Instantaneous Stepwise-Steady CFD Model of BMP Response to Unsteady PM Loadings
AbstractIn the last several years, computational fluid dynamics (CFD) has emerged as a potential tool to accurately predict the response of best management practices (BMPs) to highly unsteady rainfall-runoff (storm water) and particulate matter (PM) loadings. However, such predictive capability for...
Saved in:
Published in | Journal of environmental engineering (New York, N.Y.) Vol. 139; no. 11; pp. 1350 - 1360 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Reston, VA
American Society of Civil Engineers
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AbstractIn the last several years, computational fluid dynamics (CFD) has emerged as a potential tool to accurately predict the response of best management practices (BMPs) to highly unsteady rainfall-runoff (storm water) and particulate matter (PM) loadings. However, such predictive capability for BMPs as unit operation (UO) systems subject to highly unsteady loadings requires much higher computational time than for steady loadings. Therefore, to reduce computational time at a given level of predictive accuracy, an instantaneous response stepwise-steady method was tested to reproduce the unsteady load response of three geometrically different BMP UO systems. The units are baffled and screened hydrodynamic separator systems [(BHS) and (SHS)], respectively, as well as a granular media-based volumetric clarifying filter (VCF) system. The measured PM response was variable, a function of influent unsteadiness and the UO system geometry. Each hydrograph loading of a UO system was represented as a cumulative distribution function (CDF) which was discretized into a number of steady-flow steps using a discretization number (DN) for which an instantaneous response was modeled. DN was the model tuning parameter used to examine the stepwise-steady method. Despite variability in measured load-response for a UO system, a similar number of instantaneous response steady steps (DN of 35–40) were required to achieve a mean relative percent difference (RPD) of less than 10% between measured and modeled load response. For each UO system, the stepwise-steady method reduced computational time by an order of magnitude compared with a fully unsteady method. |
---|---|
AbstractList | In the last several years, computational fluid dynamics (CFD) has emerged as a potential tool to accurately predict the response of best management practices (BMPs) to highly unsteady rainfall-runoff (stormwater) and particulate matter (PM) loadings. However, such predictive capability for BMPs as unit operation (UO) systems subject to highly unsteady loadings requires much higher computational time than for steady loadings. Therefore, to reduce computational time at a given level of predictive accuracy, an instantaneous response stepwise-steady method was tested to reproduce the unsteady load-response of three geometrically different BMPs (unit operations, UOs herein). The units are baffled (BHS) and screened (SHS) hydrodynamic separators, as well as a granular media-based volumetric clarifying filter (VCF) system. The measured PM response was variable; a function of influent unsteadiness and the UO geometry. Each hydrograph loading of a UO was represented as a cumulative distribution function (cdf) which was discretized into a number of steady flow steps (DN); for which an instantaneous response was modeled. DN was the model tuning parameter used to examine the stepwise-steady method. Despite variability in measured load-response for a UO, a similar number of instantaneous response steady steps (DN of 35 to 40) were required to achieve a mean relative percent difference (RPD) of less than 10% between measured and modeled load response. For each UO the stepwise-steady method reduced computational time by an order of magnitude compared a fully unsteady method. AbstractIn the last several years, computational fluid dynamics (CFD) has emerged as a potential tool to accurately predict the response of best management practices (BMPs) to highly unsteady rainfall-runoff (storm water) and particulate matter (PM) loadings. However, such predictive capability for BMPs as unit operation (UO) systems subject to highly unsteady loadings requires much higher computational time than for steady loadings. Therefore, to reduce computational time at a given level of predictive accuracy, an instantaneous response stepwise-steady method was tested to reproduce the unsteady load response of three geometrically different BMP UO systems. The units are baffled and screened hydrodynamic separator systems [(BHS) and (SHS)], respectively, as well as a granular media-based volumetric clarifying filter (VCF) system. The measured PM response was variable, a function of influent unsteadiness and the UO system geometry. Each hydrograph loading of a UO system was represented as a cumulative distribution function (CDF) which was discretized into a number of steady-flow steps using a discretization number (DN) for which an instantaneous response was modeled. DN was the model tuning parameter used to examine the stepwise-steady method. Despite variability in measured load-response for a UO system, a similar number of instantaneous response steady steps (DN of 35–40) were required to achieve a mean relative percent difference (RPD) of less than 10% between measured and modeled load response. For each UO system, the stepwise-steady method reduced computational time by an order of magnitude compared with a fully unsteady method. |
Author | Sansalone, John J Cho, Hwan Chul |
Author_xml | – sequence: 1 givenname: Hwan Chul surname: Cho fullname: Cho, Hwan Chul organization: Univ. of Florida Researcher, , Environmental Engineering Science, 218 Black Hall, Gainesville, FL 32611 – sequence: 2 givenname: John J surname: Sansalone fullname: Sansalone, John J organization: Univ. of Florida Professor, , Environmental Engineering Science, 218 Black Hall, Gainesville, FL 32611 (corresponding author). E-mail |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27863645$$DView record in Pascal Francis |
BookMark | eNqNkVtLwzAYhoMoOA__IQjCvOhMmjYH73RWHWxseLgOSZtIR9fUpkP2703t2J1gCCSE5_0-8j1n4Lh2tQHgCqMJRhTfju_fptlNlk2wSEjEOEMTFBZLxBEYHd6OwQgxQiJBWHwKzrxfI4QTKtgILGe171QdtnFbD98603yX3kThooodnD49woUrTAWdhQ-LFXw1vnG1N7Bz8CNEf6nVAs6dKsr601-AE6sqby735zn4eMrepy_RfPk8m97PI0US0UWacIy4sIXK07TQ2lKtYsqL2GKWF0lhU03ynAqTCI05NkbHiCdWp1RToYwg52A81G1a97U1vpOb0uemqoaPSMxpkqYsjvk_0DQNE0OkR6_3qPK5qmyr6rz0smnLjWp3MmacklA3cHcDl7fO-9bYA4KR7MVI2YuRWSZ7CbKXIPdiQpgO4dDDyLXbtnWY1CH5d_AHBnyS1A |
CODEN | JOEEDU |
Cites_doi | 10.1061/(ASCE)EE.1943-7870.0000044 10.1061/(ASCE)0733-9372(2008)134:11(912) 10.3141/2120-12 10.1061/(ASCE)0733-9372(2009)135:4(191) 10.1021/es901527r 10.1061/(ASCE)HY.1943-7900.0000023 10.1061/(ASCE)EE.1943-7870.0000556 10.1017/S0022112072001806 10.2514/6.1989-366 10.1021/es103584c 10.1016/j.watres.2008.02.005 10.1016/j.coastaleng.2004.09.001 10.1061/(ASCE)EE.1943-7870.0000427 10.1016/j.cej.2011.09.086 10.1016/S0043-1354(99)00325-5 10.1016/S0304-3800(02)00324-1 10.1029/2008WR007661 10.1109/IMSCCS.2006.132 10.2166/wst.2010.480 10.1016/j.jenvman.2012.02.028 10.1007/BF02008202 10.1016/0045-7825(74)90029-2 |
ContentType | Journal Article |
Copyright | 2013 American Society of Civil Engineers 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 American Society of Civil Engineers – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QH 7ST 7UA C1K F1W H97 L.G SOI 8FD F28 FR3 KR7 |
DOI | 10.1061/(ASCE)EE.1943-7870.0000749 |
DatabaseName | CrossRef Pascal-Francis Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1943-7870 |
EndPage | 1360 |
ExternalDocumentID | 27863645 10_1061__ASCE_EE_1943_7870_0000749 10_1061_ASCE_EE_1943_7870_0000749 |
GroupedDBID | -0O 02 0O 0R 29K 4.4 4P2 4S 5GY 8VB ABBOT ABDBF ABFLS ABPTK ACDCL ACIWK ACNET ACPRK ACVYA ADZKS AENEX AFRAH AKVCP ALMA_UNASSIGNED_HOLDINGS ARCSS ARKUK ASUFR CS3 D-I E70 EAD EAP EAS EAU EBA EBR EBS EBU EDH EDO EJD EMI EMK EST ESX F5P HZ I-F L7B O9- O~X P2P QWB RAC RXW S70 TAE TH9 TN5 TUS WH7 X ZL0 -~X .4S .DC 0R~ 53G 6TJ 9M8 AAELQ AAIKC AAMNW AAYOK AAYXX ABDPE ABEFU ABFSI ACKIV ACUHS ADVLX AEMOZ AHQJS AI. AIRRX ALNAR CITATION GQVBS HZ~ H~9 K1G ML. VH1 WHG XSW ZY4 ~02 ~A~ ABTAH IQODW 7QH 7ST 7UA C1K F1W H97 L.G SOI 8FD F28 FR3 KR7 |
ID | FETCH-LOGICAL-a349t-b381089fdac55dbbf6ba268d2f17cd4df5b3cc69e49b181eeb2084fb56b69ae93 |
ISSN | 0733-9372 |
IngestDate | Fri Jul 11 03:18:10 EDT 2025 Fri Jul 11 09:50:53 EDT 2025 Wed Apr 02 07:20:31 EDT 2025 Tue Jul 01 01:59:41 EDT 2025 Tue Jan 05 18:42:28 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Computational fluid dynamics Steady flow Rainfall Hydrodynamics Clarification Runoff water Modeling Best Management Practice Computational fluid dynamics technique Unit operations Clarifying Rain Loading Runoff Particulate matter Stormwater management Aerosols Distribution function Storm water Separator |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a349t-b381089fdac55dbbf6ba268d2f17cd4df5b3cc69e49b181eeb2084fb56b69ae93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1855074038 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1864557228 proquest_miscellaneous_1855074038 pascalfrancis_primary_27863645 crossref_primary_10_1061__ASCE_EE_1943_7870_0000749 asce_journals_10_1061_ASCE_EE_1943_7870_0000749 |
ProviderPackageCode | ABBOT RAC ACNET ARKUK ADZKS -0O E70 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Reston, VA |
PublicationPlace_xml | – name: Reston, VA |
PublicationTitle | Journal of environmental engineering (New York, N.Y.) |
PublicationYear | 2013 |
Publisher | American Society of Civil Engineers |
Publisher_xml | – name: American Society of Civil Engineers |
References | Cho, H.-C.; Sansalone, J. 2013; 139 Sansalone, J. J.; Pathapati, S. 2009; 45 Garofalo, G.; Sansalone, J. 2011; 175 Wang, H.; Hondzo, M.; Xu, C.; Poole, V.; Spacie, A. 2003; 160 Lee, J. H.; Bang, L. W.; Choi, C. S.; Lim, H. S. 2010; 62 Pathapati, S.; Sansalone, J. J. 2012; 138 Berretta, C.; Sansalone, J. 2012; 103 Lee, J. H.; Bang, K. W. 2000; 34 Elgobashi, S. E. 1991; 48 Ergun, S. 1952; 48 Sansalone, J. J.; Liu, B.; Kim, J. Y. 2009; 135 Kim, J.-Y.; Sansalone, J. J. 2008; 134 Kim, J.-Y.; Sansalone, J. J. 2008; 42 Launder, B. E.; Spalding, D. E. 1974; 3 Morsi, S. A.; Alexander, A. J. 1972; 55 1999; 11 Pathapati, S.; Sansalone, J. J. 2009; 135 Dickenson, J. A.; Sansalone, J. J. 2009; 43 Wilson, M. A.; Mohseni, O.; Gulliver, J. S.; Hozalski, R. M.; Stefan, H. G. 2009; 135 Liang, D.; Cheng, L.; Li, G. 2005; 52 Pathapati, S.; Sansalone, J. J. 2011; 45 Ergun S. (e_1_3_1_8_1) 1952; 48 ASTM (e_1_3_1_2_1) 1999; 11 e_1_3_1_22_1 e_1_3_1_23_1 e_1_3_1_24_1 e_1_3_1_9_1 e_1_3_1_20_1 e_1_3_1_21_1 e_1_3_1_5_1 e_1_3_1_4_1 e_1_3_1_7_1 e_1_3_1_6_1 e_1_3_1_26_1 e_1_3_1_27_1 e_1_3_1_3_1 e_1_3_1_28_1 e_1_3_1_29_1 Ranade V. V. (e_1_3_1_25_1) 2002 e_1_3_1_10_1 e_1_3_1_14_1 e_1_3_1_13_1 e_1_3_1_30_1 e_1_3_1_12_1 e_1_3_1_11_1 e_1_3_1_18_1 e_1_3_1_17_1 e_1_3_1_16_1 e_1_3_1_15_1 e_1_3_1_19_1 |
References_xml | – volume: 43 start-page: 8220 issn: 0013-936X year: 2009 end-page: 8226 article-title: Discrete phase model representation of particulate matter (PM) for simulating PM separation by hydrodynamic unit operations publication-title: Env. Sci. Technol. – volume: 34 start-page: 1773 issn: 0043-1354 year: 2000 end-page: 1780 article-title: Characterization of urban stormwater runoff publication-title: Water Res. – volume: 52 start-page: 43 issn: 0378-3839 year: 2005 end-page: 62 article-title: Numerical modeling flow and scour below a pipeline in currents. Part II. Scour simulation publication-title: Coastal Eng. – volume: 175 start-page: 150 issn: 1385-8947 year: 2011 end-page: 159 article-title: Transient elution of particulate matter from hydrodynamic unit operations as a function of computational parameters and runoff hydrograph unsteadiness publication-title: Chem. Eng. J. – volume: 160 start-page: 145 issn: 0304-3800 year: 2003 end-page: 161 article-title: Dissolved oxygen dynamics of streams draining an urbanized and an agricultural catchment publication-title: Ecol. Model. – volume: 139 start-page: 11 issn: 0733-9372 year: 2013 end-page: 22 article-title: Physical modeling of particulate matter washout from a hydrodynamic separator publication-title: J. Environ. Eng. – volume: 42 start-page: 2756 issn: 0043-1354 year: 2008 end-page: 2768 article-title: Event-based size distributions of particulate matter transported during urban rainfall-runoff events publication-title: Water Res. – volume: 45 start-page: 5605 issn: 0013-936X year: 2011 end-page: 5613 article-title: Can a stepwise steady flow computational fluid dynamics model reproduce unsteady particulate matter separation for common unit operations publication-title: Env. Sci. Technol. – volume: 3 start-page: 269 issn: 0045-7825 year: 1974 end-page: 289 article-title: The numerical computation of turbulent flows publication-title: Comput. Methods Appl. Mech. Eng. – volume: 11 start-page: 389 year: 1999 end-page: 394 article-title: Standard test method for determining sediment concentration in water samples. Annual book of standards publication-title: Water Environ. Technol. – volume: 135 start-page: 191 issn: 0733-9372 year: 2009 end-page: 202 article-title: CFD modeling of a storm-water hydrodynamic separator publication-title: J. Environ. Eng. – volume: 134 start-page: 912 issn: 0733-9372 year: 2008 end-page: 922 article-title: Hydrodynamic separator of particulate matter transported by source area runoff publication-title: J. Environ. Eng. – volume: 55 start-page: 193 issn: 0022-1120 year: 1972 end-page: 208 article-title: An investigation of particle trajectories in two-phase flow systems publication-title: J. Fluid Mech. – volume: 45 start-page: 1 issn: 0043-1397 year: 2009 end-page: 14 article-title: Particle dynamics of a hydrodynamic separator subject to transient rainfall-runoff publication-title: Water Resour. Res. – volume: 48 start-page: 89 issn: 0360-7275 year: 1952 end-page: 94 article-title: Fluid flow through packed column publication-title: Chem. Eng. Prog. – volume: 62 start-page: 2381 issn: 0273-1223 year: 2010 end-page: 2388 article-title: CFD modeling of flow field and particle tracking in a hydrodynamic stormwater separator publication-title: Water Sci. Technol. – volume: 138 start-page: 90 issn: 0733-9372 year: 2012 end-page: 100 article-title: Modeling particulate matter re-suspension and washout from urban drainage hydrodynamic separators publication-title: J. Environ. Eng. – volume: 135 start-page: 609 issn: 0733-9372 year: 2009 end-page: 620 article-title: Volumetric clarifying filtration of urban source area rainfall runoff publication-title: J. Environ. Eng. – volume: 48 start-page: 301 issn: 0003-6994 year: 1991 end-page: 314 article-title: Particle laden turbulent flow: Direct simulation and closure models publication-title: Appl. Sci. Res. – volume: 135 start-page: 383 issn: 0733-9429 year: 2009 end-page: 392 article-title: Assessment of hydrodynamic separators for storm-water treatment publication-title: J. Hydraul. Eng. – volume: 103 start-page: 83 year: 2012 end-page: 94 article-title: Fate of phosphorus fractions in an adsorptive-filter subject to intra- and inter-event runoff phenomena publication-title: J. Environ. Manage. – ident: e_1_3_1_26_1 doi: 10.1061/(ASCE)EE.1943-7870.0000044 – ident: e_1_3_1_11_1 – ident: e_1_3_1_12_1 doi: 10.1061/(ASCE)0733-9372(2008)134:11(912) – ident: e_1_3_1_18_1 doi: 10.3141/2120-12 – ident: e_1_3_1_21_1 doi: 10.1061/(ASCE)0733-9372(2009)135:4(191) – ident: e_1_3_1_6_1 doi: 10.1021/es901527r – ident: e_1_3_1_29_1 doi: 10.1061/(ASCE)HY.1943-7900.0000023 – ident: e_1_3_1_5_1 doi: 10.1061/(ASCE)EE.1943-7870.0000556 – ident: e_1_3_1_30_1 – ident: e_1_3_1_20_1 doi: 10.1017/S0022112072001806 – ident: e_1_3_1_3_1 doi: 10.2514/6.1989-366 – ident: e_1_3_1_9_1 – ident: e_1_3_1_19_1 – ident: e_1_3_1_22_1 doi: 10.1021/es103584c – volume-title: Computational flow modeling for chemical reactor engineering year: 2002 ident: e_1_3_1_25_1 – ident: e_1_3_1_13_1 doi: 10.1016/j.watres.2008.02.005 – ident: e_1_3_1_17_1 doi: 10.1016/j.coastaleng.2004.09.001 – volume: 48 start-page: 89 issue: 2 year: 1952 ident: e_1_3_1_8_1 article-title: Fluid flow through packed column publication-title: Chem. Eng. Prog. – ident: e_1_3_1_23_1 doi: 10.1061/(ASCE)EE.1943-7870.0000427 – volume: 11 start-page: 389 issue: 02 year: 1999 ident: e_1_3_1_2_1 article-title: Standard test method for determining sediment concentration in water samples. Annual book of standards publication-title: Water Environ. Technol. – ident: e_1_3_1_10_1 doi: 10.1016/j.cej.2011.09.086 – ident: e_1_3_1_15_1 doi: 10.1016/S0043-1354(99)00325-5 – ident: e_1_3_1_28_1 doi: 10.1016/S0304-3800(02)00324-1 – ident: e_1_3_1_27_1 doi: 10.1029/2008WR007661 – ident: e_1_3_1_24_1 doi: 10.1109/IMSCCS.2006.132 – ident: e_1_3_1_16_1 doi: 10.2166/wst.2010.480 – ident: e_1_3_1_4_1 doi: 10.1016/j.jenvman.2012.02.028 – ident: e_1_3_1_7_1 doi: 10.1007/BF02008202 – ident: e_1_3_1_14_1 doi: 10.1016/0045-7825(74)90029-2 |
SSID | ssj0014697 |
Score | 2.0535645 |
Snippet | AbstractIn the last several years, computational fluid dynamics (CFD) has emerged as a potential tool to accurately predict the response of best management... In the last several years, computational fluid dynamics (CFD) has emerged as a potential tool to accurately predict the response of best management practices... |
SourceID | proquest pascalfrancis crossref asce |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1350 |
SubjectTerms | Applied sciences Best Management Practice Chemical engineering Computation Computational fluid dynamics Exact sciences and technology Mathematical models Natural water pollution Particulate emissions Pollution Rainwaters, run off water and others Steady flow Technical Papers Unsteady Water treatment and pollution |
Title | Instantaneous Stepwise-Steady CFD Model of BMP Response to Unsteady PM Loadings |
URI | http://ascelibrary.org/doi/abs/10.1061/(ASCE)EE.1943-7870.0000749 https://www.proquest.com/docview/1855074038 https://www.proquest.com/docview/1864557228 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVZ-rIxxtatNPsoGuxhoziNLFmxH5PUISvLFmgDfROWJdFBScqcUtjf2B_elWQ7TpvuoxBMEM6N7XN0dS1dnYvQhyhXSlIugzhkMmAGaCxpzwQsZ4kKOc0Vt_udp1_5ZM5OzqPzVutXI2vpeiW7-c-t-0oegiq0Aa52l-x_IFsbhQb4DvjCERCG4z9h_NnFdvDRNpHVJmzdfC90YHN0FXT18bErdeaizeF0ZqfqbT6sK5YxXxT-rNn08MvSJdIX9wSqjb1w0KDXAobbKvk0ZhZGF24adnIDLmR0sU5APLUVyi-XC12lAh-edJuTD4SWu_DWPqpPaQARjneo2vvQhNHA-oENJ-sliyo2kYbPJNRLz5bjL6G-wMAd3w6RBwACdzY4HaVwN2narf_KyVD2vfjppqj2rcGuTkF0i--cCGGtiTQV1pawtkRp6xHaCeHdI2yjncHweDiuF6eYr9lT33ulZcvJ0Udr7dO2K4MhPyvsO1Aj_Hl6BU3ZpfElVO5EAy7EOXuOnpWQ44En2gvU0otd9KShWLmL9tImGXA5MhQv0bcNLuJbXMTARey4iJcGAxdxxUW8WuKKi3g2xRUXX6H5OD0bTYKyWEeQUZasoIfHpBcnRmV5FCkpDZdZyGMVGtLPFVMmkjTPeaJZIiGq1FqGvZgZGXHJrUA83UPtBVBvH2FiEqI0l0kS9hjPYwnhFelnRprIqjmRDjqyj1KUPbEQFZb3QtlBtHrq4sqruIi_E6CDDjYAqn8a9mNul-876H2FmACvbJfa_FMWxOkEsh6N_3QOmIiAYPHrB13eG_R43SXfovbqx7V-BxHySh6UjP0Nbw2ujw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Instantaneous+Stepwise-Steady+CFD+Model+of+BMP+Response+to+Unsteady+PM+Loadings&rft.jtitle=Journal+of+environmental+engineering+%28New+York%2C+N.Y.%29&rft.au=Cho%2C+Hwan+Chul&rft.au=Sansalone%2C+John+J.&rft.date=2013-11-01&rft.issn=0733-9372&rft.eissn=1943-7870&rft.volume=139&rft.issue=11&rft.spage=1350&rft.epage=1360&rft_id=info:doi/10.1061%2F%28ASCE%29EE.1943-7870.0000749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1061__ASCE_EE_1943_7870_0000749 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-9372&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-9372&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-9372&client=summon |