A frequency‐dependent and intensity‐dependent macroelement for reduced order seismic analysis of soil‐structure interacting systems
Summary The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 47; no. 11; pp. 2172 - 2194 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems. |
---|---|
AbstractList | The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems. Summary The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems. |
Author | Lesgidis, Nikolaos Sextos, Anastasios Kwon, Oh‐Sung |
Author_xml | – sequence: 1 givenname: Nikolaos orcidid: 0000-0002-7938-5745 surname: Lesgidis fullname: Lesgidis, Nikolaos organization: Aristotle University Thessaloniki – sequence: 2 givenname: Anastasios orcidid: 0000-0002-2616-9395 surname: Sextos fullname: Sextos, Anastasios email: asextos@civil.auth.gr organization: University of Bristol – sequence: 3 givenname: Oh‐Sung orcidid: 0000-0002-3292-9194 surname: Kwon fullname: Kwon, Oh‐Sung organization: University of Toronto |
BookMark | eNp1kM9q3DAQh0VJoJs_0EcQ9NKLt6OVvGsfQ9ikgUAJtGcjS6OgYEsbjUzwrdfc-ox9kmqzuTQ0Fw1ivvmY-Z2woxADMvZJwFIArL7iIy4lrOUHthDQrqu2UfURWwC0TdU0avORnRA9AIBcw2bBni-4S_g4YTDzn1-_Le4wWAyZ62C5DxkD-fxvZ9QmRRxw3H9cTDyhnQxaHpPFxAk9jd4UgR5m8sSj4xT9UByU02TylPDFnLTJPtxzminjSGfs2OmB8Py1nrKfV9sfl9-q2-_XN5cXt5WWNcjyal07uVHY18KoFboGJfatE0agA6n6lVC27htlrZQb6C32vVprVI2CGlt5yj4fvLsUy92Uu4c4pbIsdSsoYTWqrUWhvhyocitRQtftkh91mjsB3T7orgTd7YMu6PINanzW2ceQk_bD_waqw8CTH3B-V9xt77Yv_F-sdJf5 |
CitedBy_id | crossref_primary_10_1007_s10518_018_0474_x crossref_primary_10_1016_j_sandf_2022_101107 crossref_primary_10_1002_eqe_3407 crossref_primary_10_1080_15732479_2021_1919152 crossref_primary_10_1007_s10518_019_00700_6 crossref_primary_10_1016_j_engstruct_2020_110757 crossref_primary_10_3389_fbuil_2022_848698 crossref_primary_10_1016_j_sandf_2023_101340 crossref_primary_10_1016_j_compgeo_2023_105773 crossref_primary_10_1016_j_engstruct_2021_113258 crossref_primary_10_1016_j_rcns_2023_08_002 crossref_primary_10_1016_j_soildyn_2020_106483 crossref_primary_10_1016_j_soildyn_2021_107025 crossref_primary_10_1007_s00226_019_01111_1 crossref_primary_10_1016_j_sandf_2020_11_004 crossref_primary_10_1007_s40996_023_01122_w crossref_primary_10_1002_eqe_3588 crossref_primary_10_1007_s10518_023_01698_8 crossref_primary_10_1016_j_trgeo_2020_100350 |
Cites_doi | 10.1002/eqe.2778 10.1016/j.soildyn.2016.10.030 10.1016/j.soildyn.2012.05.023 10.1061/(ASCE)0733-9445(2008)134:7(1165) 10.1680/geot.1997.47.1.49 10.1007/s11440-009-0087-2 10.1002/eqe.4290200103 10.1137/0806023 10.1061/(ASCE)0733-9399(2007)133:10(1101) 10.1061/(ASCE)1090-0241(2009)135:3(407) 10.1007/s11440-015-0415-7 10.1080/13632460009350372 10.1002/nag.175 10.1061/(ASCE)0733-9445(2008)134:4(651) 10.1016/j.soildyn.2008.08.009 10.1061/JMCEA3.0001144 10.1002/eqe.1147 10.1002/eqe.2573 10.1109/TAC.1963.1105511 10.1002/eqe.4290240503 10.1080/13632460209350414 |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons, Ltd. 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Ltd. – notice: 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.3063 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 2194 |
ExternalDocumentID | 10_1002_eqe_3063 EQE3063 |
Genre | article |
GrantInformation_xml | – fundername: European Commission funderid: H2020‐MSCA‐RISE‐2015‐691213‐Exchange‐Risk |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACKIV ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-a3503-a3aa5f374eb51c42ef8e3eb9f1c1ef034b214d5b84dd3370bdebb46ae48405e93 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Fri Jul 25 22:23:26 EDT 2025 Tue Jul 01 02:21:57 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Wed Jan 22 16:23:01 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3503-a3aa5f374eb51c42ef8e3eb9f1c1ef034b214d5b84dd3370bdebb46ae48405e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3292-9194 0000-0002-2616-9395 0000-0002-7938-5745 |
OpenAccessLink | https://research-information.bris.ac.uk/ws/files/154234651/Lesgidis_et_al_EESD_accepted.pdf |
PQID | 2084584951 |
PQPubID | 866380 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2084584951 crossref_primary_10_1002_eqe_3063 crossref_citationtrail_10_1002_eqe_3063 wiley_primary_10_1002_eqe_3063_EQE3063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 2018-09-00 20180901 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 92 1963; 8 2000; 4 1991; 32 1995; 24 1997; 47 2002; 6 2007; 133 1969; 95 2017; 46 2009; 135 2009; 4 2008; 134 2001; 25 2012; 42 2009; 29 2012; 41 1996; 6 2016; 11 2015; 2573 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 |
References_xml | – volume: 134 start-page: 651 issue: 4 year: 2008 end-page: 660 article-title: Seismic analysis of Meloland road overcrossing using multiplatform simulation software including SSI publication-title: J Struct Eng – volume: 11 start-page: 373 issue: 2 year: 2016 end-page: 390 article-title: A hypoplastic macroelement for single vertical piles in sand subject to three‐dimensional loading conditions publication-title: Acta Geotech – volume: 134 start-page: 1165 year: 2008 end-page: 1176 article-title: Three‐dimensional seismic response of Humboldt Bay bridge‐foundation‐ground system publication-title: J Struct Eng – volume: 133 start-page: 1101 issue: 10 year: 2007 end-page: 1114 article-title: Simple model of frequency‐dependent impedance functions in soil‐structure interaction using frequency‐independent elements publication-title: J Eng Mech – volume: 41 start-page: 623 issue: 4 year: 2012 end-page: 641 article-title: On the performance of lumped parameter models with gyro‐mass elements for the impedance function of a pile‐group supporting a single‐degree‐of‐freedom system publication-title: Earthq Eng Struct Dyn – volume: 8 start-page: 59 issue: 1 year: 1963 end-page: 60 article-title: Optimality and non‐scalar‐valued performance criteria publication-title: IEEE Trans Autom Control – volume: 46 start-page: 139 issue: 1 year: 2017 end-page: 158 article-title: Influence of frequency‐dependent soil‐structure interaction on the fragility of R/C bridges publication-title: Earthq Eng Struct Dyn – volume: 24 start-page: 637 issue: 5 year: 1995 end-page: 654 article-title: Global lumped‐parameter model with physical representation for unbounded medium publication-title: Earthq Eng Struct Dyn – volume: 92 start-page: 377 year: 2017 end-page: 387 article-title: Numerical modelling method for inelastic and frequency‐dependent behavior of shallow foundations publication-title: Soil Dyn Earthq Eng – volume: 135 start-page: 407 issue: 3 year: 2009 end-page: 419 article-title: Contact interface model for shallow foundations subjected to combined cyclic loading publication-title: J Geotech Geoenviron Eng – volume: 42 start-page: 184 year: 2012 end-page: 196 article-title: Performance‐based earthquake assessment of bridge systems including ground‐foundation interaction publication-title: Soil Dyn Earthq Eng – volume: 2573 start-page: 2137 issue: 13 year: 2015 end-page: 2156 article-title: A time‐domain seismic SSI analysis method for inelastic bridge structures through the use of a frequency‐dependent lumped parameter model publication-title: Earthq Eng Struc Dyn – volume: 29 start-page: 765 issue: 5 year: 2009 end-page: 781 article-title: Macroelement modeling of shallow foundations publication-title: Soil Dyn Earthq Eng – volume: 95 start-page: 859 issue: 4 year: 1969 end-page: 878 article-title: Finite dynamic model for infinite media publication-title: J Eng Mech Div – volume: 47 start-page: 49 issue: 1 year: 1997 end-page: 60 article-title: Settlements of shallow foundations on sand: geometrical effects publication-title: Géotechnique – volume: 6 year: 2002 article-title: Modelling of nonlinear dynamic behaviour of a shallow strip foundation with macro‐element publication-title: J Earthq Eng – volume: 4 start-page: 277 issue: 3 year: 2000 end-page: 301 article-title: Seismic soil‐structure interaction: beneficial or detrimental? publication-title: J Earthq Eng – volume: 25 start-page: 1257 issue: 13 year: 2001 end-page: 1284 article-title: Cyclic macro‐element for soil‐structure interaction: material and geometrical nonlinearities publication-title: Int J Numer Anal Methods Geomech – volume: 6 start-page: 418 issue: 2 year: 1996 end-page: 445 article-title: An interior trust region approach for nonlinear minimization subject to bounds publication-title: SIAM J Optim – volume: 4 start-page: 163 issue: 3 year: 2009 end-page: 176 article-title: A hypoplastic macroelement model for shallow foundations under monotonic and cyclic loads publication-title: Acta Geotech – volume: 32 start-page: 11 year: 1991 end-page: 32 article-title: Consistent lumped‐parameter models for unbounded soil: physical representation publication-title: Earthq Eng Struct Dyn – ident: e_1_2_8_13_1 doi: 10.1002/eqe.2778 – ident: e_1_2_8_14_1 doi: 10.1016/j.soildyn.2016.10.030 – ident: e_1_2_8_4_1 doi: 10.1016/j.soildyn.2012.05.023 – ident: e_1_2_8_5_1 doi: 10.1061/(ASCE)0733-9445(2008)134:7(1165) – ident: e_1_2_8_6_1 doi: 10.1680/geot.1997.47.1.49 – ident: e_1_2_8_8_1 doi: 10.1007/s11440-009-0087-2 – ident: e_1_2_8_15_1 doi: 10.1002/eqe.4290200103 – ident: e_1_2_8_21_1 doi: 10.1137/0806023 – ident: e_1_2_8_17_1 doi: 10.1061/(ASCE)0733-9399(2007)133:10(1101) – ident: e_1_2_8_12_1 doi: 10.1061/(ASCE)1090-0241(2009)135:3(407) – ident: e_1_2_8_9_1 doi: 10.1007/s11440-015-0415-7 – ident: e_1_2_8_2_1 doi: 10.1080/13632460009350372 – ident: e_1_2_8_10_1 doi: 10.1002/nag.175 – ident: e_1_2_8_3_1 doi: 10.1061/(ASCE)0733-9445(2008)134:4(651) – ident: e_1_2_8_7_1 doi: 10.1016/j.soildyn.2008.08.009 – ident: e_1_2_8_22_1 doi: 10.1061/JMCEA3.0001144 – ident: e_1_2_8_19_1 doi: 10.1002/eqe.1147 – ident: e_1_2_8_18_1 doi: 10.1002/eqe.2573 – ident: e_1_2_8_20_1 doi: 10.1109/TAC.1963.1105511 – ident: e_1_2_8_16_1 doi: 10.1002/eqe.4290240503 – ident: e_1_2_8_11_1 doi: 10.1080/13632460209350414 |
SSID | ssj0003607 |
Score | 2.3381014 |
Snippet | Summary
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their... The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2172 |
SubjectTerms | Bridge foundations Bridges Civil engineering Computational efficiency Computer applications Computer simulation Dependence Dynamical systems Earthquakes Evaluation Finite element method Frameworks Ground motion lumped parameter model macroelement Mathematical models model order reduction Model reduction Modelling Multiple objective analysis Nonlinear analysis Seismic activity Seismic analysis Seismic design Seismic engineering Seismic response Soil Soil analysis Soil dynamics Soil structure soil‐structure interaction |
Title | A frequency‐dependent and intensity‐dependent macroelement for reduced order seismic analysis of soil‐structure interacting systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3063 https://www.proquest.com/docview/2084584951 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NS8MwGMeD7KQH38XplAiip25tk3bdccjGEBQUBwMPJWmfyHDrdN0OevLqzc_oJ_FJ0-5FFMRLe2gSmrfmn-afXwg5ZTG2DHCkFSmvYXEhXEtIl1seVzi-gQAW6xXdq2u_0-WXPa-Xuyr1XhjDh5j9cNM9I_te6w4uZFqbQ0PhGaqodzXoU1u1tB66nZOjmG_PcJkBfoEL7qzt1oqIyyPRXF4uitRslGlvkPvi_Yy55LE6nchq9PoN3fi_DGyS9Vx80qZpLVtkBZJtsraAJNwh702qxsZe_fL59lGckTuhIolp3_jdJ8tPhgIzCMaGTlED07HGwUJMM6wnTaGfDvsRJmDwJ3SkaDrqDzANA6-djiFLOduvlTxQA5dOd0m33bq76Fj5cQ2WYJ7N8CqEp1idg_SciLugAmAgG8qJHFA249J1eOzJgMcxY3VbxiAl9wVwnGR60GB7pJSMEtgnFAJR94UtAsWA6822vl-PXOA41xICNVOZnBdVF0Y5y1wfqTEIDYXZDbFwQ124ZXIyC_lk-B0_hKkUtR_mPTgNXTvQS8goQMvkLKvGX-OHrZuWvh_8NeAhWUXdFRirWoWUsLDhCLXNRB5nrfgLEOX9gg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT9swFMefGBw2DvwYQxQKGGnaTilJ7KSpOFWoVWFQaRNIHCZFdvKMKiCFpj3AiSs3_kb-Ep7jpi0Tk6ZdkkNsK_79tf38eQBfeUotAz3lJDpoOEJK35HKF04gNM1vKJGn5kT3tBt2zsXxRXAxBwflXRjLh5hsuJmeUYzXpoObDen9KTUU77BGgpd_gAXj0LtYT_2asqN46E6AmRGNwSV51vX3y5hv56KpwJyVqcU8016G3-UfWvOSq9poqGrJwx_wxv_MwgosjfUna9oGswpzmH2GxRkq4Ro8NZkeWAvr-5fH59JN7pDJLGU9a_I-fPvlRlIO0VqiM5LBbGCIsJiyguzJcuzlN72EErAEFNbXLO_3rikNy68dDbBIubiylV0yy5fOv8B5u3V22HHGHhscyQOX01PKQPO6QBV4ifBRR8hRNbSXeKhdLpTviTRQkUhTzuuuSlEpEUoUtM4MsMHXYT7rZ7gBDCNZD6UrI81RmPu2YVhPfBS03JKSZFMFvpd1FydjnLnxqnEdWxCzH1PhxqZwK7A3CXlrER7vhKmW1R-PO3Ee-25kTpFJg1bgW1GPf40ft362zHvzXwPuwsfO2elJfHLU_bEFn0iGRdZyrQrzVPC4TVJnqHaKJv0Kw2wBrA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT9swFMefGEjTOPBjG6L89KRpnFKS2EnTI4JWwBjapiEhcYjs-BlVQApNOcCJKzf-Rv4SnuOkBTSkaZfkENuK7Wf7a_v5Y4CvXJNlYKC8zERtT0gZelKFwouEofENJXJtd3R_HMa7R2L_ODquvCrtWRjHhxgtuNmWUfbXtoFfarM5hobiFTZJ7_J3MCViP7EWvfN7jI7isT_iZSbUBdfgWT_crGO-HIrG-vK5Si2Hme4snNQ_6LxLzprXQ9XMbl-xG_8vB3MwU6lPtuXMZR4mMP8I08-YhJ_gfouZgfOvvnm8e6gvyR0ymWvWcw7vw5dfLiRlEJ0fOiMRzAaWB4ualVxPVmCvuOhllIDjn7C-YUW_d05pOHrt9QDLlMsDW_kpc3Tp4jMcdTt_tne96r4GT_LI5_SUMjK8JVBFQSZCNAlyVG0TZAEanwsVBkJHKhFac97ylUalRCxR0CwzwjZfgMm8n-MiMExkK5a-TAxHYU_bxnErC1HQZEtKEk0N2KirLs0qmLm9U-M8dRjmMKXCTW3hNuDLKOSlA3j8JcxKXftp1YSLNPQTu4dMCrQB38pqfDN-2vnVse-lfw24Du9_7nTTg73D78vwgTRY4tzWVmCSyh1XSecM1Vpp0E_ykgBk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+frequency%E2%80%90dependent+and+intensity%E2%80%90dependent+macroelement+for+reduced+order+seismic+analysis+of+soil%E2%80%90structure+interacting+systems&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Lesgidis%2C+Nikolaos&rft.au=Sextos%2C+Anastasios&rft.au=Kwon%2C+Oh%E2%80%90Sung&rft.date=2018-09-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=47&rft.issue=11&rft.spage=2172&rft.epage=2194&rft_id=info:doi/10.1002%2Feqe.3063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_3063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |