A Review on the Modeling and Simulation of Shaft Furnace Hydrogen Metallurgy: A Chemical Engineering Perspective
Hydrogen-based shaft furnace technology holds promise for low-carbon hydrogen metallurgy. Since hydrogen-assisted iron ore reduction is highly endothermic, inadequate heat supply relevant to the contact of gas and densely packed ores may reduce the rate and efficiency of reductions. The key to addre...
Saved in:
Published in | ACS Engineering Au Vol. 4; no. 2; pp. 145 - 165 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
17.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen-based shaft furnace technology holds promise for low-carbon hydrogen metallurgy. Since hydrogen-assisted iron ore reduction is highly endothermic, inadequate heat supply relevant to the contact of gas and densely packed ores may reduce the rate and efficiency of reductions. The key to addressing this issue lies in understanding the competition among heat supply, heat transfer, and heat loss driven by the gas flow around ores and reactions within them. Modeling and simulation are crucial for revealing the underlying mechanisms and promoting process scale-up and intensification. This review summarizes previous efforts in physical modeling and model applications for improving the reduction performance. The discrete element method (DEM) and computational fluid dynamics (CFD)–DEM models have been used for particle-scale simulation to investigate inhomogeneous particle descent and relevant particle–particle interactions. For macroscale simulations, steady-state simplified models such as plug flow and REDUCTOR, as well as the Eulerian two-phase model, have been developed by considering heat and mass transfer. Based on these model applications, strategies including the optimization of operating conditions and gas-feeding methods have been proposed to improve the furnace performance. Further numerical efforts are needed to analyze the in-furnace heat evolution and reduction and reveal the competitiveness of flow, transport, and reaction by incorporating multiscale physics in shaft furnaces. Additionally, attention could be paid to the effects of particle sticking and degradation on reduction, which may be more serious when the proportion of lump ores increases. When evaluating relative optimization strategies, comprehensive comparisons are expected in terms of iron ore reduction degree, gas utilization rate, energy consumption, and economic feasibility under various reducing and cooling gas operating conditions and furnace profiles to offer practical guidelines for industrial design and intensification. |
---|---|
AbstractList | Hydrogen-based shaft furnace technology holds promise for low-carbon hydrogen metallurgy. Since hydrogen-assisted iron ore reduction is highly endothermic, inadequate heat supply relevant to the contact of gas and densely packed ores may reduce the rate and efficiency of reductions. The key to addressing this issue lies in understanding the competition among heat supply, heat transfer, and heat loss driven by the gas flow around ores and reactions within them. Modeling and simulation are crucial for revealing the underlying mechanisms and promoting process scale-up and intensification. This review summarizes previous efforts in physical modeling and model applications for improving the reduction performance. The discrete element method (DEM) and computational fluid dynamics (CFD)–DEM models have been used for particle-scale simulation to investigate inhomogeneous particle descent and relevant particle–particle interactions. For macroscale simulations, steady-state simplified models such as plug flow and REDUCTOR, as well as the Eulerian two-phase model, have been developed by considering heat and mass transfer. Based on these model applications, strategies including the optimization of operating conditions and gas-feeding methods have been proposed to improve the furnace performance. Further numerical efforts are needed to analyze the in-furnace heat evolution and reduction and reveal the competitiveness of flow, transport, and reaction by incorporating multiscale physics in shaft furnaces. Additionally, attention could be paid to the effects of particle sticking and degradation on reduction, which may be more serious when the proportion of lump ores increases. When evaluating relative optimization strategies, comprehensive comparisons are expected in terms of iron ore reduction degree, gas utilization rate, energy consumption, and economic feasibility under various reducing and cooling gas operating conditions and furnace profiles to offer practical guidelines for industrial design and intensification. |
Author | Kuang, Shibo Fei, Yang Yu, Aibing Guan, Xiaoping Yang, Ning |
AuthorAffiliation | ARC Research Hub for Computational Particle Technology, Department of Chemical and Biological Engineering State Key Laboratory of Mesoscience and Engineering Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Chinese Academy of Sciences – name: ARC Research Hub for Computational Particle Technology, Department of Chemical and Biological Engineering – name: State Key Laboratory of Mesoscience and Engineering |
Author_xml | – sequence: 1 givenname: Yang surname: Fei fullname: Fei, Yang organization: Chinese Academy of Sciences – sequence: 2 givenname: Xiaoping surname: Guan fullname: Guan, Xiaoping organization: Chinese Academy of Sciences – sequence: 3 givenname: Shibo orcidid: 0000-0002-2969-9420 surname: Kuang fullname: Kuang, Shibo organization: ARC Research Hub for Computational Particle Technology, Department of Chemical and Biological Engineering – sequence: 4 givenname: Aibing surname: Yu fullname: Yu, Aibing organization: ARC Research Hub for Computational Particle Technology, Department of Chemical and Biological Engineering – sequence: 5 givenname: Ning orcidid: 0000-0002-7446-8568 surname: Yang fullname: Yang, Ning email: nyang@ipe.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqNkd1OGzEQhS1EpVLKO_gFQv27sblAiiIoSKBWpb22Zu3xxpGzjrwbqrw9C6Eq4qa9mtHMnE9Hcz6R4770SAjl7Jwzwb-AH7DvUo9YU9_B7lx6xpiUR-RENFbNhDLm-E3_kZwNw3o6EZpL0bATsl3QH_iY8DctPR1XSO9LwDzBKPSBPqTNLsOYpl2J9GEFcaTXu9qDR3qzD7V02NN7HCHnXe32F3RBlyvcJA-ZXv01Rr9jHbbox_SIn8mHCHnAs9d6Sn5dX_1c3szuvn29XS7uZiA1G2eKc9mi9BBj2zZG69AqLds2WqVihCCZ4UE0cyV1mFvOBQ_gg9Q2suC5BXlKbg_cUGDttjVtoO5dgeReBqV2DuqYfEbXmnkjuG2sjK2KyIwWYLQEza00ytiJdXlg-VqGoWJ0Po0vbxkrpOw4c89xuPdxuNc4JoB5B_hj6D-k6iCdLty6PD8_D_-WPQE6HquW |
CitedBy_id | crossref_primary_10_1177_03019233241306335 crossref_primary_10_1007_s40831_024_00934_y crossref_primary_10_1016_j_ces_2024_120637 crossref_primary_10_1016_j_mineng_2025_109176 crossref_primary_10_3390_met14080873 crossref_primary_10_1007_s42243_024_01377_1 crossref_primary_10_1016_j_mineng_2024_109123 crossref_primary_10_1002_srin_202300887 |
Cites_doi | 10.1016/j.powtec.2017.04.056 10.1039/D0EE00787K 10.1016/B978-0-08-096988-6.00017-1 10.1002/srin.201900108 10.1007/s11663-014-0125-9 10.1007/s42243-019-00266-2 10.1016/j.powtec.2012.11.043 10.1016/j.cej.2022.140112 10.1007/s10035-014-0522-4 10.1016/B978-0-08-096988-6.00016-X 10.3390/ma11101865 10.1016/j.powtec.2013.11.001 10.1016/j.jclepro.2023.136391 10.1016/j.cej.2004.08.001 10.2355/isijinternational.ISIJINT-2019-734 10.1016/j.joule.2021.02.018 10.2355/isijinternational.51.1403 10.1016/j.mineng.2022.107459 10.1016/B978-0-08-102201-6.00013-3 10.1007/s11663-023-02821-5 10.1007/BF02654354 10.1021/ie403030g 10.1179/irs.1999.26.1.41 10.1002/srin.202100730 10.3390/ma14247540 10.1515/ijcre-2020-0012 10.2355/isijinternational.ISIJINT-2019-392 10.1007/s11663-022-02442-4 10.1016/S0032-5910(96)03187-7 10.1007/s42243-019-00295-x 10.1007/978-3-030-98056-6 10.1016/j.powtec.2020.08.060 10.2355/tetsutohagane1955.57.10_1597 10.1016/j.powtec.2009.02.012 10.1007/978-3-319-48764-9_96 10.1016/B978-0-12-803581-8.10290-5 10.1016/j.powtec.2021.07.039 10.1016/j.ces.2020.115858 10.2355/tetsutohagane1955.67.3_508 10.1016/j.powtec.2019.04.026 10.1016/j.jclepro.2012.07.045 10.3390/met11121953 10.1016/j.fuproc.2020.106369 10.1016/0098-1354(86)85047-5 10.1002/srin.201700071 10.2355/isijinternational.53.576 10.1016/j.ijhydene.2020.12.123 10.1080/03019233.2021.1909992 10.1016/j.ijheatmasstransfer.2016.06.060 10.2355/isijinternational.ISIJINT-2015-540 10.1016/j.jclepro.2023.137059 10.1595/147106707X205857 10.1016/j.powtec.2019.05.047 10.1002/srin.202000110 10.1016/B978-0-12-820226-5.00011-2 10.1016/j.ijhydene.2016.11.053 10.1016/j.powtec.2015.04.071 10.1007/s11663-020-02020-6 10.1080/02726351.2021.1871793 10.1016/j.ces.2021.117393 10.14356/kona.2018009 10.1201/9781003342199 10.1515/ijcre-2022-0004 10.2355/tetsutohagane1955.62.3_315 10.1016/j.fuel.2022.124368 10.1007/s12613-015-1123-x 10.1016/S1006-706X(14)60004-2 10.1007/s11837-014-1019-7 10.1016/j.ijhydene.2023.01.057 10.1007/s11663-016-0895-3 10.2355/isijinternational.50.1032 10.5151/2594-357X-39608 10.2355/isijinternational1966.17.629 10.2355/isijinternational1966.7.223 10.1007/978-94-009-3431-3 10.1007/s12613-022-2478-4 10.1016/j.rser.2014.02.031 10.1002/srin.202000071 10.1007/s11663-022-02485-7 10.1038/s41586-023-06486-7 10.1007/s12613-020-2021-4 10.1007/978-3-030-65257-9_11 10.1051/metal/2018050 10.2355/isijinternational.ISIJINT-2019-058 10.1016/j.renene.2021.07.108 10.2355/isijinternational1966.13.350 10.1016/j.powtec.2016.07.038 10.2355/isijinternational.51.14 10.1016/j.powtec.2016.12.017 10.1680/geot.1979.29.1.47 10.2355/isijinternational1966.26.765 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION DOA |
DOI | 10.1021/acsengineeringau.3c00033 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2694-2488 |
EndPage | 165 |
ExternalDocumentID | oai_doaj_org_article_b876219693fb4fe0852a853a51938489 10_1021_acsengineeringau_3c00033 g12076087 |
GroupedDBID | ACS AELXD ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N~. OK1 AAYXX ABBLG ADUCK CITATION |
ID | FETCH-LOGICAL-a350t-4113be3caffbb6855db453bbf944ffad3081d267435d791121dacd359f0dc19a3 |
IEDL.DBID | DOA |
ISSN | 2694-2488 |
IngestDate | Wed Aug 27 01:27:57 EDT 2025 Tue Jul 01 00:23:11 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Thu Apr 18 07:30:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | hydrogen metallurgy thermodynamic analysis multiphase flow models shaft furnace heat supply issue reduction performance optimization strategy heat and mass transfer multiscale physics reaction models |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a350t-4113be3caffbb6855db453bbf944ffad3081d267435d791121dacd359f0dc19a3 |
ORCID | 0000-0002-7446-8568 0000-0002-2969-9420 |
OpenAccessLink | https://doaj.org/article/b876219693fb4fe0852a853a51938489 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b876219693fb4fe0852a853a51938489 crossref_citationtrail_10_1021_acsengineeringau_3c00033 crossref_primary_10_1021_acsengineeringau_3c00033 acs_journals_10_1021_acsengineeringau_3c00033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-17 |
PublicationDateYYYYMMDD | 2024-04-17 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | ACS Engineering Au |
PublicationTitleAlternate | ACS Eng. Au |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 Atsushi M. (ref14/cit14) 2010; 29 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref111/cit111 doi: 10.1016/j.powtec.2017.04.056 – ident: ref8/cit8 doi: 10.1039/D0EE00787K – ident: ref16/cit16 doi: 10.1016/B978-0-08-096988-6.00017-1 – ident: ref31/cit31 – ident: ref109/cit109 doi: 10.1002/srin.201900108 – ident: ref54/cit54 doi: 10.1007/s11663-014-0125-9 – ident: ref75/cit75 doi: 10.1007/s42243-019-00266-2 – ident: ref36/cit36 – ident: ref44/cit44 – ident: ref70/cit70 – ident: ref55/cit55 doi: 10.1016/j.powtec.2012.11.043 – ident: ref123/cit123 doi: 10.1016/j.cej.2022.140112 – ident: ref82/cit82 doi: 10.1007/s10035-014-0522-4 – ident: ref41/cit41 doi: 10.1016/B978-0-08-096988-6.00016-X – ident: ref63/cit63 doi: 10.3390/ma11101865 – ident: ref83/cit83 doi: 10.1016/j.powtec.2013.11.001 – ident: ref40/cit40 – ident: ref9/cit9 doi: 10.1016/j.jclepro.2023.136391 – ident: ref52/cit52 doi: 10.1016/j.cej.2004.08.001 – ident: ref117/cit117 doi: 10.2355/isijinternational.ISIJINT-2019-734 – ident: ref10/cit10 doi: 10.1016/j.joule.2021.02.018 – ident: ref122/cit122 doi: 10.2355/isijinternational.51.1403 – ident: ref116/cit116 doi: 10.1016/j.mineng.2022.107459 – ident: ref27/cit27 – ident: ref12/cit12 doi: 10.1016/B978-0-08-102201-6.00013-3 – ident: ref78/cit78 doi: 10.1007/s11663-023-02821-5 – ident: ref118/cit118 doi: 10.1007/BF02654354 – ident: ref104/cit104 doi: 10.1021/ie403030g – ident: ref49/cit49 – ident: ref115/cit115 doi: 10.1179/irs.1999.26.1.41 – ident: ref53/cit53 – ident: ref127/cit127 doi: 10.1002/srin.202100730 – ident: ref43/cit43 – ident: ref48/cit48 – ident: ref2/cit2 – ident: ref110/cit110 doi: 10.3390/ma14247540 – ident: ref26/cit26 – ident: ref66/cit66 doi: 10.1515/ijcre-2020-0012 – ident: ref37/cit37 – ident: ref21/cit21 doi: 10.2355/isijinternational.ISIJINT-2019-392 – ident: ref113/cit113 doi: 10.1007/s11663-022-02442-4 – ident: ref124/cit124 doi: 10.1016/S0032-5910(96)03187-7 – ident: ref65/cit65 doi: 10.1007/s42243-019-00295-x – ident: ref32/cit32 – ident: ref22/cit22 doi: 10.1007/978-3-030-98056-6 – ident: ref68/cit68 doi: 10.1016/j.powtec.2020.08.060 – ident: ref101/cit101 doi: 10.2355/tetsutohagane1955.57.10_1597 – ident: ref97/cit97 doi: 10.1016/j.powtec.2009.02.012 – ident: ref103/cit103 doi: 10.1007/978-3-319-48764-9_96 – ident: ref1/cit1 doi: 10.1016/B978-0-12-803581-8.10290-5 – ident: ref69/cit69 doi: 10.1016/j.powtec.2021.07.039 – ident: ref95/cit95 doi: 10.1016/j.ces.2020.115858 – volume: 29 start-page: 50 year: 2010 ident: ref14/cit14 publication-title: Kobelco Technology Review – ident: ref51/cit51 doi: 10.2355/tetsutohagane1955.67.3_508 – ident: ref121/cit121 doi: 10.1016/j.powtec.2019.04.026 – ident: ref58/cit58 doi: 10.1016/j.jclepro.2012.07.045 – ident: ref129/cit129 doi: 10.3390/met11121953 – ident: ref94/cit94 doi: 10.1016/j.fuproc.2020.106369 – ident: ref15/cit15 – ident: ref90/cit90 doi: 10.1016/0098-1354(86)85047-5 – ident: ref84/cit84 doi: 10.1002/srin.201700071 – ident: ref71/cit71 doi: 10.2355/isijinternational.53.576 – ident: ref87/cit87 – ident: ref11/cit11 doi: 10.1016/j.ijhydene.2020.12.123 – ident: ref13/cit13 doi: 10.1080/03019233.2021.1909992 – ident: ref100/cit100 doi: 10.1016/j.ijheatmasstransfer.2016.06.060 – ident: ref25/cit25 – ident: ref64/cit64 doi: 10.2355/isijinternational.ISIJINT-2015-540 – ident: ref4/cit4 – ident: ref80/cit80 doi: 10.1016/j.jclepro.2023.137059 – ident: ref50/cit50 – ident: ref47/cit47 – ident: ref120/cit120 doi: 10.1595/147106707X205857 – ident: ref33/cit33 – ident: ref85/cit85 doi: 10.1016/j.powtec.2019.05.047 – ident: ref128/cit128 doi: 10.1002/srin.202000110 – ident: ref42/cit42 doi: 10.1016/B978-0-12-820226-5.00011-2 – ident: ref125/cit125 doi: 10.1016/j.ijhydene.2016.11.053 – ident: ref91/cit91 doi: 10.1016/j.powtec.2015.04.071 – ident: ref61/cit61 doi: 10.1007/s11663-020-02020-6 – ident: ref29/cit29 – ident: ref67/cit67 doi: 10.1080/02726351.2021.1871793 – ident: ref86/cit86 doi: 10.1016/j.ces.2021.117393 – ident: ref56/cit56 doi: 10.14356/kona.2018009 – ident: ref23/cit23 doi: 10.1201/9781003342199 – ident: ref5/cit5 – ident: ref77/cit77 doi: 10.1515/ijcre-2022-0004 – ident: ref105/cit105 – ident: ref88/cit88 doi: 10.2355/tetsutohagane1955.62.3_315 – ident: ref106/cit106 – ident: ref98/cit98 doi: 10.1016/j.fuel.2022.124368 – ident: ref107/cit107 doi: 10.1007/s12613-015-1123-x – ident: ref126/cit126 doi: 10.1016/S1006-706X(14)60004-2 – ident: ref72/cit72 doi: 10.1007/s11837-014-1019-7 – ident: ref79/cit79 doi: 10.1016/j.ijhydene.2023.01.057 – ident: ref102/cit102 doi: 10.1007/s11663-016-0895-3 – ident: ref73/cit73 doi: 10.2355/isijinternational.50.1032 – ident: ref38/cit38 – ident: ref57/cit57 doi: 10.5151/2594-357X-39608 – ident: ref119/cit119 doi: 10.2355/isijinternational1966.17.629 – ident: ref96/cit96 doi: 10.2355/isijinternational1966.7.223 – ident: ref99/cit99 doi: 10.1007/978-94-009-3431-3 – ident: ref20/cit20 doi: 10.1007/s12613-022-2478-4 – ident: ref46/cit46 doi: 10.1016/j.rser.2014.02.031 – ident: ref93/cit93 doi: 10.1002/srin.202000071 – ident: ref24/cit24 – ident: ref59/cit59 doi: 10.1007/s11663-022-02485-7 – ident: ref18/cit18 – ident: ref6/cit6 – ident: ref35/cit35 – ident: ref7/cit7 doi: 10.1038/s41586-023-06486-7 – ident: ref19/cit19 doi: 10.1007/s12613-020-2021-4 – ident: ref45/cit45 – ident: ref108/cit108 doi: 10.1007/978-3-030-65257-9_11 – ident: ref74/cit74 doi: 10.1051/metal/2018050 – ident: ref76/cit76 doi: 10.2355/isijinternational.ISIJINT-2019-058 – ident: ref34/cit34 – ident: ref62/cit62 doi: 10.1016/j.renene.2021.07.108 – ident: ref17/cit17 – ident: ref28/cit28 – ident: ref114/cit114 doi: 10.2355/isijinternational1966.13.350 – ident: ref3/cit3 – ident: ref39/cit39 – ident: ref60/cit60 doi: 10.1016/j.powtec.2016.07.038 – ident: ref112/cit112 doi: 10.2355/isijinternational.51.14 – ident: ref92/cit92 doi: 10.1016/j.powtec.2016.12.017 – ident: ref81/cit81 doi: 10.1680/geot.1979.29.1.47 – ident: ref89/cit89 doi: 10.2355/isijinternational1966.26.765 – ident: ref30/cit30 |
SSID | ssj0002513260 |
Score | 2.353397 |
Snippet | Hydrogen-based shaft furnace technology holds promise for low-carbon hydrogen metallurgy. Since hydrogen-assisted iron ore reduction is highly endothermic,... |
SourceID | doaj crossref acs |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 145 |
SummonAdditionalLinks | – databaseName: American Chemical Society (ACS) Open Access dbid: N~. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwNBDB58XPQgPvFNDl5Xndc-vFWxFKFFUMHbMk8VdFv6OHjxt5u0a62CotdlM8tmMpNvkskXxo6I8ryQFne_lNKMMhOJwXNEYoNXhbIpt5wKnNudtHWnru71_RwTP2TwBT8xbhA-qfnM6Fg6AvJyni2KNM9pMXbejqdxFfTXiEgotEI1molAA60v8Pw2GPkmN_jim2Yo_Me-prnKVmqQCI3JrK6xuVCts-UZ6sAN1mvAJKwP3QoQxAE1NaPScjCVh5unl7otF3Qj3DyaOIQmDeoCtF59v4tmA-2AwPt51H94PYMGfDAHwMxn4PqzFHOT3TUvby9aSd09ITFSnw4Txbm0QToTo7VprrW3SktrY6FUjMZLBANeUA2C9hlueYJ747zURTz1jhdGbrGFqluFbQa5TF2WIhJx3qlCZLn2HoFd6go8XuoQd1iC2itr6x-U48S24OV3bZe1tndY9qHn0tVU5NQR4_kPknwq2ZvQcfxB5pymcvo-EWqPH6CVlfX6LC15BaIKktGqGBCICoNIxhDAzVVe7P7zF_fYkkD4Q3knnu2zhWF_FA4Qvgzt4dhe3wHtSO5H priority: 102 providerName: American Chemical Society |
Title | A Review on the Modeling and Simulation of Shaft Furnace Hydrogen Metallurgy: A Chemical Engineering Perspective |
URI | http://dx.doi.org/10.1021/acsengineeringau.3c00033 https://doaj.org/article/b876219693fb4fe0852a853a51938489 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8NADD4hJhgQT_GsPLAGerm7PNgKalUhFSEVJLbonoAEaVXagYXfjp0ECCwwsNyQxJfIcc6f4_Nnxo6J8jwXBle_hNKMIo0jjXFEZLyTuTQJN5wKnEdXyfBWXt6pu1arL9oTVtMD14o7NfS5EoeLCEYGjwgh1uhiNCGPTGZV6R76vFYwRWswem3EJd1m6w76sVNtX_wXw59enAhL8QCxBeKpb16pRd5feZnBOltr4CH06sfaYEu-3GSrLdLALTbtQf1DHyYlIHwDamdGReWgSwfjx-emIRdMAowfdJjDgCa1HoavbjZBg4GRR8j9tJjdv55BDz44A6B1G7j-KsLcZreD_s3FMGr6JkRaqO48kpwL44XVIRiTZEo5I5UwJuRShqCdQBjgYqo-UC7FxS7mTlsnVB66zvJcix22XE5Kv8sgE4lNE8Qg1lmZx2mmnENIl9gcA0vlwx6LUHtFY_cvRZXSjnnxU9tFo-09ln7oubANCTn1wnj6gyT_lJzWRBx_kDmnV_l5PVFpVwfQwIrGwIrfDGz_PyY5YCsxoiFKQ_H0kC3PZwt_hGhmbjqI5i_Gncp8cRy99XG8ejt5Bw279i4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEO4gHNSD8RnwgXXQ4yD9moeJhxXYLMJuTICE29hPNcFZsrMbsxf-D__SqtnZhx4IHrhOpnt6qqurvu7q-oqxd0R5XkiL1i-lMKPMRGJwH5HY4FWhbMotpwTn_iDtnakv5_p8jV3Pc2FwEDX2VDdB_CW7AP-Az8KSoc9MdqQjPD-vW30Upr9xt1Z_OtzHqX0vRPfgdK-XtAUFEiP17jhRnEsbpDMxWpvmWnurtLQ2FkrFaLxE_-gFXcvXPkMrILg3zktdxF3veGEk9nuPbSAG0mQDBlc7i-MchAkIhOhEh1JDE4Hror03dNPgySW6-i-XuFI5oHFx3cfsUYtNoTNTpidsLVRP2cMVxsJn7LIDs2gCDCtA7AhUS40y2sFUHk5-_mqrgcEwwskPE8fQpU5dgN7Uj4aordAPiPcvJqPv04_QgTlhAax8Br4uM0Cfs7M7kfELtl4Nq7DJIJepy1IEQM47VYgs194jnkxdgbtaHeIWS1B6Zbvo6rKJpwte_ivtspX2Fsvmci5dy4BOhTgubtGSL1pezlhAbtHmM03l4n3i8W4eoGaXrVkoLTkjYiiS0aoYEP8KgwDKEK7OVV68_M9ffMvu9077x-Xx4eDoFXsgEIFR6Itnr9n6eDQJbxBBje12o7vAvt31YvkDmsguyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRAcEE-1POcAxy3xax9IHAIlSimNKpVKvS1-AlLZRNlEKBf-Ef-RmY2TBg6oHHpdrb3e8Yzns8fzDWMviPK8khZXv5zCjLIQmcF9RGaDV5WyObecEpyPRvnwVH0402db7NcqFwYH0WJPbRfEJ6ue-JgYBvgrfB4uWPrMfE86wvSr2tWHYfEDd2ztm4N9nN6XQgzef3o3zFJRgcxI3ZtlinNpg3QmRmvzUmtvlZbWxkqpGI2X6CO9oKv52he4EgjujfNSV7HnHa-MxH6vseuIgnq0Dox-7q2PdBAqIBiiUx1KD80E2ka6O_SvwZNbdO0fbnGjekDn5gZ32O2ET6G_VKi7bCs099itDdbC-2zSh2VEAcYNIH4EqqdGWe1gGg8n376nimAwjnDy1cQZDKhTF2C48NMxaiwcBcT85_Ppl8Vr6MOKtAA2PgPHF1mgD9jplcj4Idtuxk3YYVDK3BU5giDnnapEUWrvEVPmrsKdrQ5xl2UovToZXlt3MXXB67-lXSdp77JiJefaJRZ0KsZxfomWfN1ysmQCuUSbtzSV6_eJy7t7gNpdp6WhtuSQiKVIRqtiQAwsDIIoQ9i6VGX16D9_8Tm7cbw_qD8ejA4fs5sCQRhFv3jxhG3PpvPwFEHUzD7rVBfY56u2ld_9_y_W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+the+Modeling+and+Simulation+of+Shaft+Furnace+Hydrogen+Metallurgy%3A+A+Chemical+Engineering+Perspective&rft.jtitle=ACS+Engineering+Au&rft.au=Fei%2C+Yang&rft.au=Guan%2C+Xiaoping&rft.au=Kuang%2C+Shibo&rft.au=Yu%2C+Aibing&rft.date=2024-04-17&rft.issn=2694-2488&rft.eissn=2694-2488&rft.volume=4&rft.issue=2&rft.spage=145&rft.epage=165&rft_id=info:doi/10.1021%2Facsengineeringau.3c00033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsengineeringau_3c00033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon |