A Review on the Modeling and Simulation of Shaft Furnace Hydrogen Metallurgy: A Chemical Engineering Perspective

Hydrogen-based shaft furnace technology holds promise for low-carbon hydrogen metallurgy. Since hydrogen-assisted iron ore reduction is highly endothermic, inadequate heat supply relevant to the contact of gas and densely packed ores may reduce the rate and efficiency of reductions. The key to addre...

Full description

Saved in:
Bibliographic Details
Published inACS Engineering Au Vol. 4; no. 2; pp. 145 - 165
Main Authors Fei, Yang, Guan, Xiaoping, Kuang, Shibo, Yu, Aibing, Yang, Ning
Format Journal Article
LanguageEnglish
Published American Chemical Society 17.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen-based shaft furnace technology holds promise for low-carbon hydrogen metallurgy. Since hydrogen-assisted iron ore reduction is highly endothermic, inadequate heat supply relevant to the contact of gas and densely packed ores may reduce the rate and efficiency of reductions. The key to addressing this issue lies in understanding the competition among heat supply, heat transfer, and heat loss driven by the gas flow around ores and reactions within them. Modeling and simulation are crucial for revealing the underlying mechanisms and promoting process scale-up and intensification. This review summarizes previous efforts in physical modeling and model applications for improving the reduction performance. The discrete element method (DEM) and computational fluid dynamics (CFD)–DEM models have been used for particle-scale simulation to investigate inhomogeneous particle descent and relevant particle–particle interactions. For macroscale simulations, steady-state simplified models such as plug flow and REDUCTOR, as well as the Eulerian two-phase model, have been developed by considering heat and mass transfer. Based on these model applications, strategies including the optimization of operating conditions and gas-feeding methods have been proposed to improve the furnace performance. Further numerical efforts are needed to analyze the in-furnace heat evolution and reduction and reveal the competitiveness of flow, transport, and reaction by incorporating multiscale physics in shaft furnaces. Additionally, attention could be paid to the effects of particle sticking and degradation on reduction, which may be more serious when the proportion of lump ores increases. When evaluating relative optimization strategies, comprehensive comparisons are expected in terms of iron ore reduction degree, gas utilization rate, energy consumption, and economic feasibility under various reducing and cooling gas operating conditions and furnace profiles to offer practical guidelines for industrial design and intensification.
AbstractList Hydrogen-based shaft furnace technology holds promise for low-carbon hydrogen metallurgy. Since hydrogen-assisted iron ore reduction is highly endothermic, inadequate heat supply relevant to the contact of gas and densely packed ores may reduce the rate and efficiency of reductions. The key to addressing this issue lies in understanding the competition among heat supply, heat transfer, and heat loss driven by the gas flow around ores and reactions within them. Modeling and simulation are crucial for revealing the underlying mechanisms and promoting process scale-up and intensification. This review summarizes previous efforts in physical modeling and model applications for improving the reduction performance. The discrete element method (DEM) and computational fluid dynamics (CFD)–DEM models have been used for particle-scale simulation to investigate inhomogeneous particle descent and relevant particle–particle interactions. For macroscale simulations, steady-state simplified models such as plug flow and REDUCTOR, as well as the Eulerian two-phase model, have been developed by considering heat and mass transfer. Based on these model applications, strategies including the optimization of operating conditions and gas-feeding methods have been proposed to improve the furnace performance. Further numerical efforts are needed to analyze the in-furnace heat evolution and reduction and reveal the competitiveness of flow, transport, and reaction by incorporating multiscale physics in shaft furnaces. Additionally, attention could be paid to the effects of particle sticking and degradation on reduction, which may be more serious when the proportion of lump ores increases. When evaluating relative optimization strategies, comprehensive comparisons are expected in terms of iron ore reduction degree, gas utilization rate, energy consumption, and economic feasibility under various reducing and cooling gas operating conditions and furnace profiles to offer practical guidelines for industrial design and intensification.
Author Kuang, Shibo
Fei, Yang
Yu, Aibing
Guan, Xiaoping
Yang, Ning
AuthorAffiliation ARC Research Hub for Computational Particle Technology, Department of Chemical and Biological Engineering
State Key Laboratory of Mesoscience and Engineering
Chinese Academy of Sciences
AuthorAffiliation_xml – name: Chinese Academy of Sciences
– name: ARC Research Hub for Computational Particle Technology, Department of Chemical and Biological Engineering
– name: State Key Laboratory of Mesoscience and Engineering
Author_xml – sequence: 1
  givenname: Yang
  surname: Fei
  fullname: Fei, Yang
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Xiaoping
  surname: Guan
  fullname: Guan, Xiaoping
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Shibo
  orcidid: 0000-0002-2969-9420
  surname: Kuang
  fullname: Kuang, Shibo
  organization: ARC Research Hub for Computational Particle Technology, Department of Chemical and Biological Engineering
– sequence: 4
  givenname: Aibing
  surname: Yu
  fullname: Yu, Aibing
  organization: ARC Research Hub for Computational Particle Technology, Department of Chemical and Biological Engineering
– sequence: 5
  givenname: Ning
  orcidid: 0000-0002-7446-8568
  surname: Yang
  fullname: Yang, Ning
  email: nyang@ipe.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqNkd1OGzEQhS1EpVLKO_gFQv27sblAiiIoSKBWpb22Zu3xxpGzjrwbqrw9C6Eq4qa9mtHMnE9Hcz6R4770SAjl7Jwzwb-AH7DvUo9YU9_B7lx6xpiUR-RENFbNhDLm-E3_kZwNw3o6EZpL0bATsl3QH_iY8DctPR1XSO9LwDzBKPSBPqTNLsOYpl2J9GEFcaTXu9qDR3qzD7V02NN7HCHnXe32F3RBlyvcJA-ZXv01Rr9jHbbox_SIn8mHCHnAs9d6Sn5dX_1c3szuvn29XS7uZiA1G2eKc9mi9BBj2zZG69AqLds2WqVihCCZ4UE0cyV1mFvOBQ_gg9Q2suC5BXlKbg_cUGDttjVtoO5dgeReBqV2DuqYfEbXmnkjuG2sjK2KyIwWYLQEza00ytiJdXlg-VqGoWJ0Po0vbxkrpOw4c89xuPdxuNc4JoB5B_hj6D-k6iCdLty6PD8_D_-WPQE6HquW
CitedBy_id crossref_primary_10_1177_03019233241306335
crossref_primary_10_1007_s40831_024_00934_y
crossref_primary_10_1016_j_ces_2024_120637
crossref_primary_10_1016_j_mineng_2025_109176
crossref_primary_10_3390_met14080873
crossref_primary_10_1007_s42243_024_01377_1
crossref_primary_10_1016_j_mineng_2024_109123
crossref_primary_10_1002_srin_202300887
Cites_doi 10.1016/j.powtec.2017.04.056
10.1039/D0EE00787K
10.1016/B978-0-08-096988-6.00017-1
10.1002/srin.201900108
10.1007/s11663-014-0125-9
10.1007/s42243-019-00266-2
10.1016/j.powtec.2012.11.043
10.1016/j.cej.2022.140112
10.1007/s10035-014-0522-4
10.1016/B978-0-08-096988-6.00016-X
10.3390/ma11101865
10.1016/j.powtec.2013.11.001
10.1016/j.jclepro.2023.136391
10.1016/j.cej.2004.08.001
10.2355/isijinternational.ISIJINT-2019-734
10.1016/j.joule.2021.02.018
10.2355/isijinternational.51.1403
10.1016/j.mineng.2022.107459
10.1016/B978-0-08-102201-6.00013-3
10.1007/s11663-023-02821-5
10.1007/BF02654354
10.1021/ie403030g
10.1179/irs.1999.26.1.41
10.1002/srin.202100730
10.3390/ma14247540
10.1515/ijcre-2020-0012
10.2355/isijinternational.ISIJINT-2019-392
10.1007/s11663-022-02442-4
10.1016/S0032-5910(96)03187-7
10.1007/s42243-019-00295-x
10.1007/978-3-030-98056-6
10.1016/j.powtec.2020.08.060
10.2355/tetsutohagane1955.57.10_1597
10.1016/j.powtec.2009.02.012
10.1007/978-3-319-48764-9_96
10.1016/B978-0-12-803581-8.10290-5
10.1016/j.powtec.2021.07.039
10.1016/j.ces.2020.115858
10.2355/tetsutohagane1955.67.3_508
10.1016/j.powtec.2019.04.026
10.1016/j.jclepro.2012.07.045
10.3390/met11121953
10.1016/j.fuproc.2020.106369
10.1016/0098-1354(86)85047-5
10.1002/srin.201700071
10.2355/isijinternational.53.576
10.1016/j.ijhydene.2020.12.123
10.1080/03019233.2021.1909992
10.1016/j.ijheatmasstransfer.2016.06.060
10.2355/isijinternational.ISIJINT-2015-540
10.1016/j.jclepro.2023.137059
10.1595/147106707X205857
10.1016/j.powtec.2019.05.047
10.1002/srin.202000110
10.1016/B978-0-12-820226-5.00011-2
10.1016/j.ijhydene.2016.11.053
10.1016/j.powtec.2015.04.071
10.1007/s11663-020-02020-6
10.1080/02726351.2021.1871793
10.1016/j.ces.2021.117393
10.14356/kona.2018009
10.1201/9781003342199
10.1515/ijcre-2022-0004
10.2355/tetsutohagane1955.62.3_315
10.1016/j.fuel.2022.124368
10.1007/s12613-015-1123-x
10.1016/S1006-706X(14)60004-2
10.1007/s11837-014-1019-7
10.1016/j.ijhydene.2023.01.057
10.1007/s11663-016-0895-3
10.2355/isijinternational.50.1032
10.5151/2594-357X-39608
10.2355/isijinternational1966.17.629
10.2355/isijinternational1966.7.223
10.1007/978-94-009-3431-3
10.1007/s12613-022-2478-4
10.1016/j.rser.2014.02.031
10.1002/srin.202000071
10.1007/s11663-022-02485-7
10.1038/s41586-023-06486-7
10.1007/s12613-020-2021-4
10.1007/978-3-030-65257-9_11
10.1051/metal/2018050
10.2355/isijinternational.ISIJINT-2019-058
10.1016/j.renene.2021.07.108
10.2355/isijinternational1966.13.350
10.1016/j.powtec.2016.07.038
10.2355/isijinternational.51.14
10.1016/j.powtec.2016.12.017
10.1680/geot.1979.29.1.47
10.2355/isijinternational1966.26.765
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
DBID AAYXX
CITATION
DOA
DOI 10.1021/acsengineeringau.3c00033
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2694-2488
EndPage 165
ExternalDocumentID oai_doaj_org_article_b876219693fb4fe0852a853a51938489
10_1021_acsengineeringau_3c00033
g12076087
GroupedDBID ACS
AELXD
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N~.
OK1
AAYXX
ABBLG
ADUCK
CITATION
ID FETCH-LOGICAL-a350t-4113be3caffbb6855db453bbf944ffad3081d267435d791121dacd359f0dc19a3
IEDL.DBID DOA
ISSN 2694-2488
IngestDate Wed Aug 27 01:27:57 EDT 2025
Tue Jul 01 00:23:11 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Thu Apr 18 07:30:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hydrogen metallurgy
thermodynamic analysis
multiphase flow models
shaft furnace
heat supply issue
reduction performance
optimization strategy
heat and mass transfer
multiscale physics
reaction models
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a350t-4113be3caffbb6855db453bbf944ffad3081d267435d791121dacd359f0dc19a3
ORCID 0000-0002-7446-8568
0000-0002-2969-9420
OpenAccessLink https://doaj.org/article/b876219693fb4fe0852a853a51938489
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_b876219693fb4fe0852a853a51938489
crossref_citationtrail_10_1021_acsengineeringau_3c00033
crossref_primary_10_1021_acsengineeringau_3c00033
acs_journals_10_1021_acsengineeringau_3c00033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-17
PublicationDateYYYYMMDD 2024-04-17
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-17
  day: 17
PublicationDecade 2020
PublicationTitle ACS Engineering Au
PublicationTitleAlternate ACS Eng. Au
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
Atsushi M. (ref14/cit14) 2010; 29
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref111/cit111
  doi: 10.1016/j.powtec.2017.04.056
– ident: ref8/cit8
  doi: 10.1039/D0EE00787K
– ident: ref16/cit16
  doi: 10.1016/B978-0-08-096988-6.00017-1
– ident: ref31/cit31
– ident: ref109/cit109
  doi: 10.1002/srin.201900108
– ident: ref54/cit54
  doi: 10.1007/s11663-014-0125-9
– ident: ref75/cit75
  doi: 10.1007/s42243-019-00266-2
– ident: ref36/cit36
– ident: ref44/cit44
– ident: ref70/cit70
– ident: ref55/cit55
  doi: 10.1016/j.powtec.2012.11.043
– ident: ref123/cit123
  doi: 10.1016/j.cej.2022.140112
– ident: ref82/cit82
  doi: 10.1007/s10035-014-0522-4
– ident: ref41/cit41
  doi: 10.1016/B978-0-08-096988-6.00016-X
– ident: ref63/cit63
  doi: 10.3390/ma11101865
– ident: ref83/cit83
  doi: 10.1016/j.powtec.2013.11.001
– ident: ref40/cit40
– ident: ref9/cit9
  doi: 10.1016/j.jclepro.2023.136391
– ident: ref52/cit52
  doi: 10.1016/j.cej.2004.08.001
– ident: ref117/cit117
  doi: 10.2355/isijinternational.ISIJINT-2019-734
– ident: ref10/cit10
  doi: 10.1016/j.joule.2021.02.018
– ident: ref122/cit122
  doi: 10.2355/isijinternational.51.1403
– ident: ref116/cit116
  doi: 10.1016/j.mineng.2022.107459
– ident: ref27/cit27
– ident: ref12/cit12
  doi: 10.1016/B978-0-08-102201-6.00013-3
– ident: ref78/cit78
  doi: 10.1007/s11663-023-02821-5
– ident: ref118/cit118
  doi: 10.1007/BF02654354
– ident: ref104/cit104
  doi: 10.1021/ie403030g
– ident: ref49/cit49
– ident: ref115/cit115
  doi: 10.1179/irs.1999.26.1.41
– ident: ref53/cit53
– ident: ref127/cit127
  doi: 10.1002/srin.202100730
– ident: ref43/cit43
– ident: ref48/cit48
– ident: ref2/cit2
– ident: ref110/cit110
  doi: 10.3390/ma14247540
– ident: ref26/cit26
– ident: ref66/cit66
  doi: 10.1515/ijcre-2020-0012
– ident: ref37/cit37
– ident: ref21/cit21
  doi: 10.2355/isijinternational.ISIJINT-2019-392
– ident: ref113/cit113
  doi: 10.1007/s11663-022-02442-4
– ident: ref124/cit124
  doi: 10.1016/S0032-5910(96)03187-7
– ident: ref65/cit65
  doi: 10.1007/s42243-019-00295-x
– ident: ref32/cit32
– ident: ref22/cit22
  doi: 10.1007/978-3-030-98056-6
– ident: ref68/cit68
  doi: 10.1016/j.powtec.2020.08.060
– ident: ref101/cit101
  doi: 10.2355/tetsutohagane1955.57.10_1597
– ident: ref97/cit97
  doi: 10.1016/j.powtec.2009.02.012
– ident: ref103/cit103
  doi: 10.1007/978-3-319-48764-9_96
– ident: ref1/cit1
  doi: 10.1016/B978-0-12-803581-8.10290-5
– ident: ref69/cit69
  doi: 10.1016/j.powtec.2021.07.039
– ident: ref95/cit95
  doi: 10.1016/j.ces.2020.115858
– volume: 29
  start-page: 50
  year: 2010
  ident: ref14/cit14
  publication-title: Kobelco Technology Review
– ident: ref51/cit51
  doi: 10.2355/tetsutohagane1955.67.3_508
– ident: ref121/cit121
  doi: 10.1016/j.powtec.2019.04.026
– ident: ref58/cit58
  doi: 10.1016/j.jclepro.2012.07.045
– ident: ref129/cit129
  doi: 10.3390/met11121953
– ident: ref94/cit94
  doi: 10.1016/j.fuproc.2020.106369
– ident: ref15/cit15
– ident: ref90/cit90
  doi: 10.1016/0098-1354(86)85047-5
– ident: ref84/cit84
  doi: 10.1002/srin.201700071
– ident: ref71/cit71
  doi: 10.2355/isijinternational.53.576
– ident: ref87/cit87
– ident: ref11/cit11
  doi: 10.1016/j.ijhydene.2020.12.123
– ident: ref13/cit13
  doi: 10.1080/03019233.2021.1909992
– ident: ref100/cit100
  doi: 10.1016/j.ijheatmasstransfer.2016.06.060
– ident: ref25/cit25
– ident: ref64/cit64
  doi: 10.2355/isijinternational.ISIJINT-2015-540
– ident: ref4/cit4
– ident: ref80/cit80
  doi: 10.1016/j.jclepro.2023.137059
– ident: ref50/cit50
– ident: ref47/cit47
– ident: ref120/cit120
  doi: 10.1595/147106707X205857
– ident: ref33/cit33
– ident: ref85/cit85
  doi: 10.1016/j.powtec.2019.05.047
– ident: ref128/cit128
  doi: 10.1002/srin.202000110
– ident: ref42/cit42
  doi: 10.1016/B978-0-12-820226-5.00011-2
– ident: ref125/cit125
  doi: 10.1016/j.ijhydene.2016.11.053
– ident: ref91/cit91
  doi: 10.1016/j.powtec.2015.04.071
– ident: ref61/cit61
  doi: 10.1007/s11663-020-02020-6
– ident: ref29/cit29
– ident: ref67/cit67
  doi: 10.1080/02726351.2021.1871793
– ident: ref86/cit86
  doi: 10.1016/j.ces.2021.117393
– ident: ref56/cit56
  doi: 10.14356/kona.2018009
– ident: ref23/cit23
  doi: 10.1201/9781003342199
– ident: ref5/cit5
– ident: ref77/cit77
  doi: 10.1515/ijcre-2022-0004
– ident: ref105/cit105
– ident: ref88/cit88
  doi: 10.2355/tetsutohagane1955.62.3_315
– ident: ref106/cit106
– ident: ref98/cit98
  doi: 10.1016/j.fuel.2022.124368
– ident: ref107/cit107
  doi: 10.1007/s12613-015-1123-x
– ident: ref126/cit126
  doi: 10.1016/S1006-706X(14)60004-2
– ident: ref72/cit72
  doi: 10.1007/s11837-014-1019-7
– ident: ref79/cit79
  doi: 10.1016/j.ijhydene.2023.01.057
– ident: ref102/cit102
  doi: 10.1007/s11663-016-0895-3
– ident: ref73/cit73
  doi: 10.2355/isijinternational.50.1032
– ident: ref38/cit38
– ident: ref57/cit57
  doi: 10.5151/2594-357X-39608
– ident: ref119/cit119
  doi: 10.2355/isijinternational1966.17.629
– ident: ref96/cit96
  doi: 10.2355/isijinternational1966.7.223
– ident: ref99/cit99
  doi: 10.1007/978-94-009-3431-3
– ident: ref20/cit20
  doi: 10.1007/s12613-022-2478-4
– ident: ref46/cit46
  doi: 10.1016/j.rser.2014.02.031
– ident: ref93/cit93
  doi: 10.1002/srin.202000071
– ident: ref24/cit24
– ident: ref59/cit59
  doi: 10.1007/s11663-022-02485-7
– ident: ref18/cit18
– ident: ref6/cit6
– ident: ref35/cit35
– ident: ref7/cit7
  doi: 10.1038/s41586-023-06486-7
– ident: ref19/cit19
  doi: 10.1007/s12613-020-2021-4
– ident: ref45/cit45
– ident: ref108/cit108
  doi: 10.1007/978-3-030-65257-9_11
– ident: ref74/cit74
  doi: 10.1051/metal/2018050
– ident: ref76/cit76
  doi: 10.2355/isijinternational.ISIJINT-2019-058
– ident: ref34/cit34
– ident: ref62/cit62
  doi: 10.1016/j.renene.2021.07.108
– ident: ref17/cit17
– ident: ref28/cit28
– ident: ref114/cit114
  doi: 10.2355/isijinternational1966.13.350
– ident: ref3/cit3
– ident: ref39/cit39
– ident: ref60/cit60
  doi: 10.1016/j.powtec.2016.07.038
– ident: ref112/cit112
  doi: 10.2355/isijinternational.51.14
– ident: ref92/cit92
  doi: 10.1016/j.powtec.2016.12.017
– ident: ref81/cit81
  doi: 10.1680/geot.1979.29.1.47
– ident: ref89/cit89
  doi: 10.2355/isijinternational1966.26.765
– ident: ref30/cit30
SSID ssj0002513260
Score 2.353397
Snippet Hydrogen-based shaft furnace technology holds promise for low-carbon hydrogen metallurgy. Since hydrogen-assisted iron ore reduction is highly endothermic,...
SourceID doaj
crossref
acs
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 145
SummonAdditionalLinks – databaseName: American Chemical Society (ACS) Open Access
  dbid: N~.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwNBDB58XPQgPvFNDl5Xndc-vFWxFKFFUMHbMk8VdFv6OHjxt5u0a62CotdlM8tmMpNvkskXxo6I8ryQFne_lNKMMhOJwXNEYoNXhbIpt5wKnNudtHWnru71_RwTP2TwBT8xbhA-qfnM6Fg6AvJyni2KNM9pMXbejqdxFfTXiEgotEI1molAA60v8Pw2GPkmN_jim2Yo_Me-prnKVmqQCI3JrK6xuVCts-UZ6sAN1mvAJKwP3QoQxAE1NaPScjCVh5unl7otF3Qj3DyaOIQmDeoCtF59v4tmA-2AwPt51H94PYMGfDAHwMxn4PqzFHOT3TUvby9aSd09ITFSnw4Txbm0QToTo7VprrW3SktrY6FUjMZLBANeUA2C9hlueYJ747zURTz1jhdGbrGFqluFbQa5TF2WIhJx3qlCZLn2HoFd6go8XuoQd1iC2itr6x-U48S24OV3bZe1tndY9qHn0tVU5NQR4_kPknwq2ZvQcfxB5pymcvo-EWqPH6CVlfX6LC15BaIKktGqGBCICoNIxhDAzVVe7P7zF_fYkkD4Q3knnu2zhWF_FA4Qvgzt4dhe3wHtSO5H
  priority: 102
  providerName: American Chemical Society
Title A Review on the Modeling and Simulation of Shaft Furnace Hydrogen Metallurgy: A Chemical Engineering Perspective
URI http://dx.doi.org/10.1021/acsengineeringau.3c00033
https://doaj.org/article/b876219693fb4fe0852a853a51938489
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8NADD4hJhgQT_GsPLAGerm7PNgKalUhFSEVJLbonoAEaVXagYXfjp0ECCwwsNyQxJfIcc6f4_Nnxo6J8jwXBle_hNKMIo0jjXFEZLyTuTQJN5wKnEdXyfBWXt6pu1arL9oTVtMD14o7NfS5EoeLCEYGjwgh1uhiNCGPTGZV6R76vFYwRWswem3EJd1m6w76sVNtX_wXw59enAhL8QCxBeKpb16pRd5feZnBOltr4CH06sfaYEu-3GSrLdLALTbtQf1DHyYlIHwDamdGReWgSwfjx-emIRdMAowfdJjDgCa1HoavbjZBg4GRR8j9tJjdv55BDz44A6B1G7j-KsLcZreD_s3FMGr6JkRaqO48kpwL44XVIRiTZEo5I5UwJuRShqCdQBjgYqo-UC7FxS7mTlsnVB66zvJcix22XE5Kv8sgE4lNE8Qg1lmZx2mmnENIl9gcA0vlwx6LUHtFY_cvRZXSjnnxU9tFo-09ln7oubANCTn1wnj6gyT_lJzWRBx_kDmnV_l5PVFpVwfQwIrGwIrfDGz_PyY5YCsxoiFKQ_H0kC3PZwt_hGhmbjqI5i_Gncp8cRy99XG8ejt5Bw279i4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEO4gHNSD8RnwgXXQ4yD9moeJhxXYLMJuTICE29hPNcFZsrMbsxf-D__SqtnZhx4IHrhOpnt6qqurvu7q-oqxd0R5XkiL1i-lMKPMRGJwH5HY4FWhbMotpwTn_iDtnakv5_p8jV3Pc2FwEDX2VDdB_CW7AP-Az8KSoc9MdqQjPD-vW30Upr9xt1Z_OtzHqX0vRPfgdK-XtAUFEiP17jhRnEsbpDMxWpvmWnurtLQ2FkrFaLxE_-gFXcvXPkMrILg3zktdxF3veGEk9nuPbSAG0mQDBlc7i-MchAkIhOhEh1JDE4Hror03dNPgySW6-i-XuFI5oHFx3cfsUYtNoTNTpidsLVRP2cMVxsJn7LIDs2gCDCtA7AhUS40y2sFUHk5-_mqrgcEwwskPE8fQpU5dgN7Uj4aordAPiPcvJqPv04_QgTlhAax8Br4uM0Cfs7M7kfELtl4Nq7DJIJepy1IEQM47VYgs194jnkxdgbtaHeIWS1B6Zbvo6rKJpwte_ivtspX2Fsvmci5dy4BOhTgubtGSL1pezlhAbtHmM03l4n3i8W4eoGaXrVkoLTkjYiiS0aoYEP8KgwDKEK7OVV68_M9ffMvu9077x-Xx4eDoFXsgEIFR6Itnr9n6eDQJbxBBje12o7vAvt31YvkDmsguyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRAcEE-1POcAxy3xax9IHAIlSimNKpVKvS1-AlLZRNlEKBf-Ef-RmY2TBg6oHHpdrb3e8Yzns8fzDWMviPK8khZXv5zCjLIQmcF9RGaDV5WyObecEpyPRvnwVH0402db7NcqFwYH0WJPbRfEJ6ue-JgYBvgrfB4uWPrMfE86wvSr2tWHYfEDd2ztm4N9nN6XQgzef3o3zFJRgcxI3ZtlinNpg3QmRmvzUmtvlZbWxkqpGI2X6CO9oKv52he4EgjujfNSV7HnHa-MxH6vseuIgnq0Dox-7q2PdBAqIBiiUx1KD80E2ka6O_SvwZNbdO0fbnGjekDn5gZ32O2ET6G_VKi7bCs099itDdbC-2zSh2VEAcYNIH4EqqdGWe1gGg8n376nimAwjnDy1cQZDKhTF2C48NMxaiwcBcT85_Ppl8Vr6MOKtAA2PgPHF1mgD9jplcj4Idtuxk3YYVDK3BU5giDnnapEUWrvEVPmrsKdrQ5xl2UovToZXlt3MXXB67-lXSdp77JiJefaJRZ0KsZxfomWfN1ysmQCuUSbtzSV6_eJy7t7gNpdp6WhtuSQiKVIRqtiQAwsDIIoQ9i6VGX16D9_8Tm7cbw_qD8ejA4fs5sCQRhFv3jxhG3PpvPwFEHUzD7rVBfY56u2ld_9_y_W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+the+Modeling+and+Simulation+of+Shaft+Furnace+Hydrogen+Metallurgy%3A+A+Chemical+Engineering+Perspective&rft.jtitle=ACS+Engineering+Au&rft.au=Fei%2C+Yang&rft.au=Guan%2C+Xiaoping&rft.au=Kuang%2C+Shibo&rft.au=Yu%2C+Aibing&rft.date=2024-04-17&rft.issn=2694-2488&rft.eissn=2694-2488&rft.volume=4&rft.issue=2&rft.spage=145&rft.epage=165&rft_id=info:doi/10.1021%2Facsengineeringau.3c00033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsengineeringau_3c00033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon