Negative Effects of Inorganic Salt Invasion on the Dissociation Kinetics of Silica-Confined Gas Hydrate via Thermal Stimulation

Methane hydrate dissociation kinetics can be inhibited in NaCl solutions; however, this effect is reversed by promoting bubble formation that enhances dissociation. The negative and positive effects of inorganic salt injection on gas production from hydrate-bearing sediments are still controversial....

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 36; no. 12; pp. 6216 - 6228
Main Authors Fang, Bin, Lü, Tao, Cheng, Liwei, Wang, Dongdong, Ni, Yang, Fan, Bowen, Meng, Jiuling, Vlugt, Thijs J. H., Ning, Fulong
Format Journal Article
LanguageEnglish
Published American Chemical Society 16.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methane hydrate dissociation kinetics can be inhibited in NaCl solutions; however, this effect is reversed by promoting bubble formation that enhances dissociation. The negative and positive effects of inorganic salt injection on gas production from hydrate-bearing sediments are still controversial. Here, molecular dynamics simulations were performed to investigate the characteristics of NaCl solution invasion into hydrate-occupied nanopores and the effects on the confined hydrate dissociation kinetics. Two initial configurations comprising liquid and silica pore phases were studied with a low or high NaCl concentration, respectively. The results show that, under the simulation conditions, salt invasion decelerated hydrate dissociation within the silica pore as NaCl invasion into the pore is stepwise. Initially, few ions can diffuse into the pore phase, and gas nanobubbles form on the solid surface mainly via confinement and surface effects, independent of NaCl solution invasion. Subsequently, gradual salt diffusion immersed the residual hydrate in the salt solution and hindered hydrate decomposition until the dissociation finished. More ions could diffuse into the pore phase at the high NaCl concentrations with a low diffusion efficiency, leading to surface nanobubble growth toward the residual hydrate and somewhat accelerated hydrate dissociation. This severely hinders the escape of released methane from the pore. This study yields molecular-level insight into the origin of the negative effect of salt invasion on hydrate dissociation, which should be avoided during gas production from hydrate reservoirs with low permeabilities via salt injection combined with thermal stimulation.
AbstractList Methane hydrate dissociation kinetics can be inhibited in NaCl solutions; however, this effect is reversed by promoting bubble formation that enhances dissociation. The negative and positive effects of inorganic salt injection on gas production from hydrate-bearing sediments are still controversial. Here, molecular dynamics simulations were performed to investigate the characteristics of NaCl solution invasion into hydrate-occupied nanopores and the effects on the confined hydrate dissociation kinetics. Two initial configurations comprising liquid and silica pore phases were studied with a low or high NaCl concentration, respectively. The results show that, under the simulation conditions, salt invasion decelerated hydrate dissociation within the silica pore as NaCl invasion into the pore is stepwise. Initially, few ions can diffuse into the pore phase, and gas nanobubbles form on the solid surface mainly via confinement and surface effects, independent of NaCl solution invasion. Subsequently, gradual salt diffusion immersed the residual hydrate in the salt solution and hindered hydrate decomposition until the dissociation finished. More ions could diffuse into the pore phase at the high NaCl concentrations with a low diffusion efficiency, leading to surface nanobubble growth toward the residual hydrate and somewhat accelerated hydrate dissociation. This severely hinders the escape of released methane from the pore. This study yields molecular-level insight into the origin of the negative effect of salt invasion on hydrate dissociation, which should be avoided during gas production from hydrate reservoirs with low permeabilities via salt injection combined with thermal stimulation.
Author Lü, Tao
Wang, Dongdong
Meng, Jiuling
Vlugt, Thijs J. H.
Ning, Fulong
Fang, Bin
Fan, Bowen
Ni, Yang
Cheng, Liwei
AuthorAffiliation School of Automation
Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems
China University of Geosciences
Faculty of Engineering
School of Mathematics and Physics
Process and Energy Department
National Center for International Research on Deep Earth Drilling and Resource Development
Laboratory for Marine Mineral Resources
AuthorAffiliation_xml – name: Faculty of Engineering
– name: School of Automation
– name: Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems
– name: Process and Energy Department
– name: National Center for International Research on Deep Earth Drilling and Resource Development
– name: China University of Geosciences
– name: Laboratory for Marine Mineral Resources
– name: School of Mathematics and Physics
Author_xml – sequence: 1
  givenname: Bin
  surname: Fang
  fullname: Fang, Bin
  organization: National Center for International Research on Deep Earth Drilling and Resource Development
– sequence: 2
  givenname: Tao
  orcidid: 0000-0002-6317-8039
  surname: Lü
  fullname: Lü, Tao
  email: lvtaohn@126.com
  organization: Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems
– sequence: 3
  givenname: Liwei
  surname: Cheng
  fullname: Cheng, Liwei
  organization: National Center for International Research on Deep Earth Drilling and Resource Development
– sequence: 4
  givenname: Dongdong
  surname: Wang
  fullname: Wang, Dongdong
  organization: National Center for International Research on Deep Earth Drilling and Resource Development
– sequence: 5
  givenname: Yang
  surname: Ni
  fullname: Ni, Yang
  organization: School of Mathematics and Physics
– sequence: 6
  givenname: Bowen
  surname: Fan
  fullname: Fan, Bowen
  organization: School of Mathematics and Physics
– sequence: 7
  givenname: Jiuling
  surname: Meng
  fullname: Meng, Jiuling
  organization: School of Mathematics and Physics
– sequence: 8
  givenname: Thijs J. H.
  orcidid: 0000-0003-3059-8712
  surname: Vlugt
  fullname: Vlugt, Thijs J. H.
  organization: Process and Energy Department
– sequence: 9
  givenname: Fulong
  orcidid: 0000-0003-1236-586X
  surname: Ning
  fullname: Ning, Fulong
  email: nflzx@cug.edu.cn
  organization: Laboratory for Marine Mineral Resources
BookMark eNqFkMFOAjEQhhuDiYA-g32Bxe6WbsvRIAKR6AE8b2bLFEqWrmkLCSdf3QIevJlMMpk_803m_3uk41qHhDzmbJCzIn8CHQbo0G9O5oBNGBSasZFUN6Sbi4JlghWjDukypWTGymJ4R3oh7BhjJVeiS77fcQPRHpFOjEEdA20NnbvWb8BZTZfQxDQeIdjW0VRxi_TFhtBqm7AkvFmH0eoLt7SN1ZCNW2eSuqZTCHR2WnuISI8W6GqLfg8NXUa7PzQX_p7cGmgCPvz2Pvl8nazGs2zxMZ2PnxcZcMFipgyaelQO61oVquY5cl5KAXKoS5UMl6hFmQOXDLnM1VBAXddSMJ4soUIQvE_k9a72bQgeTfXl7R78qcpZdc6xSjlWf3KsfnNMJL-S54Vde_Au_fkv9QM5i4F_
CitedBy_id crossref_primary_10_1016_j_jngse_2022_104811
crossref_primary_10_1016_j_chemphys_2023_111943
crossref_primary_10_2118_218399_PA
crossref_primary_10_1016_j_energy_2023_128862
crossref_primary_10_1021_acsomega_2c04488
crossref_primary_10_1016_j_fuel_2023_128230
crossref_primary_10_1016_j_clay_2023_107069
crossref_primary_10_3390_jmse11040713
Cites_doi 10.1126/science.1183027
10.1038/s41586-019-1853-4
10.1038/srep14599
10.1080/08927029308022504
10.1073/pnas.2024025118
10.1002/jcc.540120305
10.1016/j.fluid.2019.01.008
10.1038/s41586-018-0122-2
10.1063/1.3353953
10.1021/ja309117d
10.1016/j.fuel.2020.119436
10.1038/srep12747
10.1021/jp102584d
10.1126/science.1175074
10.1021/acs.langmuir.7b02711
10.1016/j.softx.2015.06.001
10.1021/jp2086544
10.1021/acs.jpclett.8b01210
10.1021/ja066515t
10.1021/ja00316a012
10.1021/jp911032q
10.1080/08927022.2020.1810685
10.1080/08927020701528524
10.1029/2019JB018518
10.1029/2019JB018721
10.1021/jp807208z
10.1063/1.3466751
10.1103/PhysRevLett.103.015901
10.1016/j.fuel.2019.116106
10.1016/j.fuel.2022.123576
10.1021/ct700301q
10.1021/ja201403q
10.1021/acs.jpcc.7b09573
10.1021/ja802014m
10.1021/jp403471b
10.1021/jp507978u
10.1016/j.jngse.2016.11.021
10.1002/2015GC005811
10.2343/geochemj.29.325
10.1016/0039-6028(65)90024-5
10.1016/j.apenergy.2016.03.101
10.1016/S0378-3812(01)00459-9
10.1021/acs.energyfuels.0c01291
10.1021/acs.jpcb.7b10356
10.1021/jp055341j
10.1139/cjc-2015-0003
10.1063/1.2408420
10.1021/ef101651b
10.1021/jp972543+
10.1016/j.jct.2019.05.013
10.1080/00268976.2015.1081708
10.1139/cjc-2014-0443
10.1021/j100308a038
10.1021/acscentsci.8b00076
10.1021/ja028537v
10.1016/j.cis.2019.101995
10.1063/1.4795499
10.1016/j.apenergy.2019.114479
10.1016/j.fluid.2018.09.028
10.1306/M891320
10.1029/2007GC001920
10.1021/jp206483q
10.1021/acs.jpcc.9b06366
10.1016/j.petrol.2020.107465
10.1029/2010JB008143
10.1063/1.1485962
10.1021/ef502429n
10.1063/1.881812
10.1063/1.470117
10.1201/9781420008494
10.1039/C4CP05003G
10.1021/acssuschemeng.7b03238
10.1021/acs.iecr.7b03256
10.2138/am-2003-0409
10.1021/acs.langmuir.6b04334
10.1021/jp412692d
10.1002/cphc.201701250
10.1039/C6CP03296F
10.1021/jp511362s
10.1016/j.petrol.2016.09.017
10.1039/C5CP03008K
10.1063/1.328693
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.energyfuels.2c00978
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 6228
ExternalDocumentID 10_1021_acs_energyfuels_2c00978
b258940958
GroupedDBID 02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABUCX
ACGFO
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DC
DU5
EBS
ED
F5P
GGK
GNL
IH9
JG
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
ZCA
-~X
.DC
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
AGXLV
BAANH
CITATION
CUPRZ
ED~
JG~
~02
ID FETCH-LOGICAL-a350t-8fefb964bb828b31e33675a74c682c06ec561a370e371845abbb7503fece8ea53
IEDL.DBID ACS
ISSN 0887-0624
IngestDate Fri Aug 23 03:01:52 EDT 2024
Sat Jun 18 04:18:35 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a350t-8fefb964bb828b31e33675a74c682c06ec561a370e371845abbb7503fece8ea53
ORCID 0000-0003-3059-8712
0000-0003-1236-586X
0000-0002-6317-8039
OpenAccessLink https://repository.tudelft.nl/file/File_4d8bdc58-c88f-4cff-9128-aa9174eaba8d
PageCount 13
ParticipantIDs crossref_primary_10_1021_acs_energyfuels_2c00978
acs_journals_10_1021_acs_energyfuels_2c00978
PublicationCentury 2000
PublicationDate 20220616
2022-06-16
PublicationDateYYYYMMDD 2022-06-16
PublicationDate_xml – month: 06
  year: 2022
  text: 20220616
  day: 16
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Baez L. A. (ref65/cit65) 1994; 715
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Downs R. T. (ref53/cit53) 2003; 88
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1126/science.1183027
– ident: ref69/cit69
  doi: 10.1038/s41586-019-1853-4
– ident: ref68/cit68
  doi: 10.1038/srep14599
– ident: ref66/cit66
  doi: 10.1080/08927029308022504
– ident: ref20/cit20
  doi: 10.1073/pnas.2024025118
– ident: ref62/cit62
  doi: 10.1002/jcc.540120305
– ident: ref80/cit80
  doi: 10.1016/j.fluid.2019.01.008
– ident: ref79/cit79
  doi: 10.1038/s41586-018-0122-2
– ident: ref19/cit19
  doi: 10.1063/1.3353953
– ident: ref27/cit27
  doi: 10.1021/ja309117d
– ident: ref43/cit43
  doi: 10.1016/j.fuel.2020.119436
– ident: ref50/cit50
  doi: 10.1038/srep12747
– ident: ref29/cit29
  doi: 10.1021/jp102584d
– ident: ref5/cit5
  doi: 10.1126/science.1175074
– ident: ref49/cit49
  doi: 10.1021/acs.langmuir.7b02711
– ident: ref55/cit55
  doi: 10.1016/j.softx.2015.06.001
– ident: ref71/cit71
  doi: 10.1021/jp2086544
– ident: ref36/cit36
  doi: 10.1021/acs.jpclett.8b01210
– ident: ref28/cit28
  doi: 10.1021/ja066515t
– ident: ref58/cit58
  doi: 10.1021/ja00316a012
– ident: ref17/cit17
  doi: 10.1021/jp911032q
– ident: ref78/cit78
  doi: 10.1080/08927022.2020.1810685
– ident: ref70/cit70
  doi: 10.1080/08927020701528524
– ident: ref16/cit16
  doi: 10.1029/2019JB018518
– ident: ref44/cit44
  doi: 10.1029/2019JB018721
– ident: ref74/cit74
  doi: 10.1021/jp807208z
– ident: ref18/cit18
  doi: 10.1063/1.3466751
– ident: ref38/cit38
  doi: 10.1103/PhysRevLett.103.015901
– ident: ref13/cit13
  doi: 10.1016/j.fuel.2019.116106
– ident: ref47/cit47
  doi: 10.1016/j.fuel.2022.123576
– ident: ref54/cit54
  doi: 10.1021/ct700301q
– ident: ref23/cit23
  doi: 10.1021/ja201403q
– ident: ref35/cit35
  doi: 10.1021/acs.jpcc.7b09573
– ident: ref39/cit39
  doi: 10.1021/ja802014m
– ident: ref75/cit75
  doi: 10.1021/jp403471b
– ident: ref10/cit10
  doi: 10.1021/jp507978u
– ident: ref3/cit3
  doi: 10.1016/j.jngse.2016.11.021
– ident: ref48/cit48
  doi: 10.1002/2015GC005811
– ident: ref8/cit8
  doi: 10.2343/geochemj.29.325
– ident: ref72/cit72
  doi: 10.1016/0039-6028(65)90024-5
– ident: ref4/cit4
  doi: 10.1016/j.apenergy.2016.03.101
– ident: ref9/cit9
  doi: 10.1016/S0378-3812(01)00459-9
– ident: ref14/cit14
  doi: 10.1021/acs.energyfuels.0c01291
– ident: ref32/cit32
  doi: 10.1021/acs.jpcb.7b10356
– ident: ref59/cit59
  doi: 10.1021/jp055341j
– ident: ref30/cit30
  doi: 10.1139/cjc-2015-0003
– ident: ref63/cit63
  doi: 10.1063/1.2408420
– ident: ref42/cit42
  doi: 10.1021/ef101651b
– ident: ref57/cit57
  doi: 10.1021/jp972543+
– ident: ref77/cit77
  doi: 10.1016/j.jct.2019.05.013
– ident: ref12/cit12
  doi: 10.1080/00268976.2015.1081708
– ident: ref51/cit51
  doi: 10.1139/cjc-2014-0443
– ident: ref56/cit56
  doi: 10.1021/j100308a038
– ident: ref37/cit37
  doi: 10.1021/acscentsci.8b00076
– ident: ref25/cit25
  doi: 10.1021/ja028537v
– ident: ref15/cit15
  doi: 10.1016/j.cis.2019.101995
– ident: ref52/cit52
  doi: 10.1063/1.4795499
– ident: ref40/cit40
  doi: 10.1016/j.apenergy.2019.114479
– ident: ref76/cit76
  doi: 10.1016/j.fluid.2018.09.028
– ident: ref2/cit2
  doi: 10.1306/M891320
– ident: ref46/cit46
  doi: 10.1029/2007GC001920
– ident: ref22/cit22
  doi: 10.1021/jp206483q
– volume: 715
  start-page: 177
  year: 1994
  ident: ref65/cit65
  publication-title: Int. Conf. Nat. Gas Hydrates
  contributor:
    fullname: Baez L. A.
– ident: ref82/cit82
  doi: 10.1021/acs.jpcc.9b06366
– ident: ref7/cit7
  doi: 10.1016/j.petrol.2020.107465
– ident: ref83/cit83
  doi: 10.1029/2010JB008143
– ident: ref26/cit26
  doi: 10.1063/1.1485962
– ident: ref41/cit41
  doi: 10.1021/ef502429n
– ident: ref60/cit60
  doi: 10.1063/1.881812
– ident: ref61/cit61
  doi: 10.1063/1.470117
– ident: ref1/cit1
  doi: 10.1201/9781420008494
– ident: ref31/cit31
  doi: 10.1039/C4CP05003G
– ident: ref21/cit21
  doi: 10.1021/acssuschemeng.7b03238
– ident: ref45/cit45
  doi: 10.1021/acs.iecr.7b03256
– volume: 88
  start-page: 247
  year: 2003
  ident: ref53/cit53
  publication-title: Am. Mineral.
  doi: 10.2138/am-2003-0409
  contributor:
    fullname: Downs R. T.
– ident: ref34/cit34
  doi: 10.1021/acs.langmuir.6b04334
– ident: ref67/cit67
  doi: 10.1021/jp412692d
– ident: ref81/cit81
  doi: 10.1002/cphc.201701250
– ident: ref33/cit33
  doi: 10.1039/C6CP03296F
– ident: ref73/cit73
  doi: 10.1021/jp511362s
– ident: ref6/cit6
  doi: 10.1016/j.petrol.2016.09.017
– ident: ref11/cit11
  doi: 10.1039/C5CP03008K
– ident: ref64/cit64
  doi: 10.1063/1.328693
SSID ssj0006385
Score 2.4997592
Snippet Methane hydrate dissociation kinetics can be inhibited in NaCl solutions; however, this effect is reversed by promoting bubble formation that enhances...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 6216
SubjectTerms Fossil Fuels
Title Negative Effects of Inorganic Salt Invasion on the Dissociation Kinetics of Silica-Confined Gas Hydrate via Thermal Stimulation
URI http://dx.doi.org/10.1021/acs.energyfuels.2c00978
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VMgADjwKivOSBkZTEcR6MVaEUEB0olbpFtuOgiNIiklaChb_OOQ-IhCpAyhJLdmL7ku872_cdwAlS-Ig52nipMg2muGUIRE1DRugQSeQjXOgA57u-2xuym5EzqoG1YAefWmdcJi2VxcFFM4SLFpVZ7MESLFNER-1vtTuDr58vmpNTinuaLmXlka7FDWlYkkkFlir40t2A-zJKJz9W8tSapaIl33-KNv791TdhvWCbpJ2bxxbU1KQBK50yyVsD1ip6hNvw0VePmRA4yUWNEzKNyPUkz_wkyYCPU7ydc73CRvBC8kgu4u8JJrfYltZ91vUGsV4PNHRIIZaG5IonpPcWamkKMo85QQNFUBiTQRo_FznEdmDYvXzo9IwiQ4PBbcdMDT9SkTh3mRDouAnbUraNDgj3mHR97KyrJNIzbnumshEDmcOFEHrjFLugfMUdexfqk-lE7QGxqPRCx_b8ECke80LuSaokF0zp83BR1IRTHM6g-MKSINs8p1agCytjHBRj3ASznM_gJdft-K3K_v-ecACrVIdC6DxG7iHU09eZOkKCkorjzCQ_AVjN5uw
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT8JAFH5BPKAHF9SI6xw8WuwyXTwaFEGWC5DgqZmZTk0jgrGFRC_-dd-UFoiJMZr0MpPMdJbXft8s73sAF0jhQ2or4zWlrlHJDI0jamoixAWRQD7CuHJw7nSdxoA-DO1hAbzcFwYbEWNNcXqIv1QXMK5Unkzd4cIpokbVFKkLwhqs2y5iniJFtd7iH4xWZecan7pj0vxm188VKXQS8Qo6rcBMfRseFw1Mb5c8V6cJr4qPb9qN_-nBDmxl3JPczI1lFwpyXIZSLQ_5VobNFXXCPfjsyqdUFpzMJY5jMglJczyPAyVIj40STM6Y2m8j-CCVJLfRcrpJC-tSKtCqXC9Su4OacjDE3IDcs5g03gMlVEFmESNorggRI9JLopcsotg-DOp3_VpDy-I1aMyy9UTzQhnya4dyjss4bhnSsnA5wlwqHA8760iBZI1Zri4tRERqM865OkbFLkhPMts6gOJ4MpaHQAxTuIFtuV6AhI-6AXOFKQXjVKrbcWFYgUscTj_73mI_PUo3DV9lroyxn41xBfR8Wv3XuYrHb0WO_vaGcyg1-p223252W8ewYSonCRXhyDmBYvI2ladIXRJ-llrpF0lZ71c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7UCi4Hl6q4OwePpmaZJBW8SLW2LkWoBS8SZiYzUtQqJi3oxb_ue2miRRBRyCUDM5nlTb5vlvc9gF2k8Ib7ZLyuti2uhWNJRE1LGVwQKeQjQpKD82U7aHb52Y1_U4LDwhcGK5FgSUl2iE-z-jk2ucKAs0_pOnOJMwNEjqqrMjeECZj0Q4fTtDyqdz7_w2hZfqHzaQcuL253_VwQIZRKxhBqDGoa83D7Wcnshsl9dZDKqnr7pt_431YswFzOQdnRyGgWoaT7FZiuF6HfKjA7plK4BO9tfZfJg7OR1HHCngxr9UfxoBTriIcUX4eC9t0YPkgp2XHva9jZOZZFatCUr9OjXUKLHA0xNWanImHN15gEK9iwJxiaLULFA-ukvcc8stgydBsn1_WmlcdtsITn26lVM9rIg4BLics56Tna83BZIkKugho2NtAKSZvwQlt7iIzcF1JKOk7FJuiaFr63AuX-U1-vAnNcFca-F9ZiJH48jEWoXK2E5JpuyRmzBnvYnVE-75IoO1J3nYgSx_o4yvt4DexiaKPnkZrHb1nW__aFHZi6Om5EF632-QbMuOQrQYGOgk0opy8DvYUMJpXbmaF-AM3_8dE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Negative+Effects+of+Inorganic+Salt+Invasion+on+the+Dissociation+Kinetics+of+Silica-Confined+Gas+Hydrate+via+Thermal+Stimulation&rft.jtitle=Energy+%26+fuels&rft.au=Fang%2C+Bin&rft.au=L%C3%BC%2C+Tao&rft.au=Cheng%2C+Liwei&rft.au=Wang%2C+Dongdong&rft.date=2022-06-16&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=36&rft.issue=12&rft.spage=6216&rft.epage=6228&rft_id=info:doi/10.1021%2Facs.energyfuels.2c00978&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_energyfuels_2c00978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon