Conformation and Orientation of the Retinyl Chromophore in Rhodopsin: A Critical Evaluation of Recent NMR Data on the Basis of Theoretical Calculations Results in a Minimum Energy Structure Consistent with All Experimental Data
In the absence of a high-resolution diffraction structure, the orientation and conformation of the protonated Schiffs base retinylidinium chromophore of rhodopsin within the opsin matrix has been the subject of much speculation. There have been two recent reliable and precise NMR results that bear o...
Saved in:
Published in | Biochemistry (Easton) Vol. 40; no. 14; pp. 4201 - 4204 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.04.2001
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-2960 1520-4995 |
DOI | 10.1021/bi001911o |
Cover
Loading…
Abstract | In the absence of a high-resolution diffraction structure, the orientation and conformation of the protonated Schiffs base retinylidinium chromophore of rhodopsin within the opsin matrix has been the subject of much speculation. There have been two recent reliable and precise NMR results that bear on this issue. One involves a determination of the C20−C10 and C20−C11 distances by Verdegem et al. [Biochemistry 38, 11316−11324 (1999)]. The other is the determination of the orientation of the methine C to methyl group vectors C5−C18, C9−C19, and C13−C20 relative to the membrane normal by Gröbner et al. [Nature 405 (6788), 810−813 (2000)]. Using molecular orbital methods that include extensive configuration interaction, we have determined what we propose to be the minimum energy conformation of this chromophore. The above NMR results permit us to check this structure in the C10−C11C12−C13 region and then to check the global structure via the relative orientation of the three C18, C19, and C20 methyl groups. This method provides a detailed structure and also the orientation for the retinyl chromophore relative to the membrane normal and argues strongly that the protein does not appreciably alter the chromophore geometry from its minimum energy configuration that is nearly planar s-trans at the 6−7 bond. Finally, the chromophore structure and orientation presented in the recently published X-ray diffraction structure is compared with our proposed structure and with the deuterium NMR results. |
---|---|
AbstractList | In the absence of a high-resolution diffraction structure, the orientation and conformation of the protonated Schiffs base retinylidinium chromophore of rhodopsin within the opsin matrix has been the subject of much speculation. There have been two recent reliable and precise NMR results that bear on this issue. One involves a determination of the C20−C10 and C20−C11 distances by Verdegem et al. [Biochemistry 38, 11316−11324 (1999)]. The other is the determination of the orientation of the methine C to methyl group vectors C5−C18, C9−C19, and C13−C20 relative to the membrane normal by Gröbner et al. [Nature 405 (6788), 810−813 (2000)]. Using molecular orbital methods that include extensive configuration interaction, we have determined what we propose to be the minimum energy conformation of this chromophore. The above NMR results permit us to check this structure in the C10−C11C12−C13 region and then to check the global structure via the relative orientation of the three C18, C19, and C20 methyl groups. This method provides a detailed structure and also the orientation for the retinyl chromophore relative to the membrane normal and argues strongly that the protein does not appreciably alter the chromophore geometry from its minimum energy configuration that is nearly planar s-trans at the 6−7 bond. Finally, the chromophore structure and orientation presented in the recently published X-ray diffraction structure is compared with our proposed structure and with the deuterium NMR results. In the absence of a high-resolution diffraction structure, the orientation and conformation of the protonated Schiffs base retinylidinium chromophore of rhodopsin within the opsin matrix has been the subject of much speculation. There have been two recent reliable and precise NMR results that bear on this issue. One involves a determination of the C20-C10 and C20-C11 distances by Verdegem et al. [Biochemistry 38, 11316-11324 (1999)]. The other is the determination of the orientation of the methine C to methyl group vectors C5-C18, C9-C19, and C13-C20 relative to the membrane normal by Gröbner et al. [Nature 405 (6788), 810-813 (2000)]. Using molecular orbital methods that include extensive configuration interaction, we have determined what we propose to be the minimum energy conformation of this chromophore. The above NMR results permit us to check this structure in the C10-C11=C12-C13 region and then to check the global structure via the relative orientation of the three C18, C19, and C20 methyl groups. This method provides a detailed structure and also the orientation for the retinyl chromophore relative to the membrane normal and argues strongly that the protein does not appreciably alter the chromophore geometry from its minimum energy configuration that is nearly planar s-trans at the 6-7 bond. Finally, the chromophore structure and orientation presented in the recently published X-ray diffraction structure is compared with our proposed structure and with the deuterium NMR results.In the absence of a high-resolution diffraction structure, the orientation and conformation of the protonated Schiffs base retinylidinium chromophore of rhodopsin within the opsin matrix has been the subject of much speculation. There have been two recent reliable and precise NMR results that bear on this issue. One involves a determination of the C20-C10 and C20-C11 distances by Verdegem et al. [Biochemistry 38, 11316-11324 (1999)]. The other is the determination of the orientation of the methine C to methyl group vectors C5-C18, C9-C19, and C13-C20 relative to the membrane normal by Gröbner et al. [Nature 405 (6788), 810-813 (2000)]. Using molecular orbital methods that include extensive configuration interaction, we have determined what we propose to be the minimum energy conformation of this chromophore. The above NMR results permit us to check this structure in the C10-C11=C12-C13 region and then to check the global structure via the relative orientation of the three C18, C19, and C20 methyl groups. This method provides a detailed structure and also the orientation for the retinyl chromophore relative to the membrane normal and argues strongly that the protein does not appreciably alter the chromophore geometry from its minimum energy configuration that is nearly planar s-trans at the 6-7 bond. Finally, the chromophore structure and orientation presented in the recently published X-ray diffraction structure is compared with our proposed structure and with the deuterium NMR results. In the absence of a high-resolution diffraction structure, the orientation and conformation of the protonated Schiffs base retinylidinium chromophore of rhodopsin within the opsin matrix has been the subject of much speculation. There have been two recent reliable and precise NMR results that bear on this issue. One involves a determination of the C20-C10 and C20-C11 distances by Verdegem et al. [Biochemistry 38, 11316-11324 (1999)]. The other is the determination of the orientation of the methine C to methyl group vectors C5-C18, C9-C19, and C13-C20 relative to the membrane normal by Gröbner et al. [Nature 405 (6788), 810-813 (2000)]. Using molecular orbital methods that include extensive configuration interaction, we have determined what we propose to be the minimum energy conformation of this chromophore. The above NMR results permit us to check this structure in the C10-C11=C12-C13 region and then to check the global structure via the relative orientation of the three C18, C19, and C20 methyl groups. This method provides a detailed structure and also the orientation for the retinyl chromophore relative to the membrane normal and argues strongly that the protein does not appreciably alter the chromophore geometry from its minimum energy configuration that is nearly planar s-trans at the 6-7 bond. Finally, the chromophore structure and orientation presented in the recently published X-ray diffraction structure is compared with our proposed structure and with the deuterium NMR results. |
Author | Hudson, Bruce S Singh, Deepak Middleton, Chris Birge, Robert R |
Author_xml | – sequence: 1 givenname: Deepak surname: Singh fullname: Singh, Deepak – sequence: 2 givenname: Bruce S surname: Hudson fullname: Hudson, Bruce S – sequence: 3 givenname: Chris surname: Middleton fullname: Middleton, Chris – sequence: 4 givenname: Robert R surname: Birge fullname: Birge, Robert R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11284674$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcFu1DAURS1URKeFBT-AvAGJRajtZOKY3RCmFNRSNB1gaXkSh7g4drCdtrNjy2-y4DtwmjIL1JX17HvPu37vAOwZayQATzF6hRHBRxuFEGYY2wdghucEJRlj8z0wQwjlCWE52gcH3l_GMkM0ewT2MSZFltNsBv6U1jTWdSIoa6AwNTx3Spow1baBoZVwJYMyWw3L1tnO9q11EioDV62tbe-Vef375y-4gKVTQVVCw-WV0MOOsJJVBMKPZyv4VgQB4-0IfSO88uP7upURODlLoatB31p9NPpBBz-2EvBMGdUNHVwa6b5t4UVwQxWGGCR-IILC2OJahRYudAxw00unuvEf-rbpY_CwEdrLJ3fnIfh8vFyXJ8np-bv35eI0EWnGQlJkc0GzipGc4DqlDdlURdE0ghSoaHIiUyYwzXFBWJw7Y6Kep0xKlNGCbrCo6_QQvJi4vbM_BukD75SvpNbCSDt4TikiFOE8Cp_dCYdNJ2vex7jCbfm_zUTB0SSonPXeyYZXatpKcEJpjhEfd893u4-Ol_85dtB7tMmkHSd3sxMK953nNKVzvv50wb9--IKOy5OSj2meT3pReX5pB2fiFO_h_gXoAM3w |
CitedBy_id | crossref_primary_10_2142_biophysics_6_67 crossref_primary_10_1081_RRS_120025192 crossref_primary_10_1016_j_jmb_2007_03_046 crossref_primary_10_1016_j_jmb_2007_06_047 crossref_primary_10_1021_jp709730b crossref_primary_10_1070_MC2006v016n01ABEH002255 crossref_primary_10_1529_biophysj_104_048264 crossref_primary_10_1146_annurev_biophys_31_082901_134348 crossref_primary_10_1016_j_bbamem_2006_10_002 crossref_primary_10_1021_ja9034768 crossref_primary_10_1134_S1547477108020118 crossref_primary_10_1016_S0006_3495_02_75314_9 crossref_primary_10_1042_BST0320738 crossref_primary_10_1146_annurev_biophys_32_110601_142520 crossref_primary_10_3390_biom13020271 crossref_primary_10_1111_j_1751_1097_2008_00308_x crossref_primary_10_1134_S1995078012060110 |
Cites_doi | 10.1021/jp982625d 10.1021/bi983014e |
ContentType | Journal Article |
Copyright | Copyright © 2001 American Chemical Society |
Copyright_xml | – notice: Copyright © 2001 American Chemical Society |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/bi001911o |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 4204 |
ExternalDocumentID | 11284674 10_1021_bi001911o ark_67375_TPS_WJV0FCHC_4 c561007073 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Comparative Study Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM-34548 – fundername: NIGMS NIH HHS grantid: R01 GM034548 |
GroupedDBID | - .K2 02 08R 186 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI AAYJJ ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS ADKFC AEESW AENEX AETEA AFEFF AFFDN AFFNX AFMIJ AIDAL AJYGW ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P G8K GJ GNL IH9 IHE JG JG~ K2 K78 KM L7B LG6 MVM NHB OHT P2P ROL TN5 UI2 UNC UQL VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 ZE2 ZGI ZXP --- -DZ -~X .55 .GJ 6TJ ABDPE ABJNI ABQRX ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK XOL XSW YYP ZCA ~02 ~KM AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a349t-845a74c92621d37f2bc88ffa2808f62e39a176182910299ad539ee04787b1add3 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Fri Jul 11 00:45:49 EDT 2025 Fri May 30 10:48:49 EDT 2025 Tue Jul 01 04:28:39 EDT 2025 Thu Apr 24 23:08:35 EDT 2025 Wed Oct 30 09:35:01 EDT 2024 Thu Aug 27 13:42:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a349t-845a74c92621d37f2bc88ffa2808f62e39a176182910299ad539ee04787b1add3 |
Notes | istex:FA223D5BFE67ED9F8A9D82F2A8AA8A4D764E4752 ark:/67375/TPS-WJV0FCHC-4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 11284674 |
PQID | 77027016 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_77027016 pubmed_primary_11284674 crossref_citationtrail_10_1021_bi001911o crossref_primary_10_1021_bi001911o istex_primary_ark_67375_TPS_WJV0FCHC_4 acs_journals_10_1021_bi001911o |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-04-10 |
PublicationDateYYYYMMDD | 2001-04-10 |
PublicationDate_xml | – month: 04 year: 2001 text: 2001-04-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2001 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Gröbner G. (bi001911ob00002/bi001911ob00002_1) 2000 Okada T (bi001911ob00013/bi001911ob00013_1) 2000 bi001911ob00001/bi001911ob00001_1 Buss V. (bi001911ob00007/bi001911ob00007_1) 1893; 37 Tan Q. (bi001911ob00008/bi001911ob00008_1) 2089; 36 Liebman P. (bi001911ob00011/bi001911ob00011_1) 1962 Bifone A. (bi001911ob00006/bi001911ob00006_1); 101 Hudson B. S. (bi001911ob00004/bi001911ob00004_1); 103 Smith S. O. (bi001911ob00003/bi001911ob00003_1) 1987 Shieh T. (bi001911ob00009/bi001911ob00009_1); 269 Palczewski K. (bi001911ob00012/bi001911ob00012_1) 2000 Martin C. H. (bi001911ob00010/bi001911ob00010_1); 102 bi001911ob00005/bi001911ob00005_1 |
References_xml | – volume: 103 start-page: 2281 ident: bi001911ob00004/bi001911ob00004_1 publication-title: J. Phys. Chem. A – volume: 36 start-page: 2093 year: 2089 ident: bi001911ob00008/bi001911ob00008_1 publication-title: Angew. Chem., Int. Ed. Engl. – volume-title: Low-temperature solid-state carbon-13 NMR studies of the retinal chromophore in rhodopsin. Biochemistry 26, 1606−1611 year: 1987 ident: bi001911ob00003/bi001911ob00003_1 – volume: 37 start-page: 1895 year: 1893 ident: bi001911ob00007/bi001911ob00007_1 publication-title: Angew. Chem., Int. Ed. – volume: 269 start-page: 384 ident: bi001911ob00009/bi001911ob00009_1 publication-title: J. Mol. Biol. – volume: 101 start-page: 2958 ident: bi001911ob00006/bi001911ob00006_1 publication-title: J. Phys. Chem. B – volume-title: situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161−178 year: 1962 ident: bi001911ob00011/bi001911ob00011_1 – volume-title: Observation of light induced structural changes of retinal at atomic resolution within rhodopsin. Nature 405 (6788), 810−813 year: 2000 ident: bi001911ob00002/bi001911ob00002_1 – volume-title: Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739−745 year: 2000 ident: bi001911ob00012/bi001911ob00012_1 – volume: 102 start-page: 860 ident: bi001911ob00010/bi001911ob00010_1 publication-title: J. Phys. Chem. – ident: bi001911ob00005/bi001911ob00005_1 doi: 10.1021/jp982625d – ident: bi001911ob00001/bi001911ob00001_1 doi: 10.1021/bi983014e – volume-title: X-ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. J. Struct. Biol. 130, 73−80 year: 2000 ident: bi001911ob00013/bi001911ob00013_1 |
SSID | ssj0004074 |
Score | 1.8011751 |
Snippet | In the absence of a high-resolution diffraction structure, the orientation and conformation of the protonated Schiffs base retinylidinium chromophore of... |
SourceID | proquest pubmed crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4201 |
SubjectTerms | Animals Cattle Crystallization Crystallography, X-Ray Deuterium Isomerism Nuclear Magnetic Resonance, Biomolecular - methods Protein Conformation Retinal Pigments - chemistry Retinoids - chemistry Rhodopsin - chemistry Thermodynamics |
Title | Conformation and Orientation of the Retinyl Chromophore in Rhodopsin: A Critical Evaluation of Recent NMR Data on the Basis of Theoretical Calculations Results in a Minimum Energy Structure Consistent with All Experimental Data |
URI | http://dx.doi.org/10.1021/bi001911o https://api.istex.fr/ark:/67375/TPS-WJV0FCHC-4/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/11284674 https://www.proquest.com/docview/77027016 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKe4ALj5bH8igjQBWXlMTrvLgt6a5Wlbag3S30FjmJo0bNOqtNIlFOXPmbHPgdjJ1kt4gWrsnE49jjzOd45htC3lDf8WLfSw3HZ9RgbmIbinnP8DybO4ngCPLVie7kxBmfsuMz-2yLvL7hBJ9a76JMwRDLKm6RHerg4lX4J5htkh_NlmoZt8ao2ezog64-qlxPXP7henbUKH69GVdq_zK6R466LJ0mrOTisK6iw_jb36SN_-r6fXK3xZcwaAziAdkScpfsDSTurReXcAA64lP_St8lt4Ou2tse-aVS_7pERuAygY-rrM1LklCkgEARpio_-jIHxai7KJbnxUpAJmF6jnvbZZnJ9z-__4ABdOUTYLimElctIELFBuFkMoUjXnHAq6rRD7zMSnV_vsmphIDncVtYrMQHyzqvSqWKwyST2aJewFAnLcJM89_W2BFdehRHG1Won8swyLEDV-oXaKUPyeloOA_GRlsDwuB95leGx2zuslixGlpJ301pFHtemnLqmV7qUNH3ueU6uElC2IOelSd23xdCUw5FFn67-4_ItiykeKKCuKglEMBw_OwwFPGFH1EhLFd4Dk9Tv0f20UjCdg2XoT6ep1a4nsUeedvZTxi3DOqqkEd-neirteiyoQ25TuhAG-Fagq8uVJyda4fzT7Pwy_FncxSMg5D1yMvOSkM0C3Wkw6Uo6jJ0XZO6iNp75HFjvBttCng4Lnv6v7d6Ru40cXUMXfJzso3TJl4g0Kqifb3QfgOaziPL |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BeygXHi2P8GhHCFVcXOK3zc2YRKE0ASUp9GatnbVqNbGjrC1RTlz5mxz4Hcys7aSgIrja492xd3bnW-_MN4y9MHzHS3wv1RzfMjTLndkaMe9pnmdzZyY4gnw60R2OnMGpdXxmnzU0OZQLg0pIbEmqQ_wNu4D-Ks4Ijeh6cZNtIwgxyJqDcLLJgew2jMu4Q0YFui2L0NVHyQMl8jcPtE0f88vf4aVyM_07db0ipaCKLrk4qsr4KPn6B3fj_73BXXa7QZsQ1OZxj90Q-S7bC3LcaS8u4RBU_Kf6sb7LdsK29tse-0mJgG1aI_B8Bh9WWZOllEORAsJGGFO29OUciF93USzPi5WALIfxOe50lzLLX__49h0CaIspQG9NLE4tIF7FBmE0HMNbXnLAq9ToGy4zSfenmwxLCPk8acqMSXxQVvNSUlcchlmeLaoF9FQKI0wUG26FiqhCpPjRsQv61QzBHBW4Us1AdXqfnfZ703CgNRUhNG5afql5ls1dKyGOQ31muqkRJ56Xptzwul7qGML0ue46uGVCEIR-ls9s0xdCERDFOq7k5gO2lRe5eEQhXYYuEM5wXIQsFPGFHxtC6K7wHJ6mfoft4yBGzYyWkTqsN_RoPYod9rI1oyhp-NSprMf8OtHna9FlTSJyndChssW1BF9dUNSda0fTj5Po8_Gnbj8chJHVYQetsUZoFnTAw3NRVDJy3a7hIobvsIe1DW96IxjiuNbjf73VAdsZTIcn0cm70fsn7FYdcWehs37KtnAIxTOEYGW8r-beL3Y_LCw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BKwGXAi3Q8GhHCFVcXGLHT27GTRQKSaskhd6stb1WrTp2lE0kyokrf5MDv4OZje0UVATXZLy79s56vvHMfMPYK8Oz3dhzU832TEMzncTSiHlPc12L24ngCPIpojsY2v0z8_jcOq8cRaqFwUVIHEmqID6d6lmSVgwD-psoI0Si6-VttknhOtJoPxiv6yDbFesyesm4iHbNJHT9UrJCsfzNCm3SA_3yd4ipTE3vPjtpFqkyTC4Pl4voMP76B3_j_9_FA7ZVoU7wV2rykN0SxTbb8Qv0uKdXcAAqD1R9YN9md4O6B9wO-0kFgXV5I_AigZN5VlUrFVCmgPARRlQ1fZUD8exOy9lFOReQFTC6QI93JrPi7Y9v38GHuqkCdBuCcRoBcSsOCMPBCI74ggP-SoO-4zKT9P9kXWkJAc_jqt2YxAvlMl9ImorDICuy6XIKXVXKCGPFirvEhaiGpPjgcQr65Ax-jgu41tVATfqInfW6k6CvVZ0hNN4xvYXmmhZ3zJi4DvWk46RGFLtumnLDbbupbYiOx3XHRtcJwRDaW55YHU8IRUQU6fhG7zxmG0VZiF1K7TJ0gbCG48vIRBFPeJEhhO4I1-Zp6rXYHm5kWJ1sGaqgvaGHzS622OtalcK44lWn9h75TaIvG9HZikzkJqEDpY-NBJ9fUvadY4WT03H4-fhTuxf0g9Bssf1aYUNUCwr08EKUSxk6TttwEMu32JOVHq9nIzhiO-bTf93VPrtzetQLP74ffnjG7q0S70y02c_ZBu6geIFIbBHtqeP3CwYnLq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformation+and+orientation+of+the+retinyl+chromophore+in+rhodopsin%3A+a+critical+evaluation+of+recent+NMR+data+on+the+basis+of+theoretical+calculations+results+in+a+minimum+energy+structure+consistent+with+all+experimental+data&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Singh%2C+D&rft.au=Hudson%2C+B+S&rft.au=Middleton%2C+C&rft.au=Birge%2C+R+R&rft.date=2001-04-10&rft.issn=0006-2960&rft.volume=40&rft.issue=14&rft.spage=4201&rft_id=info:doi/10.1021%2Fbi001911o&rft_id=info%3Apmid%2F11284674&rft.externalDocID=11284674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |