Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along Crotalus Dispersal in South America

We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 9; no. 1; pp. 528 - 544
Main Authors Calvete, Juan J, Sanz, Libia, Cid, Pedro, de la Torre, Pilar, Flores-Díaz, Marietta, Dos Santos, M. Cristina, Borges, Adolfo, Bremo, Adolfo, Angulo, Yamileth, Lomonte, Bruno, Alape-Girón, Alberto, Gutiérrez, José María
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.01.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A2 (PLA2 crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn2+-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD50), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North−South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD50 of the venom and the crotoxin + crotamine concentration) along the North−South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom.
AbstractList We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A2 (PLA2 crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn2+-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD50), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North−South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD50 of the venom and the crotoxin + crotamine concentration) along the North−South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom.
We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A(2) (PLA(2) crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn(2+)-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD(50)), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North-South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD(50) of the venom and the crotoxin + crotamine concentration) along the North-South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom.We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A(2) (PLA(2) crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn(2+)-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD(50)), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North-South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD(50) of the venom and the crotoxin + crotamine concentration) along the North-South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom.
We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A(2) (PLA(2) crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn(2+)-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD(50)), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North-South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD(50) of the venom and the crotoxin + crotamine concentration) along the North-South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom.
Author Sanz, Libia
Calvete, Juan J
Angulo, Yamileth
Dos Santos, M. Cristina
Flores-Díaz, Marietta
de la Torre, Pilar
Cid, Pedro
Lomonte, Bruno
Gutiérrez, José María
Borges, Adolfo
Bremo, Adolfo
Alape-Girón, Alberto
Author_xml – sequence: 1
  givenname: Juan J
  surname: Calvete
  fullname: Calvete, Juan J
  email: jcalvete@ibv.csic.es
– sequence: 2
  givenname: Libia
  surname: Sanz
  fullname: Sanz, Libia
– sequence: 3
  givenname: Pedro
  surname: Cid
  fullname: Cid, Pedro
– sequence: 4
  givenname: Pilar
  surname: de la Torre
  fullname: de la Torre, Pilar
– sequence: 5
  givenname: Marietta
  surname: Flores-Díaz
  fullname: Flores-Díaz, Marietta
– sequence: 6
  givenname: M. Cristina
  surname: Dos Santos
  fullname: Dos Santos, M. Cristina
– sequence: 7
  givenname: Adolfo
  surname: Borges
  fullname: Borges, Adolfo
– sequence: 8
  givenname: Adolfo
  surname: Bremo
  fullname: Bremo, Adolfo
– sequence: 9
  givenname: Yamileth
  surname: Angulo
  fullname: Angulo, Yamileth
– sequence: 10
  givenname: Bruno
  surname: Lomonte
  fullname: Lomonte, Bruno
– sequence: 11
  givenname: Alberto
  surname: Alape-Girón
  fullname: Alape-Girón, Alberto
– sequence: 12
  givenname: José María
  surname: Gutiérrez
  fullname: Gutiérrez, José María
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19863078$$D View this record in MEDLINE/PubMed
BookMark eNptkctuFDEQRS2UiDxgwQ8gbxBiMYm73Q97OWqeUgQRCWxb1XYN4-C2G9uNkh_le_BkkoxA2VTV4txbpbpHZM95h4S8KNhJwcridAqSMdFW8gk5LGpeL7hk7d79LCQ_IEcxXjFW1C3jT8lBIUXDWSsOyZ8LBz-RfkfnR6Mi9Sua1kg7dCmApcsRg1Hg6FdIyWK8hbvgE9g50mjGXMHpW82Fn9N6p3ig9BxMjHno_DhZvKbn3rgUafL0M86Z8tdGmXRDYeNFlxqmZH4jPQfUfvRhWhtFLwPmNWC9-7FzfmvihCHmO437d_0zsr8CG_H5XT8m396_u-w-Ls6-fPjULc8WwCuZFk0jVhUbBK8UslI3SpdNOeih0kxLXtYAZcukBjWIomUl1A1ADW3NRCN5XQp-TF5vfafgf80YUz-aqNBacOjn2LecN0wIUWTy5R05DyPqfgpmhHDT30eRgTdbQAUfY8DVDmH9Jub-IebMnv7H5gdCMn6TmrGPKl5tFaBif-Xn4PJbHuH-AldkuYY
CitedBy_id crossref_primary_10_1016_j_toxicon_2021_01_006
crossref_primary_10_1016_j_cytogfr_2021_05_003
crossref_primary_10_1016_j_jprot_2011_12_016
crossref_primary_10_1016_j_jprot_2018_09_002
crossref_primary_10_1016_j_toxicon_2016_05_005
crossref_primary_10_1016_j_biologicals_2014_09_001
crossref_primary_10_1016_j_toxicon_2023_107307
crossref_primary_10_3390_toxins14080532
crossref_primary_10_3390_toxins14120875
crossref_primary_10_3390_toxins16110458
crossref_primary_10_1016_j_bmcl_2017_03_007
crossref_primary_10_1016_j_jprot_2012_09_003
crossref_primary_10_1093_icb_icaa083
crossref_primary_10_1016_j_jprot_2016_10_006
crossref_primary_10_1016_j_jprot_2014_09_009
crossref_primary_10_1042_BCJ20160577
crossref_primary_10_1016_j_molimm_2020_01_012
crossref_primary_10_1016_j_toxicon_2014_05_011
crossref_primary_10_1016_j_toxicon_2020_03_006
crossref_primary_10_1534_genetics_114_172437
crossref_primary_10_1643_OT_12_041
crossref_primary_10_1016_j_biocel_2018_09_011
crossref_primary_10_1016_j_toxicon_2010_02_028
crossref_primary_10_1021_acs_jproteome_8b00610
crossref_primary_10_1016_j_toxcx_2020_100044
crossref_primary_10_1016_j_toxcx_2019_100007
crossref_primary_10_1016_j_toxcx_2020_100047
crossref_primary_10_3390_toxins12070455
crossref_primary_10_1021_pr901027r
crossref_primary_10_1016_j_euprot_2015_05_006
crossref_primary_10_1093_trstmh_tru102
crossref_primary_10_3390_toxins13060372
crossref_primary_10_1016_j_toxicon_2021_04_005
crossref_primary_10_1016_j_cub_2018_02_031
crossref_primary_10_1534_g3_115_020578
crossref_primary_10_1016_j_toxcx_2020_100053
crossref_primary_10_1111_j_1365_294X_2011_05426_x
crossref_primary_10_1016_j_jprot_2013_01_021
crossref_primary_10_3390_toxins8070210
crossref_primary_10_1016_j_colsurfb_2020_111128
crossref_primary_10_3390_toxins11010005
crossref_primary_10_1016_j_toxicon_2021_09_006
crossref_primary_10_1016_j_actatropica_2021_106119
crossref_primary_10_1016_j_toxicon_2020_07_001
crossref_primary_10_3109_15563650_2013_802796
crossref_primary_10_1016_j_toxicon_2023_107300
crossref_primary_10_1016_j_toxrep_2024_101795
crossref_primary_10_1016_j_toxcx_2020_100061
crossref_primary_10_3390_toxins9050163
crossref_primary_10_3389_fimmu_2021_659515
crossref_primary_10_1371_journal_pntd_0005768
crossref_primary_10_1016_j_toxicon_2013_03_020
crossref_primary_10_1038_s41598_024_60885_y
crossref_primary_10_1021_pr201021d
crossref_primary_10_1186_1471_2164_15_1061
crossref_primary_10_1016_j_toxicon_2021_10_008
crossref_primary_10_1016_j_toxicon_2015_08_010
crossref_primary_10_1590_1678_9199_jvatitd_2019_0053
crossref_primary_10_3390_toxins8060188
crossref_primary_10_1016_j_toxicon_2024_107748
crossref_primary_10_3390_toxins14080572
crossref_primary_10_1016_j_toxcx_2021_100070
crossref_primary_10_1038_s41598_018_30578_4
crossref_primary_10_1021_pr100545d
crossref_primary_10_1016_j_jprot_2012_05_026
crossref_primary_10_1080_08923973_2020_1810272
crossref_primary_10_3390_toxins16010002
crossref_primary_10_1186_s12915_024_01960_8
crossref_primary_10_1111_mec_13240
crossref_primary_10_3390_toxins10010035
crossref_primary_10_1016_j_toxicon_2016_08_001
crossref_primary_10_3389_fimmu_2021_612846
crossref_primary_10_1016_j_bbagen_2016_08_003
crossref_primary_10_1002_pmic_201100287
crossref_primary_10_1093_mollus_eyaa020
crossref_primary_10_1016_j_toxicon_2024_107746
crossref_primary_10_1093_molbev_msy207
crossref_primary_10_1016_j_toxicon_2018_04_015
crossref_primary_10_1016_j_toxicon_2021_04_016
crossref_primary_10_1186_s40409_017_0117_8
crossref_primary_10_1534_genetics_115_180547
crossref_primary_10_1016_j_toxicon_2022_05_001
crossref_primary_10_1016_j_jprot_2010_06_001
crossref_primary_10_3390_toxins11010053
crossref_primary_10_1186_1471_2164_12_259
crossref_primary_10_3390_toxins10020085
crossref_primary_10_1016_j_cbpc_2017_10_008
crossref_primary_10_1021_acs_jproteome_7b00414
crossref_primary_10_7717_peerj_3249
crossref_primary_10_3390_reports3020009
crossref_primary_10_1016_j_jprot_2018_02_020
crossref_primary_10_1016_j_toxicon_2025_108236
crossref_primary_10_3390_toxins8060178
crossref_primary_10_1016_j_toxicon_2018_04_030
crossref_primary_10_3390_toxins10120501
crossref_primary_10_1093_molbev_msx334
crossref_primary_10_1371_journal_pntd_0001526
crossref_primary_10_1016_j_ijbiomac_2020_05_171
crossref_primary_10_1111_jeb_12001
crossref_primary_10_1016_j_toxicon_2017_06_005
crossref_primary_10_1016_j_peptides_2011_10_011
crossref_primary_10_1073_pnas_2313440121
crossref_primary_10_1186_s40409_017_0118_7
crossref_primary_10_1016_j_biochi_2021_10_006
crossref_primary_10_1016_j_jprot_2017_02_015
crossref_primary_10_1016_j_toxicon_2009_12_015
crossref_primary_10_1016_j_jprot_2014_04_011
crossref_primary_10_1016_j_toxicon_2015_10_024
crossref_primary_10_3389_fimmu_2020_617429
crossref_primary_10_1155_2019_2745286
crossref_primary_10_1016_j_jprot_2011_09_003
crossref_primary_10_1016_j_toxicon_2013_05_006
crossref_primary_10_1371_journal_pntd_0002442
crossref_primary_10_1016_j_bbagen_2016_12_022
crossref_primary_10_1586_epr_11_61
crossref_primary_10_3724_SP_J_1245_2014_00119
crossref_primary_10_15446_rev_colomb_biote_v23n1_94211
crossref_primary_10_1016_j_jprot_2011_06_013
crossref_primary_10_1093_trstmh_traa081
crossref_primary_10_11144_Javeriana_umed61_1_anti
crossref_primary_10_1016_j_jprot_2021_104315
crossref_primary_10_1016_j_toxicon_2010_07_001
crossref_primary_10_1016_j_tree_2012_10_020
crossref_primary_10_3390_tropicalmed3020066
crossref_primary_10_1371_journal_pone_0193105
crossref_primary_10_1016_j_bbapap_2014_09_012
crossref_primary_10_1016_j_toxicon_2015_01_006
crossref_primary_10_1186_1471_2164_14_394
crossref_primary_10_1186_s12864_020_6545_9
crossref_primary_10_1016_j_toxicon_2010_11_016
crossref_primary_10_1016_j_ijbiomac_2024_135581
crossref_primary_10_1016_j_toxicon_2015_02_015
crossref_primary_10_2174_0126661217296708240506074324
crossref_primary_10_1086_714936
crossref_primary_10_1016_j_toxicon_2017_09_002
crossref_primary_10_1016_j_toxicon_2019_10_242
crossref_primary_10_1016_j_biochi_2014_10_010
crossref_primary_10_1016_j_biologicals_2011_02_005
crossref_primary_10_3390_toxins14040235
crossref_primary_10_1016_j_jprot_2012_08_008
crossref_primary_10_1371_journal_pone_0080199
crossref_primary_10_1016_j_biochi_2019_05_009
crossref_primary_10_1016_j_jprot_2013_10_036
crossref_primary_10_1021_pr901042p
crossref_primary_10_3390_toxins15110658
crossref_primary_10_1016_j_jprot_2020_103865
crossref_primary_10_3390_toxins12100659
crossref_primary_10_1039_c1mb05309d
crossref_primary_10_1002_jbt_21553
crossref_primary_10_1016_j_toxicon_2017_08_016
crossref_primary_10_1073_pnas_2014634118
crossref_primary_10_3390_toxins6123388
crossref_primary_10_1002_bies_201000117
crossref_primary_10_1016_j_cbpc_2021_109034
crossref_primary_10_1016_j_jprot_2013_05_024
crossref_primary_10_1016_j_toxicon_2020_08_029
crossref_primary_10_1590_0037_8682_0526_2018
crossref_primary_10_1016_j_jprot_2011_05_027
crossref_primary_10_1016_j_jprot_2011_01_003
crossref_primary_10_1016_j_jprot_2015_03_015
crossref_primary_10_1016_j_toxicon_2021_12_008
crossref_primary_10_1016_j_jprot_2014_01_019
crossref_primary_10_2174_1568026619666190725094851
crossref_primary_10_1371_journal_pone_0226807
crossref_primary_10_1016_j_jprot_2013_11_005
crossref_primary_10_1016_j_jprot_2013_11_001
crossref_primary_10_1016_j_toxicon_2015_01_010
crossref_primary_10_22159_ijcpr_2022v14i1_44106
crossref_primary_10_1016_j_jprot_2014_01_013
crossref_primary_10_3109_15563650_2016_1156688
crossref_primary_10_3390_toxins12020131
crossref_primary_10_1016_j_toxicon_2018_02_053
crossref_primary_10_1016_j_toxicon_2012_11_010
crossref_primary_10_1643_OT_13_005
crossref_primary_10_1186_s13227_020_00171_w
crossref_primary_10_3389_fimmu_2021_661457
crossref_primary_10_1016_j_cbpc_2024_110019
crossref_primary_10_1016_j_toxicon_2012_09_004
crossref_primary_10_3390_toxins14070472
crossref_primary_10_1016_j_toxicon_2012_11_016
crossref_primary_10_1590_1678_9199_jvatitd_2020_0016
crossref_primary_10_1038_s41598_021_02552_0
crossref_primary_10_1016_j_toxicon_2017_08_009
crossref_primary_10_1016_j_toxicon_2024_108211
crossref_primary_10_1016_j_jprot_2014_02_021
crossref_primary_10_1016_j_jprot_2014_02_020
crossref_primary_10_1016_j_toxicon_2019_03_027
crossref_primary_10_1016_j_jprot_2013_04_003
crossref_primary_10_3390_ph18010054
crossref_primary_10_1186_1471_2164_14_234
crossref_primary_10_1016_j_toxicon_2017_10_009
crossref_primary_10_3390_toxins10070271
crossref_primary_10_3109_15563650_2014_925561
crossref_primary_10_1016_j_biochi_2015_11_031
crossref_primary_10_3390_toxins15080487
crossref_primary_10_1021_pr101040f
crossref_primary_10_1586_14789450_2014_900447
crossref_primary_10_1016_j_toxicon_2012_11_027
crossref_primary_10_1016_j_cbpc_2018_03_008
crossref_primary_10_1111_evo_14239
Cites_doi 10.1126/science.115.2994.541.b
10.1016/j.jprot.2007.10.004
10.1016/j.toxicon.2006.01.007
10.1096/fj.08-113555
10.1016/0041-0101(85)90367-8
10.1016/0041-0101(91)90201-2
10.1016/S0041-0101(98)00248-7
10.2307/1447591
10.1021/pr8000139
10.1016/j.jprot.2008.05.003
10.1016/S0041-0101(98)00117-2
10.1002/jms.1242
10.1016/0041-0101(91)90116-9
10.1126/science.129.3359.1361
10.1016/j.jprot.2009.01.008
10.1590/S0036-46651992000400013
10.1016/j.toxicon.2007.03.012
10.2307/1437993
10.1016/j.febslet.2009.03.029
10.1093/sysbio/42.3.356
10.1016/j.toxicon.2005.02.029
10.1021/pr8003826
10.1016/j.toxicon.2006.09.005
10.1093/oxfordjournals.molbev.a025932
10.1643/HA03-037.1
10.1111/j.1365-294X.2006.03057.x
10.1016/j.toxicon.2004.05.011
10.1042/bj20031860
10.1111/j.1365-2699.2007.01707.x
10.1086/285437
10.1111/j.1476-5381.1978.tb07811.x
10.1670/103-03N
10.1093/icb/23.2.431
10.1016/0041-0101(92)90505-Y
10.1590/S0001-37652002000100005
10.1016/S0041-0101(00)00155-0
10.1021/pr900249q
10.1093/nar/25.17.3389
10.1242/jeb.006965
10.1016/j.ympev.2005.12.014
10.1525/9780520935433
10.1016/j.toxicon.2009.01.034
10.1016/j.toxicon.2005.06.009
10.1002/pmic.200300415
10.1186/1477-5956-4-11
10.1016/S0041-0101(96)00077-3
10.1016/j.jprot.2008.10.003
10.1016/0041-0101(88)90248-6
10.1371/journal.pmed.0030150
10.1021/pr700610z
10.1097/MBC.0b013e328304e02e
10.2307/1445927
10.1016/0041-0101(94)90087-6
10.1655/0018-0831(2002)058[0303:ANISOP]2.0.CO;2
10.1643/0045-8511(2006)6[818:COPVIT]2.0.CO;2
10.1098/rspb.2009.0048
10.1016/j.toxicon.2005.02.012
10.1016/S0041-0101(03)00171-5
10.1201/9781420008661.ch24
10.1111/j.1365-2699.2008.01991.x
10.1016/0041-0101(93)90211-Z
10.1080/01650529509360946
10.1016/j.jprot.2009.01.005
10.1111/j.1096-3642.1922.tb00464.x
10.1101/gr.3228405
10.1016/j.toxicon.2004.03.011
10.1590/S1678-91992003000200005
10.1074/jbc.M605850200
10.1038/379537a0
10.1016/0041-0101(83)90094-6
10.1038/nbt0207-173
10.1016/j.toxicon.2005.06.008
10.1021/pr800332p
10.1016/j.toxicon.2008.05.023
10.1016/j.toxicon.2007.01.010
10.1111/j.1365-294X.2005.02471.x
10.1016/S0041-0101(98)00121-4
10.5962/bhl.part.9599
10.1093/molbev/msh091
10.1016/j.jprot.2009.07.013
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
Copyright_xml – notice: Copyright © 2009 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/pr9008749
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Venomics of the Tropical Rattlesnake Complex
EISSN 1535-3907
EndPage 544
ExternalDocumentID 19863078
10_1021_pr9008749
c264713688
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations South America
GeographicLocations_xml – name: South America
GroupedDBID -
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ZA5
---
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
6TJ
AFFNX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a349t-668f40b834ce02d6cd262bdb4d0d9325aa2709dacb81702a56aa5a75086935283
IEDL.DBID ACS
ISSN 1535-3893
1535-3907
IngestDate Fri Jul 11 15:32:55 EDT 2025
Thu Jan 02 22:03:37 EST 2025
Tue Jul 01 01:36:18 EDT 2025
Thu Apr 24 23:07:35 EDT 2025
Thu Aug 27 13:42:44 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Crotalus durissus
antibothropic and anticrotalic ABC antivenom
snake venom protein families
Crotalus simus
polyvalent (Crotalinae) ICP antivenom
crotoxin
paedomorphism
snake venomics
ontogenetic shift
antivenomics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a349t-668f40b834ce02d6cd262bdb4d0d9325aa2709dacb81702a56aa5a75086935283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10669/29333
PMID 19863078
PQID 733608881
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_733608881
pubmed_primary_19863078
crossref_primary_10_1021_pr9008749
crossref_citationtrail_10_1021_pr9008749
acs_journals_10_1021_pr9008749
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-04
PublicationDateYYYYMMDD 2010-01-04
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of proteome research
PublicationTitleAlternate J. Proteome Res
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Saravia P. (ref27/cit27) 2002; 50
Dos-Santos M. C. (ref43/cit43) 1993; 31
De Oliveira R. C. (ref102/cit102) 2009
Gutiérrez J. M. (ref98/cit98) 2006; 3
Marques O. A. V. (ref89/cit89) 2002; 58
Rojas G. (ref51/cit51) 1994; 32
Starkov V. G. (ref97/cit97) 2007; 49
Fry B. G. (ref64/cit64) 2004; 21
Schenberg S. (ref87/cit87) 1959; 129
Campbell J. A. (ref15/cit15) 2004
Mackessy S. P. (ref71/cit71) 2008
Greene H. (ref11/cit11) 1997
Sanz L. (ref57/cit57) 2008; 71
Golding G. B. (ref20/cit20) 1998; 15
Gutiérrez J. M. (ref29/cit29) 2009
ref74/cit74
Klauber L. M. (ref14/cit14) 1997
Azevedo-Marques M. M. (ref38/cit38) 2009
Bober M. A. (ref86/cit86) 1988; 26
Murphy R. W. (ref7/cit7) 2002
Mackessy S. P. (ref70/cit70) 2003; 2003
Calvete J. J. (ref23/cit23) 2009; 583
Fan H. W. (ref34/cit34) 1995
Aguilar I. (ref61/cit61) 2007; 50
Alape-Girón A. (ref55/cit55) 2008; 7
Gutiérrez J. M. (ref67/cit67) 2005; 45
Gutiérrez J. M. (ref99/cit99) 2007; 49
Dos-Santos M. C. (ref49/cit49) 2005; 46
Warrell D. A. (ref25/cit25) 2004
Mackessy S. P. (ref80/cit80) 2006; 47
Núñez V. (ref47/cit47) 2009; 73
Greene H. W. (ref21/cit21) 1983; 23
Parkinson C. L. (ref12/cit12) 2002
Santoro M. L. (ref36/cit36) 1999; 122
Gibbs H. L. (ref78/cit78) 2009; 53
Calvete J. J. (ref110/cit110) 2009; 8
Bolaños R. (ref101/cit101) 1982; 3
Azofeifa-Cordero A (ref107/cit107) 2008; 52
Wüster W. (ref82/cit82) 1999; 37
Beghini D. G. (ref109/cit109) 2004; 44
Bolaños R. (ref28/cit28) 1981; 24
Daltry J. C. (ref79/cit79) 1996; 379
Sanz L. (ref58/cit58) 2008; 71
Raw I. (ref68/cit68) 1986; 19
Chippaux J. P. (ref104/cit104) 2002; 62
Jorge M. T. (ref103/cit103) 1992; 34
Chippaux J. P. (ref60/cit60) 1991; 29
Le Blanc J. C. (ref54/cit54) 2003; 3
Lewontin R. C. (ref18/cit18) 1974
Bakken G. S. (ref2/cit2) 2007; 210
Salomão M. G. (ref93/cit93) 1995; 30
Castoe T. A. (ref4/cit4) 2006; 39
Marques O. A. V. (ref73/cit73) 2002; 58
Sasa M. (ref81/cit81) 1999; 37
Wüster W. (ref16/cit16) 2005; 14
Gutiérrez J. M. (ref26/cit26) 1991; 29
Lomonte B. (ref44/cit44) 2008; 7
Vital Brazil O. (ref40/cit40) 1966; 33
Saldarriaga M. M. (ref72/cit72) 2003; 42
McCue M. D. (ref75/cit75) 2006; 2006
Mouhat S. (ref85/cit85) 2004; 378
Furtado M. F. D. (ref94/cit94) 2009; 9
Fasman D. G. (ref52/cit52) 1992
World Health Organization (ref106/cit106) 2007
ref8/cit8
Gutiérrez J. M. (ref24/cit24) 2009; 72
Vanzolini P. E. (ref63/cit63) 2002; 74
Lomonte B. (ref31/cit31) 1983; 21
Mancin A. C. (ref84/cit84) 1998; 36
Fox J. W. (ref66/cit66) 2005; 45
Calvete J. J. (ref46/cit46) 2009; 72
Otero R. (ref33/cit33) 1994
Salazar A, M. (ref62/cit62) 2008; 19
Fry B. G. (ref65/cit65) 2005; 15
Azevedo-Marques M. M. (ref32/cit32) 1985; 23
Bon C. (ref30/cit30) 1997
Pawlak J. (ref95/cit95) 2006; 281
Quijada-Mascareñas J. A. (ref17/cit17) 2007; 34
Place A. J. (ref10/cit10) 2004; 38
Stock R. P. (ref100/cit100) 2007; 2
Wagstaff S. C. (ref59/cit59) 2009; 71
Sánchez E. F. (ref35/cit35) 1992; 30
Angulo Y. (ref50/cit50) 1997; 35
Chang C. C. (ref41/cit41) 1978; 63
Rosenfeld G. (ref37/cit37) 1971; 2
Castoe T. A. (ref3/cit3) 2009; 36
Rodriguez J. P. (ref108/cit108) 2006; 66
Yoshida-Kanashiro E. (ref39/cit39) 2003; 55
Pawlak J. (ref96/cit96) 2009; 23
Klauber L. M. (ref13/cit13) 1971; 2
Angulo Y. (ref56/cit56) 2008; 7
Altschul S. F. (ref53/cit53) 1997; 25
Brattstrom B. H. (ref9/cit9) 1964; 13
Rangel-Santos A. (ref92/cit92) 2004; 43
Calvete J. J. (ref22/cit22) 2007; 42
Powell R. L. (ref91/cit91) 2008
Orr H. A. (ref19/cit19) 1992; 140
Garstang W. (ref88/cit88) 1922
Mebs D. (ref83/cit83) 2001; 39
Knight A. (ref5/cit5) 1993; 42
Gutiérrez J. M. (ref45/cit45) 2008; 7
Mackessy S. P. (ref77/cit77) 1988; 1988
Parkinson C. L. (ref6/cit6) 1999; 1999
Oguiura N. (ref42/cit42) 2005; 46
Baslow A. (ref76/cit76) 2009; 276
Zavaleta A. (ref105/cit105) 1996
Guércio R. A. P. (ref69/cit69) 2006; 4
Bullock T. H. (ref1/cit1) 1952; 115
Savage J. M. (ref48/cit48) 2005; 36
Grazziotin F. G. (ref90/cit90) 2006; 15
References_xml – volume-title: Manual de Diagnóstico y Tratamiento del Accidente Ofídico
  year: 1994
  ident: ref33/cit33
– start-page: 241
  volume-title: Emergencias en Medicina Interna
  year: 1996
  ident: ref105/cit105
– volume: 115
  start-page: 541
  year: 1952
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.115.2994.541.b
– volume: 71
  start-page: 46
  year: 2008
  ident: ref57/cit57
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2007.10.004
– volume: 47
  start-page: 537
  year: 2006
  ident: ref80/cit80
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2006.01.007
– volume: 23
  start-page: 534
  year: 2009
  ident: ref96/cit96
  publication-title: FASEB J.
  doi: 10.1096/fj.08-113555
– start-page: 269
  volume-title: Venom phospholipase A2 enzymes: structure, function and mechanism
  year: 1997
  ident: ref30/cit30
– volume: 23
  start-page: 631
  year: 1985
  ident: ref32/cit32
  publication-title: Toxicon
  doi: 10.1016/0041-0101(85)90367-8
– volume: 29
  start-page: 1273
  year: 1991
  ident: ref26/cit26
  publication-title: Toxicon
  doi: 10.1016/0041-0101(91)90201-2
– start-page: 667
  volume-title: Handbook of Clinical Toxicology of Animal Venoms and Poisons
  year: 1995
  ident: ref34/cit34
– volume: 37
  start-page: 253
  year: 1999
  ident: ref82/cit82
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(98)00248-7
– start-page: 108
  volume-title: Animais Peçonhentos no Brasil. Biología, Clínica e Terapeutica dos Acidentes
  year: 2009
  ident: ref38/cit38
– volume: 1999
  start-page: 576
  year: 1999
  ident: ref6/cit6
  publication-title: Copeia
  doi: 10.2307/1447591
– volume: 7
  start-page: 2445
  year: 2008
  ident: ref44/cit44
  publication-title: J. Proteome Res.
  doi: 10.1021/pr8000139
– volume: 71
  start-page: 198
  year: 2008
  ident: ref58/cit58
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2008.05.003
– volume: 36
  start-page: 1927
  year: 1998
  ident: ref84/cit84
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(98)00117-2
– volume-title: The genetic basis of evolutionary change
  year: 1974
  ident: ref18/cit18
– volume: 42
  start-page: 1405
  year: 2007
  ident: ref22/cit22
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.1242
– volume: 29
  start-page: 1279
  year: 1991
  ident: ref60/cit60
  publication-title: Toxicon
  doi: 10.1016/0041-0101(91)90116-9
– volume: 129
  start-page: 1361
  year: 1959
  ident: ref87/cit87
  publication-title: Science
  doi: 10.1126/science.129.3359.1361
– volume: 72
  start-page: 165
  year: 2009
  ident: ref24/cit24
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2009.01.008
– volume: 2
  start-page: 115
  volume-title: Crotalus and Sistrurus
  year: 1971
  ident: ref13/cit13
– start-page: 551
  volume-title: The Biology of Rattlesnakes
  year: 2008
  ident: ref91/cit91
– volume: 34
  start-page: 347
  year: 1992
  ident: ref103/cit103
  publication-title: Rev. Inst. Med. Trop. Sao Paulo
  doi: 10.1590/S0036-46651992000400013
– volume: 50
  start-page: 214
  year: 2007
  ident: ref61/cit61
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2007.03.012
– ident: ref8/cit8
  doi: 10.2307/1437993
– volume: 583
  start-page: 1736
  year: 2009
  ident: ref23/cit23
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.03.029
– volume: 42
  start-page: 356
  year: 1993
  ident: ref5/cit5
  publication-title: Systematics Biol.
  doi: 10.1093/sysbio/42.3.356
– volume: 45
  start-page: 997
  year: 2005
  ident: ref67/cit67
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2005.02.029
– volume: 7
  start-page: 4396
  year: 2008
  ident: ref45/cit45
  publication-title: J. Proteome Res.
  doi: 10.1021/pr8003826
– volume: 49
  start-page: 30
  year: 2007
  ident: ref99/cit99
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2006.09.005
– volume: 19
  start-page: 333
  year: 1986
  ident: ref68/cit68
  publication-title: Braz. J. Med. Biol. Res.
– volume: 15
  start-page: 355
  year: 1998
  ident: ref20/cit20
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a025932
– volume: 2003
  start-page: 769
  year: 2003
  ident: ref70/cit70
  publication-title: Copeia
  doi: 10.1643/HA03-037.1
– volume: 15
  start-page: 3969
  year: 2006
  ident: ref90/cit90
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2006.03057.x
– volume: 44
  start-page: 141
  year: 2004
  ident: ref109/cit109
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2004.05.011
– volume-title: The Venomous Reptiles of the Western Hemisphere
  year: 2004
  ident: ref15/cit15
– volume: 378
  start-page: 717
  year: 2004
  ident: ref85/cit85
  publication-title: Biochem. J.
  doi: 10.1042/bj20031860
– volume: 34
  start-page: 1296
  year: 2007
  ident: ref17/cit17
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2007.01707.x
– start-page: 709
  volume-title: The Venomous Reptiles of the Western Hemisphere
  year: 2004
  ident: ref25/cit25
– volume: 140
  start-page: 725
  year: 1992
  ident: ref19/cit19
  publication-title: Am. Nat.
  doi: 10.1086/285437
– volume: 63
  start-page: 551
  year: 1978
  ident: ref41/cit41
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.1978.tb07811.x
– start-page: 69
  volume-title: Biology of the Vipers
  year: 2002
  ident: ref7/cit7
– volume: 38
  start-page: 152
  year: 2004
  ident: ref10/cit10
  publication-title: J. Herpetol.
  doi: 10.1670/103-03N
– volume: 23
  start-page: 431
  year: 1983
  ident: ref21/cit21
  publication-title: Am. Zool.
  doi: 10.1093/icb/23.2.431
– volume: 30
  start-page: 95
  year: 1992
  ident: ref35/cit35
  publication-title: Toxicon
  doi: 10.1016/0041-0101(92)90505-Y
– volume: 3
  start-page: 165
  year: 1982
  ident: ref101/cit101
  publication-title: Rev. Costarric. Cien. Méd.
– volume: 74
  start-page: 37
  year: 2002
  ident: ref63/cit63
  publication-title: An. Acad. Bras. Ciênc.
  doi: 10.1590/S0001-37652002000100005
– volume: 39
  start-page: 87
  year: 2001
  ident: ref83/cit83
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(00)00155-0
– volume: 8
  start-page: 3055
  year: 2009
  ident: ref110/cit110
  publication-title: J. Proteome Res.
  doi: 10.1021/pr900249q
– volume: 25
  start-page: 3389
  year: 1997
  ident: ref53/cit53
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.17.3389
– volume: 33
  start-page: 981
  year: 1966
  ident: ref40/cit40
  publication-title: Mem. Inst. Butantan
– volume: 210
  start-page: 2801
  year: 2007
  ident: ref2/cit2
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.006965
– volume: 39
  start-page: 91
  year: 2006
  ident: ref4/cit4
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2005.12.014
– volume-title: Snakes: The Evolution of Mystery in Nature
  year: 1997
  ident: ref11/cit11
  doi: 10.1525/9780520935433
– start-page: 6
  volume-title: Animais Peçonhentos no Brasil. Biologia, Clínica e Terapêutica dos Acidentes
  year: 2009
  ident: ref102/cit102
– volume: 53
  start-page: 672
  year: 2009
  ident: ref78/cit78
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2009.01.034
– volume: 46
  start-page: 363
  year: 2005
  ident: ref42/cit42
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2005.06.009
– volume: 3
  start-page: 859
  year: 2003
  ident: ref54/cit54
  publication-title: Proteomics
  doi: 10.1002/pmic.200300415
– volume: 4
  start-page: 11
  year: 2006
  ident: ref69/cit69
  publication-title: Proteome Sci.
  doi: 10.1186/1477-5956-4-11
– volume: 35
  start-page: 81
  year: 1997
  ident: ref50/cit50
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(96)00077-3
– start-page: 495
  volume-title: The Biology of Rattlesnakes
  year: 2008
  ident: ref71/cit71
– volume: 71
  start-page: 609
  year: 2009
  ident: ref59/cit59
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2008.10.003
– volume: 26
  start-page: 665
  year: 1988
  ident: ref86/cit86
  publication-title: Toxicon
  doi: 10.1016/0041-0101(88)90248-6
– volume: 24
  start-page: 211
  year: 1981
  ident: ref28/cit28
  publication-title: Acta Méd. Costarric.
– volume: 3
  start-page: e150
  year: 2006
  ident: ref98/cit98
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0030150
– volume: 7
  start-page: 708
  year: 2008
  ident: ref56/cit56
  publication-title: J. Proteome Res.
  doi: 10.1021/pr700610z
– volume: 19
  start-page: 525
  year: 2008
  ident: ref62/cit62
  publication-title: Blood Coagulation Fibrinolysis
  doi: 10.1097/MBC.0b013e328304e02e
– volume: 2
  start-page: 345
  volume-title: Crotalus and Sistrurus
  year: 1971
  ident: ref37/cit37
– volume: 1988
  start-page: 92
  year: 1988
  ident: ref77/cit77
  publication-title: Copeia
  doi: 10.2307/1445927
– volume: 32
  start-page: 59
  year: 1994
  ident: ref51/cit51
  publication-title: Toxicon
  doi: 10.1016/0041-0101(94)90087-6
– volume: 58
  start-page: 303
  year: 2002
  ident: ref73/cit73
  publication-title: Herpetologica
  doi: 10.1655/0018-0831(2002)058[0303:ANISOP]2.0.CO;2
– volume: 2006
  start-page: 818
  year: 2006
  ident: ref75/cit75
  publication-title: Copeia
  doi: 10.1643/0045-8511(2006)6[818:COPVIT]2.0.CO;2
– volume: 62
  start-page: 177
  year: 2002
  ident: ref104/cit104
  publication-title: Méd. Trop.
– volume: 276
  start-page: 2443
  year: 2009
  ident: ref76/cit76
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2009.0048
– volume: 45
  start-page: 969
  year: 2005
  ident: ref66/cit66
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2005.02.012
– volume: 66
  start-page: 512
  year: 2006
  ident: ref108/cit108
  publication-title: Med. (B. Aires)
– volume: 42
  start-page: 405
  year: 2003
  ident: ref72/cit72
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(03)00171-5
– start-page: 491
  volume-title: Handbook of venoms and toxins of reptiles
  year: 2009
  ident: ref29/cit29
  doi: 10.1201/9781420008661.ch24
– volume: 36
  start-page: 88
  year: 2009
  ident: ref3/cit3
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2008.01991.x
– volume: 31
  start-page: 1459
  year: 1993
  ident: ref43/cit43
  publication-title: Toxicon
  doi: 10.1016/0041-0101(93)90211-Z
– volume: 30
  start-page: 101
  year: 1995
  ident: ref93/cit93
  publication-title: Stud. Neotrop. Fauna Environ.
  doi: 10.1080/01650529509360946
– volume: 72
  start-page: 227
  year: 2009
  ident: ref46/cit46
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2009.01.005
– start-page: 81
  year: 1922
  ident: ref88/cit88
  publication-title: Linn. Soc. Jour. Zool.
  doi: 10.1111/j.1096-3642.1922.tb00464.x
– volume: 15
  start-page: 403
  year: 2005
  ident: ref65/cit65
  publication-title: Genome Res.
  doi: 10.1101/gr.3228405
– volume: 43
  start-page: 801
  year: 2004
  ident: ref92/cit92
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2004.03.011
– volume: 9
  start-page: 186
  year: 2009
  ident: ref94/cit94
  publication-title: J. Venom. Anim. Toxins incl. Trop. Dis.
  doi: 10.1590/S1678-91992003000200005
– volume: 281
  start-page: 29030
  year: 2006
  ident: ref95/cit95
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605850200
– volume: 379
  start-page: 537
  year: 1996
  ident: ref79/cit79
  publication-title: Nature
  doi: 10.1038/379537a0
– volume: 21
  start-page: 379
  year: 1983
  ident: ref31/cit31
  publication-title: Toxicon
  doi: 10.1016/0041-0101(83)90094-6
– start-page: 93
  volume-title: Biology of the Vipers
  year: 2002
  ident: ref12/cit12
– volume: 50
  start-page: 337
  year: 2002
  ident: ref27/cit27
  publication-title: Rev. Biol. Trop.
– volume-title: Rabies and envenomings. A neglected public health issue: Report of a consultative meeting
  year: 2007
  ident: ref106/cit106
– volume-title: Practical Handbook of Biochemistry and Molecular Biology
  year: 1992
  ident: ref52/cit52
– volume: 2
  start-page: 173
  year: 2007
  ident: ref100/cit100
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0207-173
– volume-title: Rattlesnakes: Their Habitats, Life Histories, and Influence on Mankind.
  year: 1997
  ident: ref14/cit14
– volume: 46
  start-page: 958
  year: 2005
  ident: ref49/cit49
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2005.06.008
– volume: 7
  start-page: 3556
  year: 2008
  ident: ref55/cit55
  publication-title: J. Proteome Res.
  doi: 10.1021/pr800332p
– ident: ref74/cit74
– volume: 58
  start-page: 303
  year: 2002
  ident: ref89/cit89
  publication-title: Herpetologica
  doi: 10.1655/0018-0831(2002)058[0303:ANISOP]2.0.CO;2
– volume: 52
  start-page: 302
  year: 2008
  ident: ref107/cit107
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2008.05.023
– volume: 49
  start-page: 995
  year: 2007
  ident: ref97/cit97
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2007.01.010
– volume: 14
  start-page: 1095
  year: 2005
  ident: ref16/cit16
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2005.02471.x
– volume: 37
  start-page: 249
  year: 1999
  ident: ref81/cit81
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(98)00121-4
– volume: 122
  start-page: 61
  year: 1999
  ident: ref36/cit36
  publication-title: Comp. Biochem. Physiol. C
– volume: 36
  start-page: 369
  year: 2005
  ident: ref48/cit48
  publication-title: Herpetol. Rev.
– volume: 13
  start-page: 185
  year: 1964
  ident: ref9/cit9
  publication-title: Trans. San Diego Soc. Nat. History
  doi: 10.5962/bhl.part.9599
– volume: 21
  start-page: 870
  year: 2004
  ident: ref64/cit64
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msh091
– volume: 73
  start-page: 57
  year: 2009
  ident: ref47/cit47
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2009.07.013
– volume: 55
  start-page: 38
  year: 2003
  ident: ref39/cit39
  publication-title: Rev. Cubana Med. Tropical
SSID ssj0015703
Score 2.393221
Snippet We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 528
SubjectTerms Age Factors
Amino Acid Sequence
Animals
Antivenins - metabolism
Crotalid Venoms - chemistry
Crotalid Venoms - genetics
Crotalid Venoms - metabolism
Crotalus - genetics
Crotalus - metabolism
Evolution, Molecular
Molecular Sequence Data
Neurotoxins - genetics
Neurotoxins - metabolism
Proteome
Reptilian Proteins - chemistry
Reptilian Proteins - genetics
Reptilian Proteins - metabolism
South America
Spectrometry, Mass, Electrospray Ionization
Title Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along Crotalus Dispersal in South America
URI http://dx.doi.org/10.1021/pr9008749
https://www.ncbi.nlm.nih.gov/pubmed/19863078
https://www.proquest.com/docview/733608881
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKOcCF92N5VCPgwCUlySbe-LjaUlVIoIpS1Fs0fhRF3dqrdVaq-kP7exg7yS4VLVxyGk8szXj82eP5hrEPUmhBx4AskaZMk0KjSsQYwx38hHxIGo2x6v3rN35wXHw5KU-22PtbMvh59mmxFIE3rRB32N2cV5NwwprOjtapgkAh1ZGilknYfQf6oD-Hhq1H-etbzy14Mu4r-w_Z3lCd0z0nOdtdtXJXXf5N1vivKT9iD3pcCdPOER6zLWOfsHuzoZ3bU3Z1ZPHMwE8T65A9uFMg7Af97S4MmRv4HlmNfRSeLR1h85UH35zTF62OY2Lbvc2ItVQoeSQzeghBZm4u4NA1tvXQOogcIK27aBShfsCgC6YaFyHYwiEa7c4dWbxREB_pAs6d_bXRvNcEQnNP82zs9d8_Y8f7n3_MDpK-qUOC40K0CefVaZHKalwok-aaK53zXGpZ6FQTliwR80kqyGdkoA7MseSIJRKuqbiITDTP2bZ11rxkEJpuFaQnUxIJ1WmpUdL50oQeWRKVHrEdsnrdL0pfx3x7ntVr84zYx8EhatVToofOHPObRN-tRRcdD8hNQjB4VU3WDakXtMatfB1IJymeV9mIvei8baNFVJwCbfXqf7N9ze53TxcyWklv2Ha7XJm3hIhauRNXxG-ozwiu
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKOZQLlPdCKSMEEpeUJJukyaGH1ZZqSx-qaIt6C-NHUdRtvFpnReGn9K_wP_g9jJ3HUlTEqRKXnCaTkf3FM2OPv2HsNc9kRmlA4HEV-14kUXhZH-0e_DphiCuJ7tb73n4yOo4-nMQnC-yyvQtDRhjSZNwh_pxdIHg3mWaWPi3KmgLKHfXtK6VnZmN7k-byTRhuvT8ajrymg4CH_SirvCRJTyOfp_1IKD-UiZBhEnLJI-lLClxixHDdz8hAbnnqQowTxBjJiaZJ5mhPSO8tdpuCntAmdoPhYXdCYZmrai7W2LNOv2Ut-t1U6_GEuerx_hLGOne2dY_96AbCVbGcrc0qvia-_8ER-X-O1DK720TRMKhhf58tqPIBWxq2zesesp-HJZ4p-KTcrWsD-hQo0oVmLxvacyr46DicjRMeTjVlIjMDpjinJ5bSveOaDM7f6KTsBU8CrQG7pI7VBRzooqwMVBoc40mlLwpBOQ6g1QUDiRPrWuAAldTnmvBdCHAlyYBjXX6Za94sLH27ITuL8urnH7HjGxnWx2yx1KV6ysC2GItITyA4UgwruURO2bSyHcE4Ctljq4SGvFmCTO6qC8Ig7-DQY29bHOaiIYC3fUjG14m-6kQnNevJdULQgjmn2bUHTVgqPTO5pdgk75UGPfakBvlcS5Ym5FbSZ_-y9iVbGh3t7ea72_s7z9mdumgjoDVkhS1W05l6QbFgxVfdTwns801j-xfhRmmj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEF6VIgEX3o_wKCMEEhcX27Fd-8AhSohaClVEKerNnX0EWU29UdYRhR_DX-Ff8HuYXT9CURGnSlx8Go9H6887M57Zbxh7zjOZURoQeFzFvhdJFF7WR_sPfoswxJVEd-r9_V6yfRC9PYwP19j39iwMGWFIk3FFfPtVz-W0YRgIXs0XmaVQi7KmiXJXff1CKZp5vTOi9_kiDMdvPg63vWaKgIf9KKu8JEmnkc_TfiSUH8pEyDAJueSR9CUFLzFiuOVnZCS3XHUhxglijORI0yRz1Cek9xK7bMuDNrkbDPe7KoVlr6r5WGPPOv6Wueh3U63XE-as1_tLKOtc2vgG-9EthutkOd5cVnxTfPuDJ_L_Xa2b7HoTTcOghv8ttqbK2-zqsB1id4f93C_xWMEn5U5fG9BToIgXmn_a0Nar4IPjcjZOeLjQlJEsDZjihK5YSnePGza4uqOTsgc9CbwG7NY6U6cw0UVZGag0OOaTSp8WgnIdQKsLBhLn1sXABJXUJ5pwXghwrcmAM11-XmkeFZbG3ZCdRXn28XfZwYUs6z22XupSPWBgR41FpCcQHCmWlVwip6xa2clgHIXssQ1CRN5sRSZ3XQZhkHdw6LGXLRZz0RDB23kks_NEn3Wi85r95DwhaAGd09u1BScslV6a3FJtkhdLgx67XwN9pSVLE3Iv6cN_WfuUXZmMxvm7nb3dR-xa3bsR0FbymK1Xi6V6QiFhxTfcdwns6KKh_Qu2AWwm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Snake+venomics+of+the+Central+American+rattlesnake+Crotalus+simus+and+the+South+American+Crotalus+durissus+complex+points+to+neurotoxicity+as+an+adaptive+paedomorphic+trend+along+Crotalus+dispersal+in+South+America&rft.jtitle=Journal+of+proteome+research&rft.au=Calvete%2C+Juan+J&rft.au=Sanz%2C+Libia&rft.au=Cid%2C+Pedro&rft.au=de+la+Torre%2C+Pilar&rft.date=2010-01-04&rft.issn=1535-3907&rft.eissn=1535-3907&rft.volume=9&rft.issue=1&rft.spage=528&rft_id=info:doi/10.1021%2Fpr9008749&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon