Desorption Strategies and Reusability of Biopolymeric Adsorbents and Semisynthetic Derivatives in Hydrogel and Hydrogel Composites Used in Adsorption Processes
Adsorption is a promising technique for the removal of persistent contaminants, since it is a relatively cheap process with low energy requirements and does not produce secondary contamination. However, the large-scale implementation of an adsorption process usually involves a dual column process fo...
Saved in:
Published in | ACS Engineering Au Vol. 3; no. 6; pp. 443 - 460 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
20.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adsorption is a promising technique for the removal of persistent contaminants, since it is a relatively cheap process with low energy requirements and does not produce secondary contamination. However, the large-scale implementation of an adsorption process usually involves a dual column process for either pressure swing or temperature swing operations. Therefore, the reusability of adsorbents is a key characteristic to consider and evaluate but is often overlooked during the development of new materials. To be reused, the adsorbent should successfully release the contaminant by a desorption or regeneration step without compromising the chemical and physical stability of the matrix. The efficiency of desorption/regeneration methods depends greatly on the chemical characteristics of the contaminants, the nature of the adsorbents, and the adsorption mechanisms responsible for the adsorbent–adsorbate interactions. This review focuses on the desorption strategies that have been used for the regeneration of biobased hydrogels and hydrogel composites, materials that have been successfully applied in the adsorption of wastewater contaminants. The strategies can be divided into chemical and physical methods. The chemical methods include the use of desorption agents, photocatalytic oxidation, and CO2 bubbling; and the physical methods include thermal and ultrasonic treatments. These regeneration strategies have shown different efficiencies as well as specific advantages and drawbacks that need to be considered to select the most suitable method for a specific application. |
---|---|
AbstractList | Adsorption is a promising technique for the removal of persistent contaminants, since it is a relatively cheap process with low energy requirements and does not produce secondary contamination. However, the large-scale implementation of an adsorption process usually involves a dual column process for either pressure swing or temperature swing operations. Therefore, the reusability of adsorbents is a key characteristic to consider and evaluate but is often overlooked during the development of new materials. To be reused, the adsorbent should successfully release the contaminant by a desorption or regeneration step without compromising the chemical and physical stability of the matrix. The efficiency of desorption/regeneration methods depends greatly on the chemical characteristics of the contaminants, the nature of the adsorbents, and the adsorption mechanisms responsible for the adsorbent–adsorbate interactions. This review focuses on the desorption strategies that have been used for the regeneration of biobased hydrogels and hydrogel composites, materials that have been successfully applied in the adsorption of wastewater contaminants. The strategies can be divided into chemical and physical methods. The chemical methods include the use of desorption agents, photocatalytic oxidation, and CO2 bubbling; and the physical methods include thermal and ultrasonic treatments. These regeneration strategies have shown different efficiencies as well as specific advantages and drawbacks that need to be considered to select the most suitable method for a specific application. |
Author | Prasher, Shiv Kaliaguine, Serge Tavares, Jason Robert Dumont, Marie-Josée Alcalde-Garcia, Fabiola |
AuthorAffiliation | McGill University Bioresource Engineering Department CREPEC, Chemical Engineering Department |
AuthorAffiliation_xml | – name: McGill University – name: CREPEC, Chemical Engineering Department – name: Bioresource Engineering Department |
Author_xml | – sequence: 1 givenname: Fabiola surname: Alcalde-Garcia fullname: Alcalde-Garcia, Fabiola organization: CREPEC, Chemical Engineering Department – sequence: 2 givenname: Shiv surname: Prasher fullname: Prasher, Shiv organization: McGill University – sequence: 3 givenname: Serge orcidid: 0000-0002-4467-2840 surname: Kaliaguine fullname: Kaliaguine, Serge organization: CREPEC, Chemical Engineering Department – sequence: 4 givenname: Jason Robert orcidid: 0000-0002-3828-2993 surname: Tavares fullname: Tavares, Jason Robert organization: CREPEC, Chemical Engineering Department – sequence: 5 givenname: Marie-Josée orcidid: 0000-0001-9383-5418 surname: Dumont fullname: Dumont, Marie-Josée email: marie-josee.dumont@gch.ulaval.ca organization: McGill University |
BookMark | eNqNkdtu3CAQhlGVSknTvINfYFPAxnhvKqWbtokUqVEO12iAscvKCytgI_lp8qpl12lV5Sa5Aob__-b0iRz54JGQitFzRjn7AiahH5xHjM4PsDuvDaWU8w_khLfLZsGbrjv6735MzlJa7yWC1bylJ-T5ElOI2-yCr-5zhIyDw1SBt9Ud7hJoN7o8VaGvvrmwDeO0KalMdWGLS6PPs_QeNy5NPv_GXD4vi-QJsnsqIOerq8nGMOB4UP57rMJmG5LLRfOY0O6FB-hcym0MBlPC9Jl87GFMePZynpLHH98fVleLm18_r1cXNwuoBc2LVgorhNUIskdmxbK2Vuve1LY1VEBHa856IbW0bSeavrHcgFwWEwfZUkbrU3I9c22AtdpGt4E4qQBOHQIhDgpiaW5EZTntAGrZ2RYb2kjdaI0lHRUGectkYX2dWSaGlCL2yrgM-77KgN2oGFX77anX21Mv2yuA7hXgb0HvsDaztSjUOuyiL1N72_YHRobAQA |
CitedBy_id | crossref_primary_10_1007_s13201_024_02187_2 crossref_primary_10_1080_10601325_2025_2467050 crossref_primary_10_1016_j_jece_2024_115274 crossref_primary_10_1515_cppm_2023_0081 crossref_primary_10_1016_j_cej_2025_160928 crossref_primary_10_1155_2024_5704096 crossref_primary_10_1007_s13399_024_05841_6 crossref_primary_10_1007_s10924_024_03428_w crossref_primary_10_3390_ma18030674 crossref_primary_10_3390_polym17010015 crossref_primary_10_3390_polym17040502 crossref_primary_10_1002_pol_20240107 crossref_primary_10_1002_pol_20240624 crossref_primary_10_1016_j_marpolbul_2024_117210 crossref_primary_10_1016_j_envpol_2024_123922 crossref_primary_10_1021_acsfoodscitech_4c00706 crossref_primary_10_1080_09593330_2024_2404646 crossref_primary_10_1016_j_microc_2024_112281 crossref_primary_10_3390_gels10110713 crossref_primary_10_3390_ma18020374 crossref_primary_10_1007_s13399_024_05710_2 |
Cites_doi | 10.1007/s10311-018-0786-8 10.1016/j.watres.2005.07.020 10.1007/s11356-020-10985-9 10.1007/s10563-020-09322-4 10.1016/B978-0-12-820042-1.00001-8 10.1016/S0927-7757(00)00484-2 10.1080/19443994.2012.759156 10.1016/j.biortech.2008.02.015 10.1016/j.reactfunctpolym.2022.105207 10.3390/polym13111691 10.1016/j.chemosphere.2021.130663 10.1080/15376516.2019.1701594 10.1016/j.jenvman.2019.03.110 10.1016/j.ijbiomac.2020.09.154 10.1016/j.ijbiomac.2019.09.249 10.1016/j.jclepro.2022.131074 10.1080/01932691.2015.1062774 10.1016/j.ijbiomac.2020.10.039 10.1016/j.seppur.2020.116796 10.1016/j.chemosphere.2021.132532 10.1038/s41598-021-96416-2 10.1016/j.watres.2017.12.067 10.1002/9783527346448.ch1 10.1016/j.jcis.2013.05.007 10.1007/s11356-017-1115-7 10.1007/s10924-023-02798-x 10.1016/j.seppur.2019.05.040 10.1016/j.biortech.2021.125046 10.1016/j.jcis.2021.08.130 10.1016/j.cej.2021.131929 10.1007/978-981-10-6077-9_2 10.1016/j.ijbiomac.2021.12.166 10.1016/j.molliq.2019.02.061 10.1002/app.42949 10.1016/j.envpol.2004.06.006 10.30492/IJCCE.2009.6831 10.1093/bmb/ldg032 10.1007/s12649-016-9684-0 10.1007/s10529-019-02650-0 10.1007/s10811-019-01874-x 10.1016/j.jhazmat.2021.126863 10.1007/s11356-022-18833-8 10.7717/peerj.9164 10.1016/j.jwpe.2019.100957 10.1007/s10924-021-02252-w 10.1016/j.molliq.2020.113234 10.1016/j.biortech.2021.126001 10.1016/j.jclepro.2021.125880 10.1016/j.scitotenv.2018.05.129 10.1002/9781119441632 10.1016/j.ijbiomac.2015.12.022 10.1002/ceat.201800367 10.1016/S0969-8043(00)00297-9 10.1016/j.ijbiomac.2020.11.166 10.1016/B978-0-12-821141-0.00019-7 10.1007/0-387-27591-6_4 10.1016/j.jclepro.2022.133616 10.1016/j.scitotenv.2022.153612 10.1016/j.apmt.2020.100878 10.1016/j.cej.2020.126953 10.1016/j.joei.2022.03.004 10.1016/j.carbpol.2017.09.006 10.1007/978-3-7643-8340-4_6 10.1016/j.chemosphere.2020.129309 10.1016/j.jhazmat.2010.04.007 10.1016/S1001-0742(12)60145-4 10.3390/molecules26051426 10.1039/b617536h 10.1016/j.cej.2017.03.101 10.1016/j.ijbiomac.2017.07.135 10.1016/j.reactfunctpolym.2007.03.007 10.1016/j.scitotenv.2022.153555 10.1007/s10924-021-02154-x 10.1002/jctb.2377 10.1016/j.ijbiomac.2019.10.145 10.1038/srep31920 10.1016/j.jhazmat.2020.122417 10.1016/j.jhazmat.2021.125612 10.1016/j.ijbiomac.2020.03.081 10.1016/j.carbpol.2016.08.017 10.1016/j.chemosphere.2021.131890 10.1016/j.cej.2011.09.064 10.15446/ing.investig.v39n1.69703 10.1016/j.carbpol.2016.06.045 10.1016/j.biortech.2011.07.057 10.1016/S1002-0160(09)60279-4 10.1016/0008-6223(93)90185-D 10.1016/j.seppur.2021.119510 10.1007/s00128-004-0527-5 10.1016/j.susmat.2022.e00406 10.1021/bk-2005-0910.ch001 10.1201/9781351069465 10.1007/s11356-013-1672-3 10.1016/j.jtice.2015.01.004 10.1016/S1001-0742(11)61036-X 10.1016/j.carbpol.2009.12.048 10.1016/j.jhazmat.2021.126752 10.1016/j.chemosphere.2018.12.184 10.1515/9783110715507 10.1016/S0043-1354(01)00389-X 10.1016/j.jiec.2015.08.011 10.1016/j.cej.2022.135021 10.1016/j.cej.2019.122157 10.1039/D3TA01109G 10.1016/j.ijbiomac.2021.01.150 10.1007/978-3-540-73966-1 10.1002/9781118921616 10.1016/j.seppur.2022.120506 10.1201/9781003052234 10.1007/s00289-019-02900-1 10.1016/j.ijbiomac.2022.02.035 10.1007/s11356-020-10166-8 10.1016/j.seppur.2013.04.015 10.1016/j.chemosphere.2021.131458 10.1002/ente.202100163 10.3390/pr9040719 10.1016/j.jece.2022.107620 10.1016/j.micromeso.2014.09.003 10.3390/app112411786 10.1016/j.ijbiomac.2021.02.106 10.2166/aqua.2018.101 10.1016/j.jenvman.2020.111485 10.1016/j.ijbiomac.2017.09.057 10.1002/wer.1321 10.1016/j.colsurfb.2012.11.023 10.1016/j.colsurfa.2016.04.043 10.1016/j.ijbiomac.2020.05.191 10.1007/s10570-015-0747-3 10.1016/j.jhazmat.2021.126225 10.1016/j.chemosphere.2017.07.086 10.1016/j.reactfunctpolym.2016.07.016 10.1016/j.carbpol.2020.117318 10.1016/j.cej.2012.09.100 10.1016/S1350-4177(01)00089-X 10.3390/molecules26051437 10.1021/mz2000175 10.2166/wst.2021.205 10.1063/5.0072592 10.1016/j.jiec.2014.12.007 10.1021/jf9503826 10.1016/j.ijbiomac.2019.12.139 10.1016/j.chemosphere.2021.133002 10.1080/19443994.2013.800276 10.1016/j.molliq.2016.07.037 10.1016/j.chemosphere.2021.131597 10.1016/j.jiec.2014.10.014 10.1039/D0TA07028A 10.1007/s42773-022-00131-8 10.1016/j.desal.2010.04.008 10.1016/j.jcis.2004.08.028 10.1016/j.ultsonch.2020.105378 10.1016/j.jclepro.2020.125311 10.1016/j.jece.2020.104073 10.1016/j.nanoso.2020.100507 10.1016/j.ijbiomac.2020.11.079 10.1016/j.jece.2022.107310 10.1016/j.scitotenv.2020.143236 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION DOA |
DOI | 10.1021/acsengineeringau.3c00022 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2694-2488 |
EndPage | 460 |
ExternalDocumentID | oai_doaj_org_article_d208aa378d6e4047b4bbeddb05ce2617 10_1021_acsengineeringau_3c00022 h17800867 |
GroupedDBID | ACS AELXD ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N~. OK1 AAYXX ABBLG ADUCK CITATION |
ID | FETCH-LOGICAL-a350t-675d55dbea7fe1d593ddbbfc3d6c05a80321f57b7d6854f4d2ca7975d2a760103 |
IEDL.DBID | DOA |
ISSN | 2694-2488 |
IngestDate | Wed Aug 27 01:24:16 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Tue Jul 01 00:23:10 EDT 2025 Fri Dec 22 03:18:21 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | physical regeneration desorption mechanism regeneration strategies reusability wastewater contaminants biopolymers desorption chemical regeneration hydrogel composites |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a350t-675d55dbea7fe1d593ddbbfc3d6c05a80321f57b7d6854f4d2ca7975d2a760103 |
ORCID | 0000-0001-9383-5418 0000-0002-3828-2993 0000-0002-4467-2840 |
OpenAccessLink | https://doaj.org/article/d208aa378d6e4047b4bbeddb05ce2617 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d208aa378d6e4047b4bbeddb05ce2617 crossref_citationtrail_10_1021_acsengineeringau_3c00022 crossref_primary_10_1021_acsengineeringau_3c00022 acs_journals_10_1021_acsengineeringau_3c00022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-20 |
PublicationDateYYYYMMDD | 2023-12-20 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | ACS Engineering Au |
PublicationTitleAlternate | ACS Eng. Au |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 Adamczyk Z. (ref63/cit63) 2006; 9 ref99/cit99 ref3/cit3 ref81/cit81 Jun Loh X. (ref30/cit30) 2013 ref16/cit16 Thakur V. K. (ref39/cit39) 2017 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref35/cit35 Bhuvaneshwari S. (ref73/cit73) 2012; 71 ref89/cit89 Thakur S. (ref25/cit25) 2018 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref167/cit167 Buhmann S. Y. (ref67/cit67) 2012 ref163/cit163 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 Shaaban M. (ref64/cit64) 2021 ref152/cit152 de Lasa H. (ref157/cit157) 2005 ref153/cit153 ref154/cit154 ref27/cit27 ref150/cit150 ref151/cit151 ref56/cit56 ref159/cit159 Barton C. D. (ref51/cit51) 2002 ref92/cit92 ref155/cit155 ref156/cit156 ref158/cit158 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 Ali I. (ref2/cit2) 2021 ref34/cit34 ref37/cit37 Nowack B. (ref120/cit120) 2005; 910 ref60/cit60 ref88/cit88 ref17/cit17 Kaleekkal N. J. (ref10/cit10) 2021 ref82/cit82 ref147/cit147 ref160/cit160 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref166/cit166 ref149/cit149 ref162/cit162 ref46/cit46 ref164/cit164 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref161/cit161 ref142/cit142 ref69/cit69 ref165/cit165 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 Gautam R. K. (ref5/cit5) 2015 ref104/cit104 ref4/cit4 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1007/s10311-018-0786-8 – ident: ref121/cit121 doi: 10.1016/j.watres.2005.07.020 – ident: ref52/cit52 doi: 10.1007/s11356-020-10985-9 – ident: ref149/cit149 doi: 10.1007/s10563-020-09322-4 – start-page: 1 volume-title: Heavy Metals In Water: Presence, Removal and Safety year: 2015 ident: ref5/cit5 – start-page: 189 volume-title: Sorbents Materials for Controlling Environmental Pollution year: 2021 ident: ref64/cit64 doi: 10.1016/B978-0-12-820042-1.00001-8 – ident: ref111/cit111 doi: 10.1016/S0927-7757(00)00484-2 – ident: ref24/cit24 doi: 10.1080/19443994.2012.759156 – ident: ref95/cit95 doi: 10.1016/j.biortech.2008.02.015 – ident: ref26/cit26 doi: 10.1016/j.reactfunctpolym.2022.105207 – ident: ref117/cit117 doi: 10.3390/polym13111691 – ident: ref118/cit118 doi: 10.1016/j.chemosphere.2021.130663 – ident: ref3/cit3 doi: 10.1080/15376516.2019.1701594 – ident: ref44/cit44 doi: 10.1016/j.jenvman.2019.03.110 – ident: ref53/cit53 doi: 10.1016/j.ijbiomac.2020.09.154 – ident: ref104/cit104 doi: 10.1016/j.ijbiomac.2019.09.249 – ident: ref105/cit105 doi: 10.1016/j.jclepro.2022.131074 – ident: ref29/cit29 doi: 10.1080/01932691.2015.1062774 – ident: ref87/cit87 doi: 10.1016/j.ijbiomac.2020.10.039 – ident: ref147/cit147 doi: 10.1016/j.seppur.2020.116796 – ident: ref88/cit88 doi: 10.1016/j.chemosphere.2021.132532 – ident: ref136/cit136 doi: 10.1038/s41598-021-96416-2 – ident: ref42/cit42 doi: 10.1016/j.watres.2017.12.067 – ident: ref9/cit9 doi: 10.1002/9783527346448.ch1 – ident: ref93/cit93 doi: 10.1016/j.jcis.2013.05.007 – ident: ref86/cit86 doi: 10.1007/s11356-017-1115-7 – ident: ref40/cit40 – ident: ref32/cit32 doi: 10.1007/s10924-023-02798-x – ident: ref72/cit72 doi: 10.1016/j.seppur.2019.05.040 – volume: 9 start-page: 15 volume-title: Interface Science and Technology year: 2006 ident: ref63/cit63 – ident: ref49/cit49 doi: 10.1016/j.biortech.2021.125046 – ident: ref146/cit146 doi: 10.1016/j.jcis.2021.08.130 – ident: ref19/cit19 doi: 10.1016/j.cej.2021.131929 – start-page: 29 volume-title: Hydrogels: Recent Advances year: 2018 ident: ref25/cit25 doi: 10.1007/978-981-10-6077-9_2 – ident: ref99/cit99 doi: 10.1016/j.ijbiomac.2021.12.166 – ident: ref89/cit89 doi: 10.1016/j.molliq.2019.02.061 – ident: ref140/cit140 doi: 10.1002/app.42949 – start-page: 1 volume-title: Polymeric and Self Assembled Hydrogels: From Fundamental Understanding to Applications year: 2013 ident: ref30/cit30 – ident: ref125/cit125 doi: 10.1016/j.envpol.2004.06.006 – ident: ref79/cit79 doi: 10.30492/IJCCE.2009.6831 – ident: ref4/cit4 doi: 10.1093/bmb/ldg032 – ident: ref38/cit38 doi: 10.1007/s12649-016-9684-0 – ident: ref78/cit78 doi: 10.1007/s10529-019-02650-0 – ident: ref61/cit61 doi: 10.1007/s10811-019-01874-x – ident: ref116/cit116 doi: 10.1016/j.jhazmat.2021.126863 – ident: ref152/cit152 doi: 10.1007/s11356-022-18833-8 – volume: 71 start-page: 266 issue: 4 year: 2012 ident: ref73/cit73 publication-title: Journal of Scientific Industrial Research – ident: ref68/cit68 doi: 10.7717/peerj.9164 – ident: ref77/cit77 doi: 10.1016/j.jwpe.2019.100957 – ident: ref143/cit143 doi: 10.1007/s10924-021-02252-w – ident: ref159/cit159 doi: 10.1016/j.molliq.2020.113234 – ident: ref16/cit16 doi: 10.1016/j.biortech.2021.126001 – ident: ref35/cit35 doi: 10.1016/j.jclepro.2021.125880 – ident: ref46/cit46 doi: 10.1016/j.scitotenv.2018.05.129 – volume-title: Handbook of Composites from Renewable Materials, Nanocomposites: Science and Fundamentals year: 2017 ident: ref39/cit39 doi: 10.1002/9781119441632 – ident: ref145/cit145 doi: 10.1016/j.ijbiomac.2015.12.022 – ident: ref1/cit1 – ident: ref47/cit47 doi: 10.1002/ceat.201800367 – ident: ref123/cit123 doi: 10.1016/S0969-8043(00)00297-9 – ident: ref112/cit112 doi: 10.1016/j.ijbiomac.2020.11.166 – start-page: 11 volume-title: Aquananotechnology year: 2021 ident: ref2/cit2 doi: 10.1016/B978-0-12-821141-0.00019-7 – start-page: 63 volume-title: Photocatalytic Reaction Engineering year: 2005 ident: ref157/cit157 doi: 10.1007/0-387-27591-6_4 – ident: ref158/cit158 doi: 10.1016/j.jclepro.2022.133616 – ident: ref167/cit167 doi: 10.1016/j.scitotenv.2022.153612 – ident: ref76/cit76 doi: 10.1016/j.apmt.2020.100878 – ident: ref109/cit109 doi: 10.1016/j.cej.2020.126953 – ident: ref71/cit71 doi: 10.1016/j.joei.2022.03.004 – ident: ref84/cit84 doi: 10.1016/j.carbpol.2017.09.006 – ident: ref6/cit6 doi: 10.1007/978-3-7643-8340-4_6 – ident: ref60/cit60 doi: 10.1016/j.chemosphere.2020.129309 – ident: ref126/cit126 doi: 10.1016/j.jhazmat.2010.04.007 – ident: ref127/cit127 doi: 10.1016/S1001-0742(12)60145-4 – ident: ref50/cit50 doi: 10.3390/molecules26051426 – ident: ref135/cit135 doi: 10.1039/b617536h – ident: ref69/cit69 doi: 10.1016/j.cej.2017.03.101 – ident: ref107/cit107 doi: 10.1016/j.ijbiomac.2017.07.135 – ident: ref74/cit74 doi: 10.1016/j.reactfunctpolym.2007.03.007 – ident: ref20/cit20 doi: 10.1016/j.scitotenv.2022.153555 – ident: ref37/cit37 doi: 10.1007/s10924-021-02154-x – ident: ref70/cit70 doi: 10.1002/jctb.2377 – ident: ref153/cit153 – ident: ref57/cit57 doi: 10.1016/j.ijbiomac.2019.10.145 – ident: ref66/cit66 doi: 10.1038/srep31920 – ident: ref113/cit113 doi: 10.1016/j.jhazmat.2020.122417 – ident: ref139/cit139 doi: 10.1016/j.jhazmat.2021.125612 – ident: ref15/cit15 doi: 10.1016/j.ijbiomac.2020.03.081 – ident: ref34/cit34 doi: 10.1016/j.carbpol.2016.08.017 – ident: ref65/cit65 doi: 10.1016/j.chemosphere.2021.131890 – ident: ref90/cit90 doi: 10.1016/j.cej.2011.09.064 – ident: ref58/cit58 doi: 10.15446/ing.investig.v39n1.69703 – ident: ref130/cit130 doi: 10.1016/j.carbpol.2016.06.045 – ident: ref138/cit138 doi: 10.1016/j.biortech.2011.07.057 – ident: ref11/cit11 doi: 10.1016/S1002-0160(09)60279-4 – start-page: 1 volume-title: Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces year: 2012 ident: ref67/cit67 – ident: ref129/cit129 doi: 10.1016/0008-6223(93)90185-D – ident: ref81/cit81 doi: 10.1016/j.seppur.2021.119510 – ident: ref148/cit148 doi: 10.1007/s00128-004-0527-5 – ident: ref45/cit45 doi: 10.1016/j.susmat.2022.e00406 – start-page: 187 volume-title: Encyclopedia of Soil Science year: 2002 ident: ref51/cit51 – volume: 910 start-page: 1 volume-title: Biogeochemistry of Chelating Agents year: 2005 ident: ref120/cit120 doi: 10.1021/bk-2005-0910.ch001 – ident: ref22/cit22 doi: 10.1201/9781351069465 – ident: ref54/cit54 doi: 10.1007/s11356-013-1672-3 – ident: ref102/cit102 doi: 10.1016/j.jtice.2015.01.004 – ident: ref124/cit124 doi: 10.1016/S1001-0742(11)61036-X – ident: ref85/cit85 doi: 10.1016/j.carbpol.2009.12.048 – ident: ref108/cit108 doi: 10.1016/j.jhazmat.2021.126752 – ident: ref151/cit151 doi: 10.1016/j.chemosphere.2018.12.184 – ident: ref80/cit80 doi: 10.1515/9783110715507 – ident: ref122/cit122 doi: 10.1016/S0043-1354(01)00389-X – ident: ref8/cit8 doi: 10.1016/j.jiec.2015.08.011 – ident: ref133/cit133 doi: 10.1016/j.cej.2022.135021 – ident: ref137/cit137 doi: 10.1016/j.cej.2019.122157 – ident: ref155/cit155 doi: 10.1039/D3TA01109G – ident: ref36/cit36 doi: 10.1016/j.ijbiomac.2021.01.150 – ident: ref12/cit12 doi: 10.1007/978-3-540-73966-1 – ident: ref164/cit164 doi: 10.1002/9781118921616 – ident: ref162/cit162 doi: 10.1016/j.seppur.2022.120506 – start-page: 412 volume-title: Sustainable Technologies for Water and Wastewater Treatment year: 2021 ident: ref10/cit10 doi: 10.1201/9781003052234 – ident: ref27/cit27 doi: 10.1007/s00289-019-02900-1 – ident: ref110/cit110 doi: 10.1016/j.ijbiomac.2022.02.035 – ident: ref134/cit134 doi: 10.1007/s11356-020-10166-8 – ident: ref59/cit59 doi: 10.1016/j.seppur.2013.04.015 – ident: ref114/cit114 doi: 10.1016/j.chemosphere.2021.131458 – ident: ref156/cit156 doi: 10.1002/ente.202100163 – ident: ref33/cit33 doi: 10.3390/pr9040719 – ident: ref100/cit100 doi: 10.1016/j.jece.2022.107620 – ident: ref141/cit141 doi: 10.1016/j.micromeso.2014.09.003 – ident: ref21/cit21 doi: 10.3390/app112411786 – ident: ref82/cit82 doi: 10.1016/j.ijbiomac.2021.02.106 – ident: ref128/cit128 doi: 10.2166/aqua.2018.101 – ident: ref7/cit7 doi: 10.1016/j.jenvman.2020.111485 – ident: ref101/cit101 doi: 10.1016/j.ijbiomac.2017.09.057 – ident: ref119/cit119 doi: 10.1002/wer.1321 – ident: ref132/cit132 doi: 10.1016/j.colsurfb.2012.11.023 – ident: ref94/cit94 doi: 10.1016/j.colsurfa.2016.04.043 – ident: ref142/cit142 doi: 10.1016/j.ijbiomac.2020.05.191 – ident: ref154/cit154 – ident: ref144/cit144 doi: 10.1007/s10570-015-0747-3 – ident: ref75/cit75 doi: 10.1016/j.jhazmat.2021.126225 – ident: ref160/cit160 doi: 10.1016/j.chemosphere.2017.07.086 – ident: ref98/cit98 doi: 10.1016/j.reactfunctpolym.2016.07.016 – ident: ref115/cit115 doi: 10.1016/j.carbpol.2020.117318 – ident: ref56/cit56 doi: 10.1016/j.cej.2012.09.100 – ident: ref165/cit165 doi: 10.1016/S1350-4177(01)00089-X – ident: ref62/cit62 doi: 10.3390/molecules26051437 – ident: ref161/cit161 doi: 10.1021/mz2000175 – ident: ref106/cit106 doi: 10.2166/wst.2021.205 – ident: ref17/cit17 doi: 10.1063/5.0072592 – ident: ref91/cit91 doi: 10.1016/j.jiec.2014.12.007 – ident: ref31/cit31 doi: 10.1021/jf9503826 – ident: ref97/cit97 doi: 10.1016/j.ijbiomac.2019.12.139 – ident: ref92/cit92 doi: 10.1016/j.chemosphere.2021.133002 – ident: ref96/cit96 doi: 10.1080/19443994.2013.800276 – ident: ref131/cit131 doi: 10.1016/j.molliq.2016.07.037 – ident: ref103/cit103 doi: 10.1016/j.chemosphere.2021.131597 – ident: ref163/cit163 doi: 10.1016/j.jiec.2014.10.014 – ident: ref18/cit18 doi: 10.1039/D0TA07028A – ident: ref43/cit43 doi: 10.1007/s42773-022-00131-8 – ident: ref150/cit150 doi: 10.1016/j.desal.2010.04.008 – ident: ref23/cit23 doi: 10.1016/j.jcis.2004.08.028 – ident: ref166/cit166 doi: 10.1016/j.ultsonch.2020.105378 – ident: ref14/cit14 doi: 10.1016/j.jclepro.2020.125311 – ident: ref41/cit41 doi: 10.1016/j.jece.2020.104073 – ident: ref55/cit55 doi: 10.1016/j.nanoso.2020.100507 – ident: ref48/cit48 doi: 10.1016/j.ijbiomac.2020.11.079 – ident: ref28/cit28 doi: 10.1016/j.jece.2022.107310 – ident: ref83/cit83 doi: 10.1016/j.scitotenv.2020.143236 |
SSID | ssj0002513260 |
Score | 2.4245954 |
Snippet | Adsorption is a promising technique for the removal of persistent contaminants, since it is a relatively cheap process with low energy requirements and does... |
SourceID | doaj crossref acs |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 443 |
SummonAdditionalLinks | – databaseName: American Chemical Society (ACS) Open Access dbid: N~. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKeykHBKWI8pIPvbo4jl85tkC1QqIHYKXeIj8mqFKVrTa7lfbSv8JfZcabbgsSqBwTzTixx-MZe8bfMHZobIxNapSodAahlZPCN8kIg8YOAgSryy3-L2d2MtWfz835FlN_ieCr6n1IA9xB84XlUZ0KassjtqOs96SMZzdHm3MVtNfokdDRCt3RFAon6JjA86_GyDal4TfbdA_Cv9ia06fsyegk8uO1VJ-xLej32ON70IHP2U_cMM7mRd_5LcIsDDz0mX-F5Ro3d7His46fXFAdhFWJzPDjjFyRkicK6Teq9rbq0QnEL_GPSHJdgMAHftHzySrPZz_gslBuHmgBoUQvpJkOkImwNLr-lfHeAQz7bHr66fuHiRiLLYhQG7kQuHHIxuQIwXVQZdPUOcfYpTrbJE3wslZVZ1x02XqjO51VCq5BJhUorUbWL9h2P-vhJeO4cIG32hLwoXbW-i6g39nobHNnqwoOmMDBbkdlGdoSB1dV-6dw2lE4B8zdiqVNI3I5FdC4fABnteG8WqN3PIDnhCS_oSf87fICJ2U7qnOblfQh1M5nC1pqF3WMgAMmTQLCuH_1n118zXapjj3lySj5hm0v5kt4i97OIr4r0_sXmw4C_g priority: 102 providerName: American Chemical Society |
Title | Desorption Strategies and Reusability of Biopolymeric Adsorbents and Semisynthetic Derivatives in Hydrogel and Hydrogel Composites Used in Adsorption Processes |
URI | http://dx.doi.org/10.1021/acsengineeringau.3c00022 https://doaj.org/article/d208aa378d6e4047b4bbeddb05ce2617 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYqTu0BUdqq0Bb50GvASfyTHIGCVpXgULoSt8j2TBASyqLNbqW98Cp91c44Ydn2Ug5cLDmacSzPeGYsj78R4quxIdSxLrJcA2a6cCqr6mgyQ84OPXqr0yv-i0s7merv1-Z6o9QX54QN8MDDwh1BoSrvS1eBRa20CzoEBAjKRGQ0cba-5PM2DlNsg8lrU1yixtQd8mNHPvb4hPDnl4dlTOAv7JVi_5dX2gDvT17mfEdsj-GhPB6m9Va8wm5XvNkADXwnftNRcTZPO10-YstiL30H8gcuB8TcxUrOWnlyyxUQVulORh4DcQVOm0ikV1znbdVR-Ed_kt-I5FeCAO_lbScnK5jPbvAuUa47bDo4xYtopj0CE6ZBh6mMLw6wfy-m52c_TyfZWGYh86VRi4yODGAMBPSuxRxMXdLyhjaWYKMyvlJlkbfGBQe2MrrVUETvamIqPCfUqPKD2OpmHX4UkkwWVlZbhjzUztqq9RRx1hostDbPcU9ktNjNuE36Jt2AF3nzr3CaUTh7wj2KpYkjZjmXzrh7Bme-5rwfcDuewXPCkl_TM_J2-kD62Iz62PxPH_dfYpBP4jWXtee0mUJ9FluL-RK_UPCzCAcU_J9eHSRtp_bi4Yzay4fDP4e3DT0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHIBDxVO0FPCBq4vj-JEc-6BaoN0DdKXeIj8mqFKVRZvdSnvhr_BXmfGm24UDKsdYM47t8XjG9vgbxt4bG0IdayUKnUBo5aSo6miEQWMHHrzV-RX_2diOJvrzhbnYSPWFjeixpj5f4t-iCxQfsAxuEfr8Yr-MGbzlPnuAPokhnRz_3F8fr6DZRseETljoqaZQOE-HOJ5_VUYmKvZ_mKgNJP9sck6esO3BV-QHK-E-Zfege8YebyAIPme_cN84nWW15zdAs9Bz3yX-FRYr-Nz5kk9bfnhJ6RCW-YKGHyTkChRDkUm_UdK3ZYe-IP6JHyPJdcYD7_llx0fLNJt-h6tMuf6gdYTivZBm0kMiwlzpqinD8wPoX7DJycfzo5EYci4IXxo5F7h_SMakAN61UCRTlymF0MYy2SiNr2Spita44JKtjG51UtG7GpmUp-gaWb5kW920g1eM4_oFldWW8A-1s7ZqPbqftU42tbYoYIcJHOxm0Jm-ydfhqmj-Fk4zCGeHuRuxNHEAMKc8Gld34CzWnD9WIB534Dkkya_pCYY7F-DEbAatbpKSlfelq5IFLbULOgTAAZMmAkHd7_5nF9-xh6Pzs9Pm9NP4y2v2iFLbU-iMkntsaz5bwBt0gObhbZ7qvwHm3wij |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOFU9RKOADVxcn8SM59rVaXisErNRb5MekqlRlq80u0l76V_pXmfG6S-GAyjHWjJN4PJ6xPfMNY--08b4JTSkKFUGo0kpRN0ELjcYOHDijUhb_l4kZT9XHE32SY3MoFwY_YsCehnSJT1p9EbuMMFC8x3b4jdLnlntVSAAud9k99Eok6eXkcm9zxIKmG50TOmWhdE1R4lzNsTz_6ozMVBj-MFM30PyT2Rk9YtvZX-T7awE_Znegf8Ie3kARfMqucO84myfV59dgszBw10f-DZZrCN3Fis86fnBGJRFW6ZKG70fk8hRHkUi_U-G3VY_-IL6JHyHJz4QJPvCzno9XcT47hfNEuXmgtYRivpBmOkAkwtTp-lNyCgIMz9h0dPzjcCxy3QXhKi0XAvcQUevowdkOiqibKkbvu1BFE6R2tazKotPW22hqrToVy-Bsg0ylowgbWT1nW_2shxeM4xoGtVGGMBCVNabuHLqgjYomdqYoYIcJHOw2683Qpivxsmj_Fk6bhbPD7LVY2pBBzKmWxvktOIsN58UayOMWPAck-Q09QXGnBpycbdbsNpaydq6ydTSgpLJeeQ84YFIHILj7l__5i2_Z_a9Ho_bzh8mnV-wBVben6JlS7rKtxXwJr9EHWvg3aab_ApBiCbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Desorption+Strategies+and+Reusability+of+Biopolymeric+Adsorbents+and+Semisynthetic+Derivatives+in+Hydrogel+and+Hydrogel+Composites+Used+in+Adsorption+Processes&rft.jtitle=ACS+Engineering+Au&rft.au=Fabiola+Alcalde-Garcia&rft.au=Shiv+Prasher&rft.au=Serge+Kaliaguine&rft.au=Jason+Robert+Tavares&rft.date=2023-12-20&rft.pub=American+Chemical+Society&rft.eissn=2694-2488&rft.volume=3&rft.issue=6&rft.spage=443&rft.epage=460&rft_id=info:doi/10.1021%2Facsengineeringau.3c00022&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d208aa378d6e4047b4bbeddb05ce2617 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon |