Experimental and Theoretical Studies of Pd Cation Reduction and Oxidation During NO Adsorption on and Desorption from Pd/H–CHA

Passive NO x adsorbers (PNAs) have been proposed for trapping NO x present in automotive exhaust during the period of cold start during which the three-way convertor is not yet hot enough to be effective for NO x reduction. Pd-exchanged chabazite (Pd/H–CHA) is a good candidate for passive NO x adsor...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 126; no. 44; pp. 18744 - 18753
Main Authors Kim, Paul, Van der Mynsbrugge, Jeroen, Head-Gordon, Martin, Bell, Alexis T.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Passive NO x adsorbers (PNAs) have been proposed for trapping NO x present in automotive exhaust during the period of cold start during which the three-way convertor is not yet hot enough to be effective for NO x reduction. Pd-exchanged chabazite (Pd/H–CHA) is a good candidate for passive NO x adsorption due to its ability to store NO and retain it to high temperatures (>473 K). Previous research suggests that NO adsorbs on both Pd2+ and Pd+ cations and that NO desorption from Pd2+ cations occurs at lower temperatures than from Pd+ cations. Since experimental evidence shows that Pd exchanges into CHA exclusively as Pd2+, it is not clear how these cations are reduced to Pd+. In this study we show through experiments and theoretical analysis that Pd+ cations can form via two processes, each of which involves water adsorbed on Brønsted-acid sites of the zeolite. The first of these processes is 1.5 NO + Pd2+Z–Z– + 0.5 (H2O)­H+Z– → (NO)­Pd+Z–H+Z– + 0.5 NO2 + 0.5 H+Z–. Experiments confirm that the ratio of the NO2 formed upon NO adsorption to the NO desorbing from Pd+ at elevated temperatures corresponds to 0.5. Pd2+ can also be reduced via the reaction 1.5 CO + Pd2+Z–Z– + 0.5 (H2O)­H+Z– → (CO)­Pd+Z–H+Z– + 0.5 CO2 + 0.5 H+Z–. Upon subsequent adsorption of NO, NO fully displaces CO from Pd+ to form (NO)­Pd+Z–H+Z–. In this case, the amount of CO2 formed upon CO adsorption is 0.5 of the NO desorbing at elevated temperatures from Pd+. Gibbs free energy calculations for the above processes at various potential ion-exchange sites in the CHA framework indicate that these reactions are thermodynamically feasible. We also find that Pd+ is not formed in the absence of adsorbed water and is readily reoxidized to Pd2+ by trace amounts of O2.
AbstractList Passive NOx adsorbers (PNAs) have been proposed for trapping NOx present in automotive exhaust during the period of cold start during which the three-way convertor is not yet hot enough to be effective for NOx reduction. Pd-exchanged chabazite (Pd/H–CHA) is a good candidate for passive NOx adsorption due to its ability to store NO and retain it to high temperatures (>473 K). Previous research suggests that NO adsorbs on both Pd2+ and Pd+ cations and that NO desorption from Pd2+ cations occurs at lower temperatures than from Pd+ cations. Since experimental evidence shows that Pd exchanges into CHA exclusively as Pd2+, it is not clear how these cations are reduced to Pd+. In this study we show through experiments and theoretical analysis that Pd+ cations can form via two processes, each of which involves water adsorbed on Brønsted-acid sites of the zeolite. The first of these processes is 1.5 NO + Pd2+Z–Z– + 0.5 (H2O)H+Z– → (NO)Pd+Z–H+Z– + 0.5 NO2 + 0.5 H+Z–. Experiments confirm that the ratio of the NO2 formed upon NO adsorption to the NO desorbing from Pd+ at elevated temperatures corresponds to 0.5. Pd2+ can also be reduced via the reaction 1.5 CO + Pd2+Z–Z– + 0.5 (H2O)H+Z– → (CO)Pd+Z–H+Z– + 0.5 CO2 + 0.5 H+Z–. Upon subsequent adsorption of NO, NO fully displaces CO from Pd+ to form (NO)Pd+Z–H+Z–. In this case, the amount of CO2 formed upon CO adsorption is 0.5 of the NO desorbing at elevated temperatures from Pd+. Gibbs free energy calculations for the above processes at various potential ion-exchange sites in the CHA framework indicate that these reactions are thermodynamically feasible. We also find that Pd+ is not formed in the absence of adsorbed water and is readily reoxidized to Pd2+ by trace amounts of O2.
Passive NO x adsorbers (PNAs) have been proposed for trapping NO x present in automotive exhaust during the period of cold start during which the three-way convertor is not yet hot enough to be effective for NO x reduction. Pd-exchanged chabazite (Pd/H–CHA) is a good candidate for passive NO x adsorption due to its ability to store NO and retain it to high temperatures (>473 K). Previous research suggests that NO adsorbs on both Pd2+ and Pd+ cations and that NO desorption from Pd2+ cations occurs at lower temperatures than from Pd+ cations. Since experimental evidence shows that Pd exchanges into CHA exclusively as Pd2+, it is not clear how these cations are reduced to Pd+. In this study we show through experiments and theoretical analysis that Pd+ cations can form via two processes, each of which involves water adsorbed on Brønsted-acid sites of the zeolite. The first of these processes is 1.5 NO + Pd2+Z–Z– + 0.5 (H2O)­H+Z– → (NO)­Pd+Z–H+Z– + 0.5 NO2 + 0.5 H+Z–. Experiments confirm that the ratio of the NO2 formed upon NO adsorption to the NO desorbing from Pd+ at elevated temperatures corresponds to 0.5. Pd2+ can also be reduced via the reaction 1.5 CO + Pd2+Z–Z– + 0.5 (H2O)­H+Z– → (CO)­Pd+Z–H+Z– + 0.5 CO2 + 0.5 H+Z–. Upon subsequent adsorption of NO, NO fully displaces CO from Pd+ to form (NO)­Pd+Z–H+Z–. In this case, the amount of CO2 formed upon CO adsorption is 0.5 of the NO desorbing at elevated temperatures from Pd+. Gibbs free energy calculations for the above processes at various potential ion-exchange sites in the CHA framework indicate that these reactions are thermodynamically feasible. We also find that Pd+ is not formed in the absence of adsorbed water and is readily reoxidized to Pd2+ by trace amounts of O2.
Author Van der Mynsbrugge, Jeroen
Kim, Paul
Head-Gordon, Martin
Bell, Alexis T.
AuthorAffiliation Department of Chemistry
Lawrence Berkeley National Laboratory
Department of Chemical and Biomolecular Engineering
University of California
Chemical Sciences Division
AuthorAffiliation_xml – name: University of California
– name: Chemical Sciences Division
– name: Department of Chemistry
– name: Department of Chemical and Biomolecular Engineering
– name: Lawrence Berkeley National Laboratory
Author_xml – sequence: 1
  givenname: Paul
  orcidid: 0000-0001-5994-1153
  surname: Kim
  fullname: Kim, Paul
  organization: Department of Chemical and Biomolecular Engineering
– sequence: 2
  givenname: Jeroen
  orcidid: 0000-0003-3852-4726
  surname: Van der Mynsbrugge
  fullname: Van der Mynsbrugge, Jeroen
  organization: Department of Chemical and Biomolecular Engineering
– sequence: 3
  givenname: Martin
  orcidid: 0000-0002-4309-6669
  surname: Head-Gordon
  fullname: Head-Gordon, Martin
  organization: Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Alexis T.
  orcidid: 0000-0002-5738-4645
  surname: Bell
  fullname: Bell, Alexis T.
  email: alexbell@berkeley.edu
  organization: Lawrence Berkeley National Laboratory
BackLink https://www.osti.gov/biblio/1895182$$D View this record in Osti.gov
BookMark eNp1kMtOAjEUhhuDiYDuXTauHWin07ksyYBiQsQorptOLzIE2kk7k-COd_ANfRIHhrBzdU7_fuck5xuAnrFGAXCP0QijEI-58KNNJcQoFCgmNLkCfZyRMEgiSnuXPkpuwMD7DUKUIEz64DDbV8qVO2VqvoXcSLhaK-tUXYr2_VE3slQeWg3fJMx5XVoD35VsxKk74st9Kbt82rjSfMHXJZxIb111Cs_UVF0S7eyu3Tae_x5-8vnkFlxrvvXq7lyH4PNptsrnwWL5_JJPFgEnUVYHQqRaqCSNC0l1VCQ6CiVGCCuUFm1VMVecFymKC40poRklIqQFIQWOiRQ6IUPw0O21vi6ZF2WtxFpYY5SoGU4zitOwhVAHCWe9d0qzqnXD3TfDiB01s1YzO2pmZ83tyGM3cvqxjTPtFf_jf67RhMc
CitedBy_id crossref_primary_10_1016_j_apcatb_2023_122723
crossref_primary_10_1016_j_fuel_2023_130289
crossref_primary_10_1016_j_cej_2023_147399
crossref_primary_10_1021_acsestengg_3c00315
crossref_primary_10_1021_acs_jpcc_3c04999
Cites_doi 10.1021/acs.jpcc.7b04312
10.1021/ct2001655
10.1243/0954407991527116
10.1016/j.cattod.2020.01.018
10.1016/j.cattod.2018.02.007
10.1039/b009782i
10.1007/BF00811479
10.3390/catal9030247
10.1080/00268976.2017.1333644
10.1016/j.cattod.2017.12.014
10.1039/C8RE00193F
10.1016/j.apcatb.2020.119871
10.1021/acscatal.0c03585
10.1016/j.cattod.2020.05.019
10.1021/acs.iecr.6b03793
10.1080/00268976.2014.952696
10.1021/acsomega.1c03440
10.1021/acs.est.8b05329
10.1016/j.apcata.2018.10.021
10.1021/acs.chemmater.0c04465
10.1038/s41467-022-29505-z
10.1016/j.apcata.2018.10.016
10.1016/j.apcatb.2021.120992
10.1016/j.apcatb.2020.119449
10.1023/A:1019059117488
10.1039/D0TA11254B
10.1039/b810189b
10.1063/1.3244209
10.1021/ci8000748
10.1016/j.apcatb.2020.119315
10.1021/jacsau.0c00112
10.1016/j.apcatb.2017.04.077
10.1021/acs.jpcc.9b06760
10.1021/acs.jpcc.8b01007
10.1002/chem.201200497
10.1016/j.apcatb.2020.119724
10.1039/D0CP06075E
10.1007/s10562-016-1794-6
10.1021/jp509921r
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
CorporateAuthor University of California, Berkeley, CA (United States)
CorporateAuthor_xml – name: University of California, Berkeley, CA (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1021/acs.jpcc.2c06357
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 18753
ExternalDocumentID 1895182
10_1021_acs_jpcc_2c06357
d282284819
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
53G
AAYXX
ABJNI
CITATION
CUPRZ
OTOTI
ID FETCH-LOGICAL-a349t-cc8fce786bd5f4b7f42d1001e08b100e6aeaab806bf1535953c25b33b163dcf73
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Mon Apr 01 04:54:45 EDT 2024
Fri Aug 23 00:52:58 EDT 2024
Sat Nov 12 03:46:24 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a349t-cc8fce786bd5f4b7f42d1001e08b100e6aeaab806bf1535953c25b33b163dcf73
Notes DEEE0008213; EE0008213
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO)
ORCID 0000-0002-5738-4645
0000-0003-3852-4726
0000-0002-4309-6669
0000-0001-5994-1153
0000000338524726
0000000243096669
0000000257384645
0000000159941153
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c06357
PageCount 10
ParticipantIDs osti_scitechconnect_1895182
crossref_primary_10_1021_acs_jpcc_2c06357
acs_journals_10_1021_acs_jpcc_2c06357
PublicationCentury 2000
PublicationDate 2022-11-10
PublicationDateYYYYMMDD 2022-11-10
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Burch S. D. (ref4/cit4) 1995
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref8/cit8
  doi: 10.1021/acs.jpcc.7b04312
– ident: ref2/cit2
– ident: ref32/cit32
  doi: 10.1021/ct2001655
– ident: ref3/cit3
  doi: 10.1243/0954407991527116
– ident: ref9/cit9
  doi: 10.1016/j.cattod.2020.01.018
– ident: ref29/cit29
  doi: 10.1016/j.cattod.2018.02.007
– ident: ref14/cit14
  doi: 10.1039/b009782i
– ident: ref21/cit21
  doi: 10.1007/BF00811479
– ident: ref20/cit20
  doi: 10.3390/catal9030247
– ident: ref35/cit35
  doi: 10.1080/00268976.2017.1333644
– ident: ref23/cit23
  doi: 10.1016/j.cattod.2017.12.014
– ident: ref40/cit40
  doi: 10.1039/C8RE00193F
– ident: ref22/cit22
  doi: 10.1016/j.apcatb.2020.119871
– ident: ref18/cit18
  doi: 10.1021/acscatal.0c03585
– ident: ref13/cit13
  doi: 10.1016/j.cattod.2020.05.019
– ident: ref6/cit6
  doi: 10.1021/acs.iecr.6b03793
– ident: ref36/cit36
  doi: 10.1080/00268976.2014.952696
– ident: ref41/cit41
  doi: 10.1021/acsomega.1c03440
– ident: ref5/cit5
  doi: 10.1021/acs.est.8b05329
– ident: ref24/cit24
  doi: 10.1016/j.apcata.2018.10.021
– ident: ref19/cit19
  doi: 10.1021/acs.chemmater.0c04465
– ident: ref26/cit26
  doi: 10.1038/s41467-022-29505-z
– ident: ref7/cit7
  doi: 10.1016/j.apcata.2018.10.016
– ident: ref16/cit16
  doi: 10.1016/j.apcatb.2021.120992
– ident: ref15/cit15
  doi: 10.1016/j.apcatb.2020.119449
– ident: ref42/cit42
  doi: 10.1023/A:1019059117488
– ident: ref27/cit27
  doi: 10.1039/D0TA11254B
– ident: ref28/cit28
– ident: ref30/cit30
  doi: 10.1039/b810189b
– ident: ref31/cit31
  doi: 10.1063/1.3244209
– ident: ref34/cit34
  doi: 10.1021/ci8000748
– ident: ref11/cit11
  doi: 10.1016/j.apcatb.2020.119315
– ident: ref17/cit17
  doi: 10.1021/jacsau.0c00112
– ident: ref1/cit1
  doi: 10.1016/j.apcatb.2017.04.077
– start-page: 348
  year: 1995
  ident: ref4/cit4
  publication-title: SAE Trans.
  contributor:
    fullname: Burch S. D.
– ident: ref39/cit39
  doi: 10.1021/acs.jpcc.9b06760
– ident: ref10/cit10
  doi: 10.1021/acs.jpcc.8b01007
– ident: ref37/cit37
  doi: 10.1002/chem.201200497
– ident: ref25/cit25
  doi: 10.1016/j.apcatb.2020.119724
– ident: ref12/cit12
  doi: 10.1039/D0CP06075E
– ident: ref38/cit38
  doi: 10.1007/s10562-016-1794-6
– ident: ref33/cit33
  doi: 10.1021/jp509921r
SSID ssj0053013
Score 2.4564831
Snippet Passive NO x adsorbers (PNAs) have been proposed for trapping NO x present in automotive exhaust during the period of cold start during which the three-way...
Passive NOx adsorbers (PNAs) have been proposed for trapping NOx present in automotive exhaust during the period of cold start during which the three-way...
SourceID osti
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 18744
SubjectTerms Adsorption
Atmospheric chemistry
C: Chemical and Catalytic Reactivity at Interfaces
Cations
Desorption
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Palladium
Title Experimental and Theoretical Studies of Pd Cation Reduction and Oxidation During NO Adsorption on and Desorption from Pd/H–CHA
URI http://dx.doi.org/10.1021/acs.jpcc.2c06357
https://www.osti.gov/biblio/1895182
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSsQwEA66HvTiv7iuSg568NC1m6Ztelyqsgiuoi7srSTTBFTYXbYVxJPv4Bv6JE7SLv4inhpCSMtMJvOVmfmGkAOmAyFVIjzjc_AQEaNJacO9SHIEt5EyHZc8ftGPegN-PgyHHzQ53yP4rHMsoWjfTwDaDHxLnjZPFljsJ7ZNQze9md26IR7UoIogI2LkPK5Dkr_tYB0RFF8cUWOMBvXJsZytVB2KCsdHaPNJHtqPpWrD80-2xn988ypZrvEl7VYHYo3M6dE6WUxnbd02yMvpJ05_Kkc5vf2oZaR1WiEdG3qV09SpjV5belc3sssvn-6qPkz0xJU40v4l7ebFeOouH1qvwv_Z2YytYMHdjntvL69pr7tJBment2nPq9sweDLgSekBCAM6RsXloeEqNpzllrlJ-0LhU0dSS6mEbxUb2jrfAFiogkAh1MvBxMEWaYzGI71NaBRrGUsdmAQ4h1wILhBuQKQTW1DATJMcouiy2oyKzEXIWSdzkyjPrJZnkxzNdJdNKlaOP9a2rHIzRBSWFhds_hCUWUcgthRs559vbJElZgsfXALgLmmU00e9h3CkVPvuHL4D5jHbbg
link.rule.ids 230,315,783,787,888,2774,27090,27938,27939,57072,57122
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PejFt_g2Bz146NpH2maPS1XqaxVdwVtJ0gRU2JVtF8ST_8F_6C9xkm19IaKnlhDSMJPHV2a-bwC2fRUwLlrM0S6VDiJi3FJKUyfiFMFtJLRnk8fPOlF6TY9vwpsx8GouDE6iwJEKG8T_UBfw9kzb3YOUTV-6RkNtHCbC2I1N0YJ2clUfviGu12AUSEbgSGlcRSZ_GsHcR7L4ch81-rivPt0vhzNw-T4zm1Zy3xyWoimfvok2_mvqszBdoU3SHi2PORhTvXmYTOoibwvwfPBJ4Z_wXk66H8xGUiUZkr4mFzlJrBPJpRF7tW-m-_nj7agqE9m3hEfSOSftvOgP7FFEql74d1u3GD4LjraXvj6_JGl7Ea4PD7pJ6lRFGRwe0FbpSMm0VDG6MQ81FbGmfm50nJTLBD5VxBXngrnGzaFh_QbSD0UQCAR-udRxsASNXr-nloFEseIxV4FuSUplzhhlCD5kpFqGXuDrFdhB02XVpioyGy_3vcw2oj2zyp4rsFu7MHsYaXT80nfN-DhDfGFEcqXJJpJl5jFEmsxf_eMXt2Ay7Z6dZqdHnZM1mPINJcKmBq5DoxwM1QYClVJs2qX5Btd549c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB1BkWAvy7e2213WBzhwSGkcJ3GPVdqqLFAQX-IW2Y4tsSu1FUml1Z76H_iH_JIduwkLCCE4JbIsx_J47BfNvDcAu1QHXMg290yLKQ8RMbqUNsyLBENwG0nju-Txk2E0uGI_b8KbBQgrLgxOIseRchfEt149yUypMOAf2PZfE6WaVLWsjtoiLIWxT23hgk5yUR3AIe7ZYB5MRvDIWFxGJ18bwd5JKn92J9XG6FtP7pj-Klw_zs6llvxuTgvZVH9fCDd-ePpr8LlEnaQz3ybrsKBHG7CSVMXeNmHWe6L0T8QoI5f_GY6kTDYkY0POMpI4Y5JzK_rq3mz30z-38-pMpOuIj2R4SjpZPr5zRxIpe-FfbtVieS042sHgYXafDDpbcNXvXSYDryzO4ImAtQtPKW6UjtGcWWiYjA2jmdVz0i0u8akjoYWQvGXNHVr2b6BoKINAIgDMlImDbaiNxiP9BUgUaxELHZi2YkxlnDOOIERFum1pBtTUYQ-XLi2dK09d3Jz6qWvE9UzL9azDfmXGdDLX6nijb8PaOUWcYcVylc0qUkXqc0ScnH595xd_wPJZt58eHw6PGvCJWmaEyxD8BrXibqq_I14p5I7bnf8AK7vmUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+Theoretical+Studies+of+Pd+Cation+Reduction+and+Oxidation+During+NO+Adsorption+on+and+Desorption+from+Pd%2FH%E2%80%93CHA&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Kim%2C+Paul&rft.au=Van+der+Mynsbrugge%2C+Jeroen&rft.au=Head-Gordon%2C+Martin&rft.au=Bell%2C+Alexis+T.&rft.date=2022-11-10&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=126&rft.issue=44&rft.spage=18744&rft.epage=18753&rft_id=info:doi/10.1021%2Facs.jpcc.2c06357&rft.externalDocID=d282284819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon