Experimental and Theoretical Studies of Pd Cation Reduction and Oxidation During NO Adsorption on and Desorption from Pd/H–CHA
Passive NO x adsorbers (PNAs) have been proposed for trapping NO x present in automotive exhaust during the period of cold start during which the three-way convertor is not yet hot enough to be effective for NO x reduction. Pd-exchanged chabazite (Pd/H–CHA) is a good candidate for passive NO x adsor...
Saved in:
Published in | Journal of physical chemistry. C Vol. 126; no. 44; pp. 18744 - 18753 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Passive NO x adsorbers (PNAs) have been proposed for trapping NO x present in automotive exhaust during the period of cold start during which the three-way convertor is not yet hot enough to be effective for NO x reduction. Pd-exchanged chabazite (Pd/H–CHA) is a good candidate for passive NO x adsorption due to its ability to store NO and retain it to high temperatures (>473 K). Previous research suggests that NO adsorbs on both Pd2+ and Pd+ cations and that NO desorption from Pd2+ cations occurs at lower temperatures than from Pd+ cations. Since experimental evidence shows that Pd exchanges into CHA exclusively as Pd2+, it is not clear how these cations are reduced to Pd+. In this study we show through experiments and theoretical analysis that Pd+ cations can form via two processes, each of which involves water adsorbed on Brønsted-acid sites of the zeolite. The first of these processes is 1.5 NO + Pd2+Z–Z– + 0.5 (H2O)H+Z– → (NO)Pd+Z–H+Z– + 0.5 NO2 + 0.5 H+Z–. Experiments confirm that the ratio of the NO2 formed upon NO adsorption to the NO desorbing from Pd+ at elevated temperatures corresponds to 0.5. Pd2+ can also be reduced via the reaction 1.5 CO + Pd2+Z–Z– + 0.5 (H2O)H+Z– → (CO)Pd+Z–H+Z– + 0.5 CO2 + 0.5 H+Z–. Upon subsequent adsorption of NO, NO fully displaces CO from Pd+ to form (NO)Pd+Z–H+Z–. In this case, the amount of CO2 formed upon CO adsorption is 0.5 of the NO desorbing at elevated temperatures from Pd+. Gibbs free energy calculations for the above processes at various potential ion-exchange sites in the CHA framework indicate that these reactions are thermodynamically feasible. We also find that Pd+ is not formed in the absence of adsorbed water and is readily reoxidized to Pd2+ by trace amounts of O2. |
---|---|
AbstractList | Passive NOx adsorbers (PNAs) have been proposed for trapping NOx present in automotive exhaust during the period of cold start during which the three-way convertor is not yet hot enough to be effective for NOx reduction. Pd-exchanged chabazite (Pd/H–CHA) is a good candidate for passive NOx adsorption due to its ability to store NO and retain it to high temperatures (>473 K). Previous research suggests that NO adsorbs on both Pd2+ and Pd+ cations and that NO desorption from Pd2+ cations occurs at lower temperatures than from Pd+ cations. Since experimental evidence shows that Pd exchanges into CHA exclusively as Pd2+, it is not clear how these cations are reduced to Pd+. In this study we show through experiments and theoretical analysis that Pd+ cations can form via two processes, each of which involves water adsorbed on Brønsted-acid sites of the zeolite. The first of these processes is 1.5 NO + Pd2+Z–Z– + 0.5 (H2O)H+Z– → (NO)Pd+Z–H+Z– + 0.5 NO2 + 0.5 H+Z–. Experiments confirm that the ratio of the NO2 formed upon NO adsorption to the NO desorbing from Pd+ at elevated temperatures corresponds to 0.5. Pd2+ can also be reduced via the reaction 1.5 CO + Pd2+Z–Z– + 0.5 (H2O)H+Z– → (CO)Pd+Z–H+Z– + 0.5 CO2 + 0.5 H+Z–. Upon subsequent adsorption of NO, NO fully displaces CO from Pd+ to form (NO)Pd+Z–H+Z–. In this case, the amount of CO2 formed upon CO adsorption is 0.5 of the NO desorbing at elevated temperatures from Pd+. Gibbs free energy calculations for the above processes at various potential ion-exchange sites in the CHA framework indicate that these reactions are thermodynamically feasible. We also find that Pd+ is not formed in the absence of adsorbed water and is readily reoxidized to Pd2+ by trace amounts of O2. Passive NO x adsorbers (PNAs) have been proposed for trapping NO x present in automotive exhaust during the period of cold start during which the three-way convertor is not yet hot enough to be effective for NO x reduction. Pd-exchanged chabazite (Pd/H–CHA) is a good candidate for passive NO x adsorption due to its ability to store NO and retain it to high temperatures (>473 K). Previous research suggests that NO adsorbs on both Pd2+ and Pd+ cations and that NO desorption from Pd2+ cations occurs at lower temperatures than from Pd+ cations. Since experimental evidence shows that Pd exchanges into CHA exclusively as Pd2+, it is not clear how these cations are reduced to Pd+. In this study we show through experiments and theoretical analysis that Pd+ cations can form via two processes, each of which involves water adsorbed on Brønsted-acid sites of the zeolite. The first of these processes is 1.5 NO + Pd2+Z–Z– + 0.5 (H2O)H+Z– → (NO)Pd+Z–H+Z– + 0.5 NO2 + 0.5 H+Z–. Experiments confirm that the ratio of the NO2 formed upon NO adsorption to the NO desorbing from Pd+ at elevated temperatures corresponds to 0.5. Pd2+ can also be reduced via the reaction 1.5 CO + Pd2+Z–Z– + 0.5 (H2O)H+Z– → (CO)Pd+Z–H+Z– + 0.5 CO2 + 0.5 H+Z–. Upon subsequent adsorption of NO, NO fully displaces CO from Pd+ to form (NO)Pd+Z–H+Z–. In this case, the amount of CO2 formed upon CO adsorption is 0.5 of the NO desorbing at elevated temperatures from Pd+. Gibbs free energy calculations for the above processes at various potential ion-exchange sites in the CHA framework indicate that these reactions are thermodynamically feasible. We also find that Pd+ is not formed in the absence of adsorbed water and is readily reoxidized to Pd2+ by trace amounts of O2. |
Author | Van der Mynsbrugge, Jeroen Kim, Paul Head-Gordon, Martin Bell, Alexis T. |
AuthorAffiliation | Department of Chemistry Lawrence Berkeley National Laboratory Department of Chemical and Biomolecular Engineering University of California Chemical Sciences Division |
AuthorAffiliation_xml | – name: University of California – name: Chemical Sciences Division – name: Department of Chemistry – name: Department of Chemical and Biomolecular Engineering – name: Lawrence Berkeley National Laboratory |
Author_xml | – sequence: 1 givenname: Paul orcidid: 0000-0001-5994-1153 surname: Kim fullname: Kim, Paul organization: Department of Chemical and Biomolecular Engineering – sequence: 2 givenname: Jeroen orcidid: 0000-0003-3852-4726 surname: Van der Mynsbrugge fullname: Van der Mynsbrugge, Jeroen organization: Department of Chemical and Biomolecular Engineering – sequence: 3 givenname: Martin orcidid: 0000-0002-4309-6669 surname: Head-Gordon fullname: Head-Gordon, Martin organization: Lawrence Berkeley National Laboratory – sequence: 4 givenname: Alexis T. orcidid: 0000-0002-5738-4645 surname: Bell fullname: Bell, Alexis T. email: alexbell@berkeley.edu organization: Lawrence Berkeley National Laboratory |
BackLink | https://www.osti.gov/biblio/1895182$$D View this record in Osti.gov |
BookMark | eNp1kMtOAjEUhhuDiYDuXTauHWin07ksyYBiQsQorptOLzIE2kk7k-COd_ANfRIHhrBzdU7_fuck5xuAnrFGAXCP0QijEI-58KNNJcQoFCgmNLkCfZyRMEgiSnuXPkpuwMD7DUKUIEz64DDbV8qVO2VqvoXcSLhaK-tUXYr2_VE3slQeWg3fJMx5XVoD35VsxKk74st9Kbt82rjSfMHXJZxIb111Cs_UVF0S7eyu3Tae_x5-8vnkFlxrvvXq7lyH4PNptsrnwWL5_JJPFgEnUVYHQqRaqCSNC0l1VCQ6CiVGCCuUFm1VMVecFymKC40poRklIqQFIQWOiRQ6IUPw0O21vi6ZF2WtxFpYY5SoGU4zitOwhVAHCWe9d0qzqnXD3TfDiB01s1YzO2pmZ83tyGM3cvqxjTPtFf_jf67RhMc |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2023_122723 crossref_primary_10_1016_j_fuel_2023_130289 crossref_primary_10_1016_j_cej_2023_147399 crossref_primary_10_1021_acsestengg_3c00315 crossref_primary_10_1021_acs_jpcc_3c04999 |
Cites_doi | 10.1021/acs.jpcc.7b04312 10.1021/ct2001655 10.1243/0954407991527116 10.1016/j.cattod.2020.01.018 10.1016/j.cattod.2018.02.007 10.1039/b009782i 10.1007/BF00811479 10.3390/catal9030247 10.1080/00268976.2017.1333644 10.1016/j.cattod.2017.12.014 10.1039/C8RE00193F 10.1016/j.apcatb.2020.119871 10.1021/acscatal.0c03585 10.1016/j.cattod.2020.05.019 10.1021/acs.iecr.6b03793 10.1080/00268976.2014.952696 10.1021/acsomega.1c03440 10.1021/acs.est.8b05329 10.1016/j.apcata.2018.10.021 10.1021/acs.chemmater.0c04465 10.1038/s41467-022-29505-z 10.1016/j.apcata.2018.10.016 10.1016/j.apcatb.2021.120992 10.1016/j.apcatb.2020.119449 10.1023/A:1019059117488 10.1039/D0TA11254B 10.1039/b810189b 10.1063/1.3244209 10.1021/ci8000748 10.1016/j.apcatb.2020.119315 10.1021/jacsau.0c00112 10.1016/j.apcatb.2017.04.077 10.1021/acs.jpcc.9b06760 10.1021/acs.jpcc.8b01007 10.1002/chem.201200497 10.1016/j.apcatb.2020.119724 10.1039/D0CP06075E 10.1007/s10562-016-1794-6 10.1021/jp509921r |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society |
CorporateAuthor | University of California, Berkeley, CA (United States) |
CorporateAuthor_xml | – name: University of California, Berkeley, CA (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1021/acs.jpcc.2c06357 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 18753 |
ExternalDocumentID | 1895182 10_1021_acs_jpcc_2c06357 d282284819 |
GroupedDBID | .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL UI2 UKR VF5 VG9 VQA W1F 53G AAYXX ABJNI CITATION CUPRZ OTOTI |
ID | FETCH-LOGICAL-a349t-cc8fce786bd5f4b7f42d1001e08b100e6aeaab806bf1535953c25b33b163dcf73 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Mon Apr 01 04:54:45 EDT 2024 Fri Aug 23 00:52:58 EDT 2024 Sat Nov 12 03:46:24 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a349t-cc8fce786bd5f4b7f42d1001e08b100e6aeaab806bf1535953c25b33b163dcf73 |
Notes | DEEE0008213; EE0008213 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO) |
ORCID | 0000-0002-5738-4645 0000-0003-3852-4726 0000-0002-4309-6669 0000-0001-5994-1153 0000000338524726 0000000243096669 0000000257384645 0000000159941153 |
OpenAccessLink | https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c06357 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1895182 crossref_primary_10_1021_acs_jpcc_2c06357 acs_journals_10_1021_acs_jpcc_2c06357 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-10 |
PublicationDateYYYYMMDD | 2022-11-10 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Burch S. D. (ref4/cit4) 1995 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref8/cit8 doi: 10.1021/acs.jpcc.7b04312 – ident: ref2/cit2 – ident: ref32/cit32 doi: 10.1021/ct2001655 – ident: ref3/cit3 doi: 10.1243/0954407991527116 – ident: ref9/cit9 doi: 10.1016/j.cattod.2020.01.018 – ident: ref29/cit29 doi: 10.1016/j.cattod.2018.02.007 – ident: ref14/cit14 doi: 10.1039/b009782i – ident: ref21/cit21 doi: 10.1007/BF00811479 – ident: ref20/cit20 doi: 10.3390/catal9030247 – ident: ref35/cit35 doi: 10.1080/00268976.2017.1333644 – ident: ref23/cit23 doi: 10.1016/j.cattod.2017.12.014 – ident: ref40/cit40 doi: 10.1039/C8RE00193F – ident: ref22/cit22 doi: 10.1016/j.apcatb.2020.119871 – ident: ref18/cit18 doi: 10.1021/acscatal.0c03585 – ident: ref13/cit13 doi: 10.1016/j.cattod.2020.05.019 – ident: ref6/cit6 doi: 10.1021/acs.iecr.6b03793 – ident: ref36/cit36 doi: 10.1080/00268976.2014.952696 – ident: ref41/cit41 doi: 10.1021/acsomega.1c03440 – ident: ref5/cit5 doi: 10.1021/acs.est.8b05329 – ident: ref24/cit24 doi: 10.1016/j.apcata.2018.10.021 – ident: ref19/cit19 doi: 10.1021/acs.chemmater.0c04465 – ident: ref26/cit26 doi: 10.1038/s41467-022-29505-z – ident: ref7/cit7 doi: 10.1016/j.apcata.2018.10.016 – ident: ref16/cit16 doi: 10.1016/j.apcatb.2021.120992 – ident: ref15/cit15 doi: 10.1016/j.apcatb.2020.119449 – ident: ref42/cit42 doi: 10.1023/A:1019059117488 – ident: ref27/cit27 doi: 10.1039/D0TA11254B – ident: ref28/cit28 – ident: ref30/cit30 doi: 10.1039/b810189b – ident: ref31/cit31 doi: 10.1063/1.3244209 – ident: ref34/cit34 doi: 10.1021/ci8000748 – ident: ref11/cit11 doi: 10.1016/j.apcatb.2020.119315 – ident: ref17/cit17 doi: 10.1021/jacsau.0c00112 – ident: ref1/cit1 doi: 10.1016/j.apcatb.2017.04.077 – start-page: 348 year: 1995 ident: ref4/cit4 publication-title: SAE Trans. contributor: fullname: Burch S. D. – ident: ref39/cit39 doi: 10.1021/acs.jpcc.9b06760 – ident: ref10/cit10 doi: 10.1021/acs.jpcc.8b01007 – ident: ref37/cit37 doi: 10.1002/chem.201200497 – ident: ref25/cit25 doi: 10.1016/j.apcatb.2020.119724 – ident: ref12/cit12 doi: 10.1039/D0CP06075E – ident: ref38/cit38 doi: 10.1007/s10562-016-1794-6 – ident: ref33/cit33 doi: 10.1021/jp509921r |
SSID | ssj0053013 |
Score | 2.4564831 |
Snippet | Passive NO x adsorbers (PNAs) have been proposed for trapping NO x present in automotive exhaust during the period of cold start during which the three-way... Passive NOx adsorbers (PNAs) have been proposed for trapping NOx present in automotive exhaust during the period of cold start during which the three-way... |
SourceID | osti crossref acs |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 18744 |
SubjectTerms | Adsorption Atmospheric chemistry C: Chemical and Catalytic Reactivity at Interfaces Cations Desorption INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Palladium |
Title | Experimental and Theoretical Studies of Pd Cation Reduction and Oxidation During NO Adsorption on and Desorption from Pd/H–CHA |
URI | http://dx.doi.org/10.1021/acs.jpcc.2c06357 https://www.osti.gov/biblio/1895182 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSsQwEA66HvTiv7iuSg568NC1m6Ztelyqsgiuoi7srSTTBFTYXbYVxJPv4Bv6JE7SLv4inhpCSMtMJvOVmfmGkAOmAyFVIjzjc_AQEaNJacO9SHIEt5EyHZc8ftGPegN-PgyHHzQ53yP4rHMsoWjfTwDaDHxLnjZPFljsJ7ZNQze9md26IR7UoIogI2LkPK5Dkr_tYB0RFF8cUWOMBvXJsZytVB2KCsdHaPNJHtqPpWrD80-2xn988ypZrvEl7VYHYo3M6dE6WUxnbd02yMvpJ05_Kkc5vf2oZaR1WiEdG3qV09SpjV5belc3sssvn-6qPkz0xJU40v4l7ebFeOouH1qvwv_Z2YytYMHdjntvL69pr7tJBment2nPq9sweDLgSekBCAM6RsXloeEqNpzllrlJ-0LhU0dSS6mEbxUb2jrfAFiogkAh1MvBxMEWaYzGI71NaBRrGUsdmAQ4h1wILhBuQKQTW1DATJMcouiy2oyKzEXIWSdzkyjPrJZnkxzNdJdNKlaOP9a2rHIzRBSWFhds_hCUWUcgthRs559vbJElZgsfXALgLmmU00e9h3CkVPvuHL4D5jHbbg |
link.rule.ids | 230,315,783,787,888,2774,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PejFt_g2Bz146NpH2maPS1XqaxVdwVtJ0gRU2JVtF8ST_8F_6C9xkm19IaKnlhDSMJPHV2a-bwC2fRUwLlrM0S6VDiJi3FJKUyfiFMFtJLRnk8fPOlF6TY9vwpsx8GouDE6iwJEKG8T_UBfw9kzb3YOUTV-6RkNtHCbC2I1N0YJ2clUfviGu12AUSEbgSGlcRSZ_GsHcR7L4ch81-rivPt0vhzNw-T4zm1Zy3xyWoimfvok2_mvqszBdoU3SHi2PORhTvXmYTOoibwvwfPBJ4Z_wXk66H8xGUiUZkr4mFzlJrBPJpRF7tW-m-_nj7agqE9m3hEfSOSftvOgP7FFEql74d1u3GD4LjraXvj6_JGl7Ea4PD7pJ6lRFGRwe0FbpSMm0VDG6MQ81FbGmfm50nJTLBD5VxBXngrnGzaFh_QbSD0UQCAR-udRxsASNXr-nloFEseIxV4FuSUplzhhlCD5kpFqGXuDrFdhB02XVpioyGy_3vcw2oj2zyp4rsFu7MHsYaXT80nfN-DhDfGFEcqXJJpJl5jFEmsxf_eMXt2Ay7Z6dZqdHnZM1mPINJcKmBq5DoxwM1QYClVJs2qX5Btd549c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB1BkWAvy7e2213WBzhwSGkcJ3GPVdqqLFAQX-IW2Y4tsSu1FUml1Z76H_iH_JIduwkLCCE4JbIsx_J47BfNvDcAu1QHXMg290yLKQ8RMbqUNsyLBENwG0nju-Txk2E0uGI_b8KbBQgrLgxOIseRchfEt149yUypMOAf2PZfE6WaVLWsjtoiLIWxT23hgk5yUR3AIe7ZYB5MRvDIWFxGJ18bwd5JKn92J9XG6FtP7pj-Klw_zs6llvxuTgvZVH9fCDd-ePpr8LlEnaQz3ybrsKBHG7CSVMXeNmHWe6L0T8QoI5f_GY6kTDYkY0POMpI4Y5JzK_rq3mz30z-38-pMpOuIj2R4SjpZPr5zRxIpe-FfbtVieS042sHgYXafDDpbcNXvXSYDryzO4ImAtQtPKW6UjtGcWWiYjA2jmdVz0i0u8akjoYWQvGXNHVr2b6BoKINAIgDMlImDbaiNxiP9BUgUaxELHZi2YkxlnDOOIERFum1pBtTUYQ-XLi2dK09d3Jz6qWvE9UzL9azDfmXGdDLX6nijb8PaOUWcYcVylc0qUkXqc0ScnH595xd_wPJZt58eHw6PGvCJWmaEyxD8BrXibqq_I14p5I7bnf8AK7vmUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+Theoretical+Studies+of+Pd+Cation+Reduction+and+Oxidation+During+NO+Adsorption+on+and+Desorption+from+Pd%2FH%E2%80%93CHA&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Kim%2C+Paul&rft.au=Van+der+Mynsbrugge%2C+Jeroen&rft.au=Head-Gordon%2C+Martin&rft.au=Bell%2C+Alexis+T.&rft.date=2022-11-10&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=126&rft.issue=44&rft.spage=18744&rft.epage=18753&rft_id=info:doi/10.1021%2Facs.jpcc.2c06357&rft.externalDocID=d282284819 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |