ref29/cit29 doi: 10.1016/j.rser.2019.03.054 – ident: ref32/cit32 doi: 10.1021/acs.iecr.1c04254 – ident: ref6/cit6 doi: 10.1595/205651320X15816756012040 – ident: ref15/cit15 doi: 10.1016/j.apenergy.2017.08.068 – ident: ref43/cit43 doi: 10.1016/j.ijhydene.2012.08.108 – ident: ref16/cit16 doi: 10.1016/j.renene.2020.10.072 – ident: ref7/cit7 – ident: ref56/cit56 doi: 10.1039/C5FD00174A – ident: ref20/cit20 doi: 10.1016/j.jece.2019.103018 – ident: ref44/cit44 doi: 10.1016/j.jclepro.2017.05.176 – ident: ref45/cit45 doi: 10.3390/catal10010099 – ident: ref51/cit51 doi: 10.1016/j.jclepro.2020.122552 |
SSID | ssj0002513260 |
Score | 2.2340803 |
Snippet | Large-scale biogas plants are a viable source of CH4 and CO2 to be converted efficiently into high-value products. Specifically, production of liquid... |
SourceID | doaj crossref acs |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 450 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT_GWB1ZDYsdxOtKKqkIFIQESW-THGVVCLTTp0H_POTFQWOjAap2t5HzJ99k-f0fIuVdIGoQ2OANcs6yQjhkHjknVtVw6jsvssA95e5cPn7KbZ_m8VOor5IS18sCt4y59JqCrhbDCKiTXXZ17rW0mCum1sa3YNmLe0mIq_IMRtZGXJDF1B3HsUtsKvhX-9PyC24bfBFSy1Q9UWhLvb1BmsEU2Iz2kV-1jbZM1mOyQjSXRwF1St7vhDOKVYvqpK0KnnvbG0xdd0X7IJW82wmg9paPx-3zs6HDhEK30zGDrYI6YSGORHnrfyr4GcxxjBHrCGmMMLvqwwPeo9sjT4PqxP2SxdgLTQiY1Q9qRm8y6pFCA35xDXgi5d6qwaWI5klQDIrG4FgIQYJ1XPpXgrDScmyK3qdgnncl0AgeEJlo1LEdJrzKAtChk7jzySqFdITN1SBh6sIyxX5XNsTZPy98eL6PHD4n69HVpoxB5qIfxukLP9KvnWyvGsUKfXpjOL_sgp900YJCVMcjKv4Ls6D8GOSbrPNydCOkw3RPSqWdzOEVGU5uzJng_AB44-Ys priority: 102 providerName: Directory of Open Access Journals |
Title | Techno-economic Analysis of Biogas Conversion to Liquid Hydrocarbon Fuels through Production of Lean-Hydrogen Syngas |
URI | http://dx.doi.org/10.1021/acsengineeringau.2c00019 https://doaj.org/article/f43e9a33c3c74879a6faac4385fabc06 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEBVOckkOJW1TkrYxOvQqZ1dardbH2sSYYpdCEsht0ceoGILdZteHXPzbO5IVxw0kOBcdxEig0Yh5Go3eEPLNKwQNQhvcAa5ZUUnHjAPHpOpbLh3Ha3aIQ05_luOb4setvO0Q_sILPs8vtG3giZpPL3vcRmCyRw54idYXil2uepu4CvprRCQhtBL-aDKOBpoSeF6bLPgm2_znm7Yo_KOvGR2Tdwkk0u_rXX1POjD_QI62qAM_knYdE2eQPhbTR3YRuvB0MFv81g0dhozyGA6j7YJOZn-XM0fHDw59lr432DtaomekqVQP_bUmfw3iOMcE9JxFYTQxevWA62hOyM3o8no4ZqmCAtNCZi1D8FGawrqsUoAnzyE6hNI7Vdk8sxyhqgGRWbwRAQiwziufS3BWGs5NVdpcfCL788UcTgnNtIpYR0mvCoC8qmTpPKJLoV0lC3VGGGqwTiegqePjNs_r5xqvk8bPiHrUdW0THXmoinG3w8h8M_LPmpJjhzGDsJ0b-UCqHTvQ0up0RmtfCOhrIaywCu9xfV16rW0hKum1sVn5-Y1L_EIOefgsEfJf-l_Jfnu_hHOEMK3pIoQfXnVjAADb6eqyG634H1iK9Zc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELaAHkoPpS1UpYXWh14ddu31enOEqFEoAVUCJMRl5ce4ilolLbt7oL--Y8eEwAEBV8se-TH2fB6PvyHkq1cIGoQ2uAJcs6KSjhkHjknVt1w6jtfs4Ic8PilH58X3C3mxlOoLO9GgpCY-4t-yC-R7WAa3DH2663Eb8ckqeYGYhAfl3h-cLtwraLYRmAQPS_iqyTjqaYrjeUhYMFG2uWOilpj8o8kZbpDLRWdjpMmvXteanv13j8fxWaN5Q14nIEr355rzlqzA9B15tURPuEnaud-dQfq8TG8YTOjM04PJ7Kdu6CBErUeXG21ndDz5200cHV07tIv6ymDpsEPrS1M6IPpjTjAbqqOMMegpi5VRjenpNfax2SLnw29ngxFLWRqYFjJrGQKc0hTWZZUC3N0OESiU3qnK5pnlCIcNiMzirQtAgHVe-VyCs9JwbqrS5uI9WZvOpvCB0EyriKeU9KoAyKtKls4jghXaVbJQ24ThxNVplzV1fEDneX1_Nus0m9tE3SxkbRPleci88fsRLfNFyz9z2o9HtDkIurKoH4i7YwEufp3OgdoXAvpaCCuswrtiX5dea1uISnptbFZ-fOIQv5CXo7PjcT0-PDn6RNZ5-JwR4m36O2StvepgFyFTaz7HzfEfe-wXZg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZ4SBU9VFBaFUqLD1xNd-31enMkoVGAECEVJG4rP8YoUpWk7ObAhd_O2DHhcUD0atnWejyj-Tw78w0hB14haBDa4A1wzYpKOmYcOCZVx3LpOD6zQxzyfFQOrorTa3mdcnNCLQx-RIM7NfEnfrDqmfOJYSD_hePwxNKn54fcRoyyStYRlWShc8Po_nAZYkHXjeAkRFlCuSbjqKspl-etzYKbss0LN_WMzT-6nf4m-ZTwIj1aXPAWWYHJZ_LxGYvgNmkX4XEGqcaYPhKN0Kmn3fH0Rje0F5LLY2SMtlM6HP-bjx0d3Dl0X_rW4Gh_jk6Spq499GLBAxum4x5D0BMWJ6O20T93eI7mC7nq_77sDVhqpsC0kFnLEIeUprAuqxSgEToEilB6pyqbZ5YjajUgMouPIwAB1nnlcwnOSsO5qUqbi69kbTKdwDdCM60i7FHSqwIgrypZOo9AU2hXyULtEIYSrJMxNHX8z83z-rXE6yTxHaIeZV3bxEweGmT8fcfKfLlytmDneMeabrjO5fzArx0HUOPqZK61LwR0tBBWWIVPuo4uvda2EJX02tis3P3PI-6TDxfH_Xp4Mjr7TjZ4KKEIWTGdPbLW3s7hBwKb1vyM6vsAwgH5Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-economic+Analysis+of+Biogas+Conversion+to+Liquid+Hydrocarbon+Fuels+through+Production+of+Lean-Hydrogen+Syngas&rft.jtitle=ACS+Engineering+Au&rft.au=Hos%2C+Tomy&rft.au=Herskowitz%2C+Moti&rft.date=2022-10-19&rft.pub=American+Chemical+Society&rft.issn=2694-2488&rft.eissn=2694-2488&rft.volume=2&rft.issue=5&rft.spage=450&rft.epage=460&rft_id=info:doi/10.1021%2Facsengineeringau.2c00019&rft.externalDocID=a635745709 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon |