Charge Carrier Transport in Iron Pyrite Thin Films: Disorder-Induced Variable-Range Hopping

The origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films. Temperature-dependent resistivity measurements (10–400 K) were performed on polycrystalline and nanostructured thin films prepared by three different methods: (1) s...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 127; no. 37; pp. 18619 - 18629
Main Authors Shukla, Sudhanshu, Mathew, Sinu, Choe, Hwan Sung, Chugh, Manjusha, Kühne, Thomas D., Mirhosseini, Hossein, Wu, Junqiao, Venkatesan, Thirumalai, Sritharan, Thirumany, Ager, Joel W.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.09.2023
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
DOI10.1021/acs.jpcc.3c03105

Cover

Loading…
Abstract The origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films. Temperature-dependent resistivity measurements (10–400 K) were performed on polycrystalline and nanostructured thin films prepared by three different methods: (1) spray pyrolysis, (2) hot-injection synthesized and spin-coated nanocubes, and (3) pulsed laser deposition. The films have a high hole density (1018–1019) cm–3 and low mobility (0.1–4 cm2 V–1 s–1) regardless of the method used for their preparation. The charge transport mechanism is determined to be thermally activated conduction (TAC) at near room temperature, with Mott-type variable-range hopping (VRH) of holes via localized states occurring at lower temperatures. The density functional theory (DFT) predicts that sulfur vacancy induces localized defect states within the band gap and the charge remains localized around the defect. The data indicates that the electronic properties including hopping transport in pyrite thin films can be correlated to sulfur vacancy-related defects. The results provide insights into the electronic properties of pyrite thin films and their implications for charge transport.
AbstractList Here, the origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films. Temperature-dependent resistivity measurements (10-400 K) were performed on polycrystalline and nanostructured thin films prepared by three different methods: (1) spray pyrolysis, (2) hot-injection synthesized and spin-coated nanocubes, and (3) pulsed laser deposition. The films have a high hole density (1018-1019) cm-3 and low mobility (0.1-4 cm2 V-1 s-1) regardless of the method used for their preparation. The charge transport mechanism is determined to be thermally activated conduction (TAC) at near room temperature, with Mott-type variable-range hopping (VRH) of holes via localized states occurring at lower temperatures. The density functional theory (DFT) predicts that sulfur vacancy induces localized defect states within the band gap and the charge remains localized around the defect. The data indicates that the electronic properties including hopping transport in pyrite thin films can be correlated to sulfur vacancy-related defects. The results provide insights into the electronic properties of pyrite thin films and their implications for charge transport.
The origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films. Temperature-dependent resistivity measurements (10–400 K) were performed on polycrystalline and nanostructured thin films prepared by three different methods: (1) spray pyrolysis, (2) hot-injection synthesized and spin-coated nanocubes, and (3) pulsed laser deposition. The films have a high hole density (1018–1019) cm–3 and low mobility (0.1–4 cm2 V–1 s–1) regardless of the method used for their preparation. The charge transport mechanism is determined to be thermally activated conduction (TAC) at near room temperature, with Mott-type variable-range hopping (VRH) of holes via localized states occurring at lower temperatures. The density functional theory (DFT) predicts that sulfur vacancy induces localized defect states within the band gap and the charge remains localized around the defect. The data indicates that the electronic properties including hopping transport in pyrite thin films can be correlated to sulfur vacancy-related defects. The results provide insights into the electronic properties of pyrite thin films and their implications for charge transport.
Author Choe, Hwan Sung
Kühne, Thomas D.
Venkatesan, Thirumalai
Shukla, Sudhanshu
Sritharan, Thirumany
Mirhosseini, Hossein
Ager, Joel W.
Chugh, Manjusha
Mathew, Sinu
Wu, Junqiao
AuthorAffiliation School of Materials Science and Engineering
Nanyang Technological University
NUSNNI-NanoCore
Lawrence Berkeley National Laboratory
Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry
Department of Materials Science and Engineering
Berkeley Educational Alliance for Research in Singapore (BEARS), Ltd
Materials Sciences Division
AuthorAffiliation_xml – name: Berkeley Educational Alliance for Research in Singapore (BEARS), Ltd
– name: Lawrence Berkeley National Laboratory
– name: School of Materials Science and Engineering
– name: NUSNNI-NanoCore
– name: Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry
– name: Nanyang Technological University
– name: Department of Materials Science and Engineering
– name: Materials Sciences Division
Author_xml – sequence: 1
  givenname: Sudhanshu
  orcidid: 0000-0001-8233-6963
  surname: Shukla
  fullname: Shukla, Sudhanshu
  email: Sudhanshu.shukla@imec.be
  organization: Nanyang Technological University
– sequence: 2
  givenname: Sinu
  surname: Mathew
  fullname: Mathew, Sinu
  organization: NUSNNI-NanoCore
– sequence: 3
  givenname: Hwan Sung
  surname: Choe
  fullname: Choe, Hwan Sung
  organization: Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Manjusha
  orcidid: 0000-0002-9498-1078
  surname: Chugh
  fullname: Chugh, Manjusha
  organization: Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry
– sequence: 5
  givenname: Thomas D.
  surname: Kühne
  fullname: Kühne, Thomas D.
  organization: Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry
– sequence: 6
  givenname: Hossein
  orcidid: 0000-0001-6179-1545
  surname: Mirhosseini
  fullname: Mirhosseini, Hossein
  organization: Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry
– sequence: 7
  givenname: Junqiao
  orcidid: 0000-0002-1498-0148
  surname: Wu
  fullname: Wu, Junqiao
  organization: Berkeley Educational Alliance for Research in Singapore (BEARS), Ltd
– sequence: 8
  givenname: Thirumalai
  surname: Venkatesan
  fullname: Venkatesan, Thirumalai
  organization: NUSNNI-NanoCore
– sequence: 9
  givenname: Thirumany
  orcidid: 0000-0002-6683-3924
  surname: Sritharan
  fullname: Sritharan, Thirumany
  organization: Nanyang Technological University
– sequence: 10
  givenname: Joel W.
  orcidid: 0000-0001-9334-9751
  surname: Ager
  fullname: Ager, Joel W.
  email: jwager@lbl.gov
  organization: Berkeley Educational Alliance for Research in Singapore (BEARS), Ltd
BackLink https://www.osti.gov/servlets/purl/2294045$$D View this record in Osti.gov
BookMark eNp9kM1PAjEQxRuDiYDePTaeXezHdst6MyhCQqIx6MXDptvtQsnSbqbLgf_eIsSDiZ5mMvPey8xvgHrOO4PQNSUjShi9UzqMNq3WI64Jp0ScoT7NOUtkKkTvp0_lBRqEsCFEcEJ5H31O1gpWBk8UgDWAl6BcaD102Do8B-_w6x5sZ_ByHQdT22zDPX60wUNlIJm7aqdNhT8UWFU2JnlTLobNfNtat7pE57Vqgrk61SF6nz4tJ7Nk8fI8nzwsEsXTvEsko2WVVRXTqUprOa65GpcVJXWc6SzXMuVUK1EaoaSWuSwzWQpmakFLPmaS8SG6Oeb60Nki6HiuXmvvnNFdwVieklREETmKNPgQwNRFC3arYF9QUhwIFpFgcSBYnAhGS_bLEqNVZ73rQNnmP-Pt0fi98Ttw8f2_5V8MdolF
CitedBy_id crossref_primary_10_1002_adfm_202416808
crossref_primary_10_1016_j_mseb_2024_117715
Cites_doi 10.1016/0040-6090(92)90293-K
10.1021/nn101376u
10.1002/pssb.200778731
10.1016/S0927-0248(01)00053-8
10.1038/srep02092
10.1016/0040-6090(94)90723-4
10.1021/nl2045364
10.1039/c3ra47054g
10.1021/nn5040982
10.1103/PhysRevB.75.073202
10.1007/978-3-662-02403-4
10.1103/PhysRevB.13.5188
10.1103/PhysRevB.86.115207
10.1021/nn4003264
10.1016/0038-1098(74)90673-5
10.1021/es8019534
10.1103/PhysRevB.50.17953
10.1002/adma.201602222
10.1002/ente.201700638
10.1103/PhysRevMaterials.1.015402
10.1021/acs.chemmater.0c01669
10.1021/nn305833u
10.1103/PhysRevB.70.115317
10.1021/ja307412e
10.1039/c3ee43169j
10.1088/0022-3727/46/15/155107
10.1088/0953-8984/25/4/045004
10.1149/2.028311jss
10.1016/0040-6090(94)90058-2
10.1021/acsnano.6b00065
10.1021/cm0210243
10.1103/PhysRevB.57.1505
10.1021/nl501942w
10.1021/jz301023c
10.1103/PhysRevB.85.085203
10.1016/0039-6028(94)90230-5
10.1016/j.electacta.2014.02.048
10.1021/acsami.9b01335
10.1016/j.joule.2019.06.015
10.1021/acsami.5b03422
10.1021/ja311974n
10.1016/0040-6090(92)90721-M
10.1103/PhysRevB.68.035335
10.1021/acs.jpcc.5b11204
10.1021/jp3111106
10.1002/adma.201905653
10.1016/j.commatsci.2005.04.010
10.1093/acprof:oso/9780198567561.001.0001
10.1103/PhysRevB.45.13244
10.1088/0022-3719/19/14/002
10.1103/PhysRevB.59.1758
10.1103/PhysRevMaterials.1.065403
10.1021/cm304152b
10.1016/0379-6787(84)90009-7
10.1016/j.susc.2013.08.014
10.1021/nn3029502
10.1002/aenm.201200043
10.1103/PhysRevB.54.11169
10.1021/ja509142w
10.1088/0953-8984/25/46/465801
10.1103/PhysRevB.4.2612
10.1016/0165-1633(86)90030-4
10.1021/nl202902z
10.1016/0925-8388(92)90260-G
10.1016/0927-0248(93)90095-K
10.1103/PhysRevB.43.11926
10.1016/j.pmatsci.2014.12.001
10.1080/13642810108205796
10.1021/ja1096368
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1021/acs.jpcc.3c03105
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 18629
ExternalDocumentID 2294045
10_1021_acs_jpcc_3c03105
a562794479
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
UI2
UKR
VF5
VG9
VQA
W1F
53G
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
ROL
OIOZB
OTOTI
ID FETCH-LOGICAL-a349t-721bd6dd2c4a4f78f3a8bd10f6ddc69c7431ca5be5a7c797b67b52ef51b382723
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Mon Sep 16 02:21:33 EDT 2024
Thu Apr 24 23:12:42 EDT 2025
Tue Jul 01 00:17:19 EDT 2025
Fri Sep 22 03:16:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a349t-721bd6dd2c4a4f78f3a8bd10f6ddc69c7431ca5be5a7c797b67b52ef51b382723
Notes USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE)
AC02-05CH11231
ORCID 0000-0002-6683-3924
0000-0001-6179-1545
0000-0002-9498-1078
0000-0001-8233-6963
0000-0002-1498-0148
0000-0001-9334-9751
0000000214980148
0000000266833924
0000000294981078
0000000161791545
0000000193349751
0000000182336963
OpenAccessLink https://www.osti.gov/servlets/purl/2294045
PageCount 11
ParticipantIDs osti_scitechconnect_2294045
crossref_primary_10_1021_acs_jpcc_3c03105
crossref_citationtrail_10_1021_acs_jpcc_3c03105
acs_journals_10_1021_acs_jpcc_3c03105
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-21
PublicationDateYYYYMMDD 2023-09-21
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
Gantmakher V. F. (ref22/cit22) 2005
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
Shklovskii B. I. (ref57/cit57) 1984
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
Shore K. A. (ref19/cit19) 2014; 55
ref69/cit69
ref12/cit12
ref15/cit15
Schieck R. (ref62/cit62) 1990; 5
ref66/cit66
ref41/cit41
ref58/cit58
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref63/cit63
  doi: 10.1016/0040-6090(92)90293-K
– ident: ref21/cit21
  doi: 10.1021/nn101376u
– ident: ref50/cit50
  doi: 10.1002/pssb.200778731
– volume: 55
  start-page: 337
  volume-title: Contemporary Physics
  year: 2014
  ident: ref19/cit19
– ident: ref23/cit23
  doi: 10.1016/S0927-0248(01)00053-8
– ident: ref40/cit40
  doi: 10.1038/srep02092
– ident: ref68/cit68
  doi: 10.1016/0040-6090(94)90723-4
– ident: ref37/cit37
  doi: 10.1021/nl2045364
– ident: ref42/cit42
  doi: 10.1039/c3ra47054g
– ident: ref17/cit17
  doi: 10.1021/nn5040982
– ident: ref25/cit25
  doi: 10.1103/PhysRevB.75.073202
– volume-title: Electronic Properties of Doped Semiconductors
  year: 1984
  ident: ref57/cit57
  doi: 10.1007/978-3-662-02403-4
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.13.5188
– ident: ref24/cit24
  doi: 10.1103/PhysRevB.86.115207
– ident: ref32/cit32
  doi: 10.1021/nn4003264
– ident: ref67/cit67
  doi: 10.1016/0038-1098(74)90673-5
– ident: ref2/cit2
  doi: 10.1021/es8019534
– ident: ref45/cit45
  doi: 10.1103/PhysRevB.50.17953
– ident: ref43/cit43
  doi: 10.1002/adma.201602222
– ident: ref16/cit16
  doi: 10.1002/ente.201700638
– ident: ref27/cit27
  doi: 10.1103/PhysRevMaterials.1.015402
– ident: ref30/cit30
  doi: 10.1021/acs.chemmater.0c01669
– volume: 5
  start-page: 1567
  volume-title: Journal of Materials Research
  year: 1990
  ident: ref62/cit62
– ident: ref26/cit26
  doi: 10.1021/nn305833u
– ident: ref55/cit55
  doi: 10.1103/PhysRevB.70.115317
– ident: ref51/cit51
  doi: 10.1021/ja307412e
– ident: ref11/cit11
  doi: 10.1039/c3ee43169j
– ident: ref54/cit54
  doi: 10.1088/0022-3727/46/15/155107
– ident: ref58/cit58
  doi: 10.1088/0953-8984/25/4/045004
– ident: ref65/cit65
  doi: 10.1149/2.028311jss
– ident: ref33/cit33
  doi: 10.1016/0040-6090(94)90058-2
– ident: ref9/cit9
  doi: 10.1021/acsnano.6b00065
– ident: ref66/cit66
  doi: 10.1021/cm0210243
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.57.1505
– ident: ref12/cit12
  doi: 10.1021/nl501942w
– ident: ref6/cit6
  doi: 10.1021/jz301023c
– ident: ref56/cit56
  doi: 10.1103/PhysRevB.85.085203
– ident: ref10/cit10
  doi: 10.1016/0039-6028(94)90230-5
– ident: ref60/cit60
  doi: 10.1016/j.electacta.2014.02.048
– ident: ref29/cit29
  doi: 10.1021/acsami.9b01335
– ident: ref5/cit5
  doi: 10.1016/j.joule.2019.06.015
– ident: ref13/cit13
  doi: 10.1021/acsami.5b03422
– ident: ref14/cit14
  doi: 10.1021/ja311974n
– ident: ref34/cit34
  doi: 10.1016/0040-6090(92)90721-M
– ident: ref71/cit71
  doi: 10.1103/PhysRevB.68.035335
– ident: ref69/cit69
  doi: 10.1021/acs.jpcc.5b11204
– ident: ref39/cit39
  doi: 10.1021/jp3111106
– ident: ref70/cit70
  doi: 10.1002/adma.201905653
– ident: ref61/cit61
  doi: 10.1016/j.commatsci.2005.04.010
– volume-title: Electrons and Disorder In Solids
  year: 2005
  ident: ref22/cit22
  doi: 10.1093/acprof:oso/9780198567561.001.0001
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.45.13244
– ident: ref53/cit53
  doi: 10.1088/0022-3719/19/14/002
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.59.1758
– ident: ref28/cit28
  doi: 10.1103/PhysRevMaterials.1.065403
– ident: ref36/cit36
  doi: 10.1021/cm304152b
– ident: ref3/cit3
  doi: 10.1016/0379-6787(84)90009-7
– ident: ref8/cit8
  doi: 10.1016/j.susc.2013.08.014
– ident: ref35/cit35
  doi: 10.1021/nn3029502
– ident: ref31/cit31
  doi: 10.1002/aenm.201200043
– ident: ref44/cit44
  doi: 10.1103/PhysRevB.54.11169
– ident: ref4/cit4
  doi: 10.1021/ja509142w
– ident: ref15/cit15
  doi: 10.1088/0953-8984/25/46/465801
– ident: ref18/cit18
  doi: 10.1103/PhysRevB.4.2612
– ident: ref7/cit7
  doi: 10.1016/0165-1633(86)90030-4
– ident: ref38/cit38
  doi: 10.1021/nl202902z
– ident: ref64/cit64
  doi: 10.1016/0925-8388(92)90260-G
– ident: ref1/cit1
  doi: 10.1016/0927-0248(93)90095-K
– ident: ref59/cit59
  doi: 10.1103/PhysRevB.43.11926
– ident: ref20/cit20
  doi: 10.1016/j.pmatsci.2014.12.001
– ident: ref52/cit52
  doi: 10.1080/13642810108205796
– ident: ref41/cit41
  doi: 10.1021/ja1096368
SSID ssj0053013
Score 2.4394283
Snippet The origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films. Temperature-dependent...
Here, the origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films....
SourceID osti
crossref
acs
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 18619
SubjectTerms C: Physical Properties of Materials and Interfaces
charge transport
conduction mechanism
defects
iron pyrite
MATERIALS SCIENCE
solar cells
thin films
Title Charge Carrier Transport in Iron Pyrite Thin Films: Disorder-Induced Variable-Range Hopping
URI http://dx.doi.org/10.1021/acs.jpcc.3c03105
https://www.osti.gov/servlets/purl/2294045
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCjigF5AMcOLg0jhM73FBFVZBAiE1IHCJvqdjSqkkP8PV4srALcbViyxqPM280nvcQ2gHFRcFMhxgZCeIilCbCUJ8k1p2INLIjiy7-07Owf81OboPbD5qc7xV86u1LnbUfRlq3fQ00lsE0mqGh4MCTf9i9rP-6gXNUv6wgO8TIGK9Kkr-tAIFIZ18CUWPoLtSnwNJbKBWKsoKPEN6TPLYnuWrr159sjf_Y8yKar_AlPiwdYglN2XQZzXZrWbcVdAcF9oHFXTkGsTr8zm6O71N8PB6m-Pxl7HAoBkVP3Lt_es4OcM3RSUDpQ1uDb1yKDU1X5AKaE3B_CDQPg1V03Tu66vZJpbBApM-inLj0T5nQGKqZZAkXiS-FMl4ncWM6jDTACy0DZQPJNY-4CrkKqE0CT_mCcuqvoUY6TO06wqbjqcQzLvtwoEQCcBcsEQnjXElpPd5Eu84qcXVDsrgoflMvLgadqeLKVE20Xx9LrCuaclDLePpjxt77jFFJ0fHHty046djBC-DI1fCYSOcxpRFz2Hbjn3tsoTlQnYdnI9TbRI18PLFbDpvkartwyjd_2N4Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3R5UAvFGgRFGh9aA8cvKwdZ530hlasFgqo4qNC6iHyV1a0kEWbcGh_fWeyyZZWFYKrFVujsZ15o_G8B_CBFBcT5XvcmzThGKEcT7yMeB5wR4w3PVN38Z-c9keX6ugqvloA0fbCoBElrlTWRfw_7AJij8a-3znXjRyxWcYvYBGxiCS6_P3BefvzjfG8RrNCMgJHpXRTmfzfChSPXPlXPOpM8F49iC_DV3A2t6x-VvKje1_Zrvv1D2njs0xfgeUGbbL92fFYhYVQrMHSoBV5ew3fqNw-DmxgpiRdx-Zc5-y6YIfTScG-_JwiKmWk78mG1ze35SfWMnZy0v1wwbOvmHBTCxY_o1YFNpoQ6cP4DVwODy4GI97oLXATqbTimAxa3_deOmVUrpM8Mon1opfjmOunjsCGM7ENsdFOp9r2tY1lyGNho0RqGa1Dp5gUYQOY7wmbC4-5CEIUQzA-UXmSK62tMUHoTfiIXsma-1JmdSlciqweRFdljas2Ya_dncw1pOWknXHzyIzd-Yy7GWHHI99u0YZnCDaIMdfR0yJXZVKmCpHu2yfa-B6WRhcnx9nx4ennLXhJevT0oESKbehU0_uwg6ilsu_qc_obwmPmcQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB1BKkEv_aBFDbRlD-XQw4Z4vc7avaG0UYAWISgIqQdrPxEtOFHsHNpf3xnHjmhVoXJdeVej2V3PW83MewDvSHExla7Pnc5SjhHK8tSJmAePO6Kd7uu6i__L8WB8Lg8vk8sVSNpeGDSixJXKOolPt3rqQsMwEO3R-Peptb3YEqNlsgqPKGtHlPn7w7P2B5zgmY0XyWQEj1KqJjv5rxUoJtnyj5jUmeDduhNjRk_hYmldXVryozevTM_--ou48cHmP4MnDepk-4tj8hxWfLEB68NW7O0FfKO0-5VnQz0jCTu25Dxn1wU7mE0KdvJzhuiUkc4nG13f3JYfWMvcyUn_w3rHLvDhTa1Y_JRaFth4QuQPVy_hfPTp63DMG90FrmOZVRwfhcYNnBNWahlUGmKdGhf1A47ZQWYJdFidGJ9oZVWmzECZRPiQRCZOhRLxJnSKSeFfAXP9yITI4ZsEoYomOJ_KkAaplNHaR6oLu-iVvLk3ZV6nxEWU14PoqrxxVRf22h3KbUNeThoaN_fMeL-cMV0Qd9zz7TZteo6gg5hzLZUY2SoXIpOIeLf-08YdWDv5OMo_HxwfbcNjkqWnuhIRvYZONZv7NwheKvO2Pqq_AVE56PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+Carrier+Transport+in+Iron+Pyrite+Thin+Films%3A+Disorder-Induced+Variable-Range+Hopping&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Shukla%2C+Sudhanshu&rft.au=Mathew%2C+Sinu&rft.au=Choe%2C+Hwan+Sung&rft.au=Chugh%2C+Manjusha&rft.date=2023-09-21&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=127&rft.issue=37&rft.spage=18619&rft.epage=18629&rft_id=info:doi/10.1021%2Facs.jpcc.3c03105&rft.externalDocID=a562794479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon