Charge Carrier Transport in Iron Pyrite Thin Films: Disorder-Induced Variable-Range Hopping
The origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films. Temperature-dependent resistivity measurements (10–400 K) were performed on polycrystalline and nanostructured thin films prepared by three different methods: (1) s...
Saved in:
Published in | Journal of physical chemistry. C Vol. 127; no. 37; pp. 18619 - 18629 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-7447 1932-7455 |
DOI | 10.1021/acs.jpcc.3c03105 |
Cover
Loading…
Abstract | The origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films. Temperature-dependent resistivity measurements (10–400 K) were performed on polycrystalline and nanostructured thin films prepared by three different methods: (1) spray pyrolysis, (2) hot-injection synthesized and spin-coated nanocubes, and (3) pulsed laser deposition. The films have a high hole density (1018–1019) cm–3 and low mobility (0.1–4 cm2 V–1 s–1) regardless of the method used for their preparation. The charge transport mechanism is determined to be thermally activated conduction (TAC) at near room temperature, with Mott-type variable-range hopping (VRH) of holes via localized states occurring at lower temperatures. The density functional theory (DFT) predicts that sulfur vacancy induces localized defect states within the band gap and the charge remains localized around the defect. The data indicates that the electronic properties including hopping transport in pyrite thin films can be correlated to sulfur vacancy-related defects. The results provide insights into the electronic properties of pyrite thin films and their implications for charge transport. |
---|---|
AbstractList | Here, the origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films. Temperature-dependent resistivity measurements (10-400 K) were performed on polycrystalline and nanostructured thin films prepared by three different methods: (1) spray pyrolysis, (2) hot-injection synthesized and spin-coated nanocubes, and (3) pulsed laser deposition. The films have a high hole density (1018-1019) cm-3 and low mobility (0.1-4 cm2 V-1 s-1) regardless of the method used for their preparation. The charge transport mechanism is determined to be thermally activated conduction (TAC) at near room temperature, with Mott-type variable-range hopping (VRH) of holes via localized states occurring at lower temperatures. The density functional theory (DFT) predicts that sulfur vacancy induces localized defect states within the band gap and the charge remains localized around the defect. The data indicates that the electronic properties including hopping transport in pyrite thin films can be correlated to sulfur vacancy-related defects. The results provide insights into the electronic properties of pyrite thin films and their implications for charge transport. The origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films. Temperature-dependent resistivity measurements (10–400 K) were performed on polycrystalline and nanostructured thin films prepared by three different methods: (1) spray pyrolysis, (2) hot-injection synthesized and spin-coated nanocubes, and (3) pulsed laser deposition. The films have a high hole density (1018–1019) cm–3 and low mobility (0.1–4 cm2 V–1 s–1) regardless of the method used for their preparation. The charge transport mechanism is determined to be thermally activated conduction (TAC) at near room temperature, with Mott-type variable-range hopping (VRH) of holes via localized states occurring at lower temperatures. The density functional theory (DFT) predicts that sulfur vacancy induces localized defect states within the band gap and the charge remains localized around the defect. The data indicates that the electronic properties including hopping transport in pyrite thin films can be correlated to sulfur vacancy-related defects. The results provide insights into the electronic properties of pyrite thin films and their implications for charge transport. |
Author | Choe, Hwan Sung Kühne, Thomas D. Venkatesan, Thirumalai Shukla, Sudhanshu Sritharan, Thirumany Mirhosseini, Hossein Ager, Joel W. Chugh, Manjusha Mathew, Sinu Wu, Junqiao |
AuthorAffiliation | School of Materials Science and Engineering Nanyang Technological University NUSNNI-NanoCore Lawrence Berkeley National Laboratory Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry Department of Materials Science and Engineering Berkeley Educational Alliance for Research in Singapore (BEARS), Ltd Materials Sciences Division |
AuthorAffiliation_xml | – name: Berkeley Educational Alliance for Research in Singapore (BEARS), Ltd – name: Lawrence Berkeley National Laboratory – name: School of Materials Science and Engineering – name: NUSNNI-NanoCore – name: Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry – name: Nanyang Technological University – name: Department of Materials Science and Engineering – name: Materials Sciences Division |
Author_xml | – sequence: 1 givenname: Sudhanshu orcidid: 0000-0001-8233-6963 surname: Shukla fullname: Shukla, Sudhanshu email: Sudhanshu.shukla@imec.be organization: Nanyang Technological University – sequence: 2 givenname: Sinu surname: Mathew fullname: Mathew, Sinu organization: NUSNNI-NanoCore – sequence: 3 givenname: Hwan Sung surname: Choe fullname: Choe, Hwan Sung organization: Lawrence Berkeley National Laboratory – sequence: 4 givenname: Manjusha orcidid: 0000-0002-9498-1078 surname: Chugh fullname: Chugh, Manjusha organization: Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry – sequence: 5 givenname: Thomas D. surname: Kühne fullname: Kühne, Thomas D. organization: Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry – sequence: 6 givenname: Hossein orcidid: 0000-0001-6179-1545 surname: Mirhosseini fullname: Mirhosseini, Hossein organization: Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry – sequence: 7 givenname: Junqiao orcidid: 0000-0002-1498-0148 surname: Wu fullname: Wu, Junqiao organization: Berkeley Educational Alliance for Research in Singapore (BEARS), Ltd – sequence: 8 givenname: Thirumalai surname: Venkatesan fullname: Venkatesan, Thirumalai organization: NUSNNI-NanoCore – sequence: 9 givenname: Thirumany orcidid: 0000-0002-6683-3924 surname: Sritharan fullname: Sritharan, Thirumany organization: Nanyang Technological University – sequence: 10 givenname: Joel W. orcidid: 0000-0001-9334-9751 surname: Ager fullname: Ager, Joel W. email: jwager@lbl.gov organization: Berkeley Educational Alliance for Research in Singapore (BEARS), Ltd |
BackLink | https://www.osti.gov/servlets/purl/2294045$$D View this record in Osti.gov |
BookMark | eNp9kM1PAjEQxRuDiYDePTaeXezHdst6MyhCQqIx6MXDptvtQsnSbqbLgf_eIsSDiZ5mMvPey8xvgHrOO4PQNSUjShi9UzqMNq3WI64Jp0ScoT7NOUtkKkTvp0_lBRqEsCFEcEJ5H31O1gpWBk8UgDWAl6BcaD102Do8B-_w6x5sZ_ByHQdT22zDPX60wUNlIJm7aqdNhT8UWFU2JnlTLobNfNtat7pE57Vqgrk61SF6nz4tJ7Nk8fI8nzwsEsXTvEsko2WVVRXTqUprOa65GpcVJXWc6SzXMuVUK1EaoaSWuSwzWQpmakFLPmaS8SG6Oeb60Nki6HiuXmvvnNFdwVieklREETmKNPgQwNRFC3arYF9QUhwIFpFgcSBYnAhGS_bLEqNVZ73rQNnmP-Pt0fi98Ttw8f2_5V8MdolF |
CitedBy_id | crossref_primary_10_1002_adfm_202416808 crossref_primary_10_1016_j_mseb_2024_117715 |
Cites_doi | 10.1016/0040-6090(92)90293-K 10.1021/nn101376u 10.1002/pssb.200778731 10.1016/S0927-0248(01)00053-8 10.1038/srep02092 10.1016/0040-6090(94)90723-4 10.1021/nl2045364 10.1039/c3ra47054g 10.1021/nn5040982 10.1103/PhysRevB.75.073202 10.1007/978-3-662-02403-4 10.1103/PhysRevB.13.5188 10.1103/PhysRevB.86.115207 10.1021/nn4003264 10.1016/0038-1098(74)90673-5 10.1021/es8019534 10.1103/PhysRevB.50.17953 10.1002/adma.201602222 10.1002/ente.201700638 10.1103/PhysRevMaterials.1.015402 10.1021/acs.chemmater.0c01669 10.1021/nn305833u 10.1103/PhysRevB.70.115317 10.1021/ja307412e 10.1039/c3ee43169j 10.1088/0022-3727/46/15/155107 10.1088/0953-8984/25/4/045004 10.1149/2.028311jss 10.1016/0040-6090(94)90058-2 10.1021/acsnano.6b00065 10.1021/cm0210243 10.1103/PhysRevB.57.1505 10.1021/nl501942w 10.1021/jz301023c 10.1103/PhysRevB.85.085203 10.1016/0039-6028(94)90230-5 10.1016/j.electacta.2014.02.048 10.1021/acsami.9b01335 10.1016/j.joule.2019.06.015 10.1021/acsami.5b03422 10.1021/ja311974n 10.1016/0040-6090(92)90721-M 10.1103/PhysRevB.68.035335 10.1021/acs.jpcc.5b11204 10.1021/jp3111106 10.1002/adma.201905653 10.1016/j.commatsci.2005.04.010 10.1093/acprof:oso/9780198567561.001.0001 10.1103/PhysRevB.45.13244 10.1088/0022-3719/19/14/002 10.1103/PhysRevB.59.1758 10.1103/PhysRevMaterials.1.065403 10.1021/cm304152b 10.1016/0379-6787(84)90009-7 10.1016/j.susc.2013.08.014 10.1021/nn3029502 10.1002/aenm.201200043 10.1103/PhysRevB.54.11169 10.1021/ja509142w 10.1088/0953-8984/25/46/465801 10.1103/PhysRevB.4.2612 10.1016/0165-1633(86)90030-4 10.1021/nl202902z 10.1016/0925-8388(92)90260-G 10.1016/0927-0248(93)90095-K 10.1103/PhysRevB.43.11926 10.1016/j.pmatsci.2014.12.001 10.1080/13642810108205796 10.1021/ja1096368 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1021/acs.jpcc.3c03105 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 18629 |
ExternalDocumentID | 2294045 10_1021_acs_jpcc_3c03105 a562794479 |
GroupedDBID | .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFRP ABMVS ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS UI2 UKR VF5 VG9 VQA W1F 53G AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ ROL OIOZB OTOTI |
ID | FETCH-LOGICAL-a349t-721bd6dd2c4a4f78f3a8bd10f6ddc69c7431ca5be5a7c797b67b52ef51b382723 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Mon Sep 16 02:21:33 EDT 2024 Thu Apr 24 23:12:42 EDT 2025 Tue Jul 01 00:17:19 EDT 2025 Fri Sep 22 03:16:44 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a349t-721bd6dd2c4a4f78f3a8bd10f6ddc69c7431ca5be5a7c797b67b52ef51b382723 |
Notes | USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE) AC02-05CH11231 |
ORCID | 0000-0002-6683-3924 0000-0001-6179-1545 0000-0002-9498-1078 0000-0001-8233-6963 0000-0002-1498-0148 0000-0001-9334-9751 0000000214980148 0000000266833924 0000000294981078 0000000161791545 0000000193349751 0000000182336963 |
OpenAccessLink | https://www.osti.gov/servlets/purl/2294045 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_2294045 crossref_primary_10_1021_acs_jpcc_3c03105 crossref_citationtrail_10_1021_acs_jpcc_3c03105 acs_journals_10_1021_acs_jpcc_3c03105 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-21 |
PublicationDateYYYYMMDD | 2023-09-21 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 Gantmakher V. F. (ref22/cit22) 2005 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 Shklovskii B. I. (ref57/cit57) 1984 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 Shore K. A. (ref19/cit19) 2014; 55 ref69/cit69 ref12/cit12 ref15/cit15 Schieck R. (ref62/cit62) 1990; 5 ref66/cit66 ref41/cit41 ref58/cit58 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref63/cit63 doi: 10.1016/0040-6090(92)90293-K – ident: ref21/cit21 doi: 10.1021/nn101376u – ident: ref50/cit50 doi: 10.1002/pssb.200778731 – volume: 55 start-page: 337 volume-title: Contemporary Physics year: 2014 ident: ref19/cit19 – ident: ref23/cit23 doi: 10.1016/S0927-0248(01)00053-8 – ident: ref40/cit40 doi: 10.1038/srep02092 – ident: ref68/cit68 doi: 10.1016/0040-6090(94)90723-4 – ident: ref37/cit37 doi: 10.1021/nl2045364 – ident: ref42/cit42 doi: 10.1039/c3ra47054g – ident: ref17/cit17 doi: 10.1021/nn5040982 – ident: ref25/cit25 doi: 10.1103/PhysRevB.75.073202 – volume-title: Electronic Properties of Doped Semiconductors year: 1984 ident: ref57/cit57 doi: 10.1007/978-3-662-02403-4 – ident: ref49/cit49 doi: 10.1103/PhysRevB.13.5188 – ident: ref24/cit24 doi: 10.1103/PhysRevB.86.115207 – ident: ref32/cit32 doi: 10.1021/nn4003264 – ident: ref67/cit67 doi: 10.1016/0038-1098(74)90673-5 – ident: ref2/cit2 doi: 10.1021/es8019534 – ident: ref45/cit45 doi: 10.1103/PhysRevB.50.17953 – ident: ref43/cit43 doi: 10.1002/adma.201602222 – ident: ref16/cit16 doi: 10.1002/ente.201700638 – ident: ref27/cit27 doi: 10.1103/PhysRevMaterials.1.015402 – ident: ref30/cit30 doi: 10.1021/acs.chemmater.0c01669 – volume: 5 start-page: 1567 volume-title: Journal of Materials Research year: 1990 ident: ref62/cit62 – ident: ref26/cit26 doi: 10.1021/nn305833u – ident: ref55/cit55 doi: 10.1103/PhysRevB.70.115317 – ident: ref51/cit51 doi: 10.1021/ja307412e – ident: ref11/cit11 doi: 10.1039/c3ee43169j – ident: ref54/cit54 doi: 10.1088/0022-3727/46/15/155107 – ident: ref58/cit58 doi: 10.1088/0953-8984/25/4/045004 – ident: ref65/cit65 doi: 10.1149/2.028311jss – ident: ref33/cit33 doi: 10.1016/0040-6090(94)90058-2 – ident: ref9/cit9 doi: 10.1021/acsnano.6b00065 – ident: ref66/cit66 doi: 10.1021/cm0210243 – ident: ref47/cit47 doi: 10.1103/PhysRevB.57.1505 – ident: ref12/cit12 doi: 10.1021/nl501942w – ident: ref6/cit6 doi: 10.1021/jz301023c – ident: ref56/cit56 doi: 10.1103/PhysRevB.85.085203 – ident: ref10/cit10 doi: 10.1016/0039-6028(94)90230-5 – ident: ref60/cit60 doi: 10.1016/j.electacta.2014.02.048 – ident: ref29/cit29 doi: 10.1021/acsami.9b01335 – ident: ref5/cit5 doi: 10.1016/j.joule.2019.06.015 – ident: ref13/cit13 doi: 10.1021/acsami.5b03422 – ident: ref14/cit14 doi: 10.1021/ja311974n – ident: ref34/cit34 doi: 10.1016/0040-6090(92)90721-M – ident: ref71/cit71 doi: 10.1103/PhysRevB.68.035335 – ident: ref69/cit69 doi: 10.1021/acs.jpcc.5b11204 – ident: ref39/cit39 doi: 10.1021/jp3111106 – ident: ref70/cit70 doi: 10.1002/adma.201905653 – ident: ref61/cit61 doi: 10.1016/j.commatsci.2005.04.010 – volume-title: Electrons and Disorder In Solids year: 2005 ident: ref22/cit22 doi: 10.1093/acprof:oso/9780198567561.001.0001 – ident: ref48/cit48 doi: 10.1103/PhysRevB.45.13244 – ident: ref53/cit53 doi: 10.1088/0022-3719/19/14/002 – ident: ref46/cit46 doi: 10.1103/PhysRevB.59.1758 – ident: ref28/cit28 doi: 10.1103/PhysRevMaterials.1.065403 – ident: ref36/cit36 doi: 10.1021/cm304152b – ident: ref3/cit3 doi: 10.1016/0379-6787(84)90009-7 – ident: ref8/cit8 doi: 10.1016/j.susc.2013.08.014 – ident: ref35/cit35 doi: 10.1021/nn3029502 – ident: ref31/cit31 doi: 10.1002/aenm.201200043 – ident: ref44/cit44 doi: 10.1103/PhysRevB.54.11169 – ident: ref4/cit4 doi: 10.1021/ja509142w – ident: ref15/cit15 doi: 10.1088/0953-8984/25/46/465801 – ident: ref18/cit18 doi: 10.1103/PhysRevB.4.2612 – ident: ref7/cit7 doi: 10.1016/0165-1633(86)90030-4 – ident: ref38/cit38 doi: 10.1021/nl202902z – ident: ref64/cit64 doi: 10.1016/0925-8388(92)90260-G – ident: ref1/cit1 doi: 10.1016/0927-0248(93)90095-K – ident: ref59/cit59 doi: 10.1103/PhysRevB.43.11926 – ident: ref20/cit20 doi: 10.1016/j.pmatsci.2014.12.001 – ident: ref52/cit52 doi: 10.1080/13642810108205796 – ident: ref41/cit41 doi: 10.1021/ja1096368 |
SSID | ssj0053013 |
Score | 2.4394283 |
Snippet | The origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films. Temperature-dependent... Here, the origin of p-type conductivity and the mechanism responsible for low carrier mobility were investigated in pyrite (FeS2) thin films.... |
SourceID | osti crossref acs |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 18619 |
SubjectTerms | C: Physical Properties of Materials and Interfaces charge transport conduction mechanism defects iron pyrite MATERIALS SCIENCE solar cells thin films |
Title | Charge Carrier Transport in Iron Pyrite Thin Films: Disorder-Induced Variable-Range Hopping |
URI | http://dx.doi.org/10.1021/acs.jpcc.3c03105 https://www.osti.gov/servlets/purl/2294045 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCjigF5AMcOLg0jhM73FBFVZBAiE1IHCJvqdjSqkkP8PV4srALcbViyxqPM280nvcQ2gHFRcFMhxgZCeIilCbCUJ8k1p2INLIjiy7-07Owf81OboPbD5qc7xV86u1LnbUfRlq3fQ00lsE0mqGh4MCTf9i9rP-6gXNUv6wgO8TIGK9Kkr-tAIFIZ18CUWPoLtSnwNJbKBWKsoKPEN6TPLYnuWrr159sjf_Y8yKar_AlPiwdYglN2XQZzXZrWbcVdAcF9oHFXTkGsTr8zm6O71N8PB6m-Pxl7HAoBkVP3Lt_es4OcM3RSUDpQ1uDb1yKDU1X5AKaE3B_CDQPg1V03Tu66vZJpbBApM-inLj0T5nQGKqZZAkXiS-FMl4ncWM6jDTACy0DZQPJNY-4CrkKqE0CT_mCcuqvoUY6TO06wqbjqcQzLvtwoEQCcBcsEQnjXElpPd5Eu84qcXVDsrgoflMvLgadqeLKVE20Xx9LrCuaclDLePpjxt77jFFJ0fHHty046djBC-DI1fCYSOcxpRFz2Hbjn3tsoTlQnYdnI9TbRI18PLFbDpvkartwyjd_2N4Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3R5UAvFGgRFGh9aA8cvKwdZ530hlasFgqo4qNC6iHyV1a0kEWbcGh_fWeyyZZWFYKrFVujsZ15o_G8B_CBFBcT5XvcmzThGKEcT7yMeB5wR4w3PVN38Z-c9keX6ugqvloA0fbCoBElrlTWRfw_7AJij8a-3znXjRyxWcYvYBGxiCS6_P3BefvzjfG8RrNCMgJHpXRTmfzfChSPXPlXPOpM8F49iC_DV3A2t6x-VvKje1_Zrvv1D2njs0xfgeUGbbL92fFYhYVQrMHSoBV5ew3fqNw-DmxgpiRdx-Zc5-y6YIfTScG-_JwiKmWk78mG1ze35SfWMnZy0v1wwbOvmHBTCxY_o1YFNpoQ6cP4DVwODy4GI97oLXATqbTimAxa3_deOmVUrpM8Mon1opfjmOunjsCGM7ENsdFOp9r2tY1lyGNho0RqGa1Dp5gUYQOY7wmbC4-5CEIUQzA-UXmSK62tMUHoTfiIXsma-1JmdSlciqweRFdljas2Ya_dncw1pOWknXHzyIzd-Yy7GWHHI99u0YZnCDaIMdfR0yJXZVKmCpHu2yfa-B6WRhcnx9nx4ennLXhJevT0oESKbehU0_uwg6ilsu_qc_obwmPmcQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB1BKkEv_aBFDbRlD-XQw4Z4vc7avaG0UYAWISgIqQdrPxEtOFHsHNpf3xnHjmhVoXJdeVej2V3PW83MewDvSHExla7Pnc5SjhHK8tSJmAePO6Kd7uu6i__L8WB8Lg8vk8sVSNpeGDSixJXKOolPt3rqQsMwEO3R-Peptb3YEqNlsgqPKGtHlPn7w7P2B5zgmY0XyWQEj1KqJjv5rxUoJtnyj5jUmeDduhNjRk_hYmldXVryozevTM_--ou48cHmP4MnDepk-4tj8hxWfLEB68NW7O0FfKO0-5VnQz0jCTu25Dxn1wU7mE0KdvJzhuiUkc4nG13f3JYfWMvcyUn_w3rHLvDhTa1Y_JRaFth4QuQPVy_hfPTp63DMG90FrmOZVRwfhcYNnBNWahlUGmKdGhf1A47ZQWYJdFidGJ9oZVWmzECZRPiQRCZOhRLxJnSKSeFfAXP9yITI4ZsEoYomOJ_KkAaplNHaR6oLu-iVvLk3ZV6nxEWU14PoqrxxVRf22h3KbUNeThoaN_fMeL-cMV0Qd9zz7TZteo6gg5hzLZUY2SoXIpOIeLf-08YdWDv5OMo_HxwfbcNjkqWnuhIRvYZONZv7NwheKvO2Pqq_AVE56PQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+Carrier+Transport+in+Iron+Pyrite+Thin+Films%3A+Disorder-Induced+Variable-Range+Hopping&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Shukla%2C+Sudhanshu&rft.au=Mathew%2C+Sinu&rft.au=Choe%2C+Hwan+Sung&rft.au=Chugh%2C+Manjusha&rft.date=2023-09-21&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=127&rft.issue=37&rft.spage=18619&rft.epage=18629&rft_id=info:doi/10.1021%2Facs.jpcc.3c03105&rft.externalDocID=a562794479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |