Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along Crotalus Dispersal in South America
We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share...
Saved in:
Published in | Journal of proteome research Vol. 9; no. 1; pp. 528 - 544 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.01.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A2 (PLA2 crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn2+-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD50), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North−South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD50 of the venom and the crotoxin + crotamine concentration) along the North−South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom. |
---|---|
AbstractList | We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A2 (PLA2 crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn2+-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD50), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North−South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD50 of the venom and the crotoxin + crotamine concentration) along the North−South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom. We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A(2) (PLA(2) crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn(2+)-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD(50)), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North-South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD(50) of the venom and the crotoxin + crotamine concentration) along the North-South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom.We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A(2) (PLA(2) crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn(2+)-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD(50)), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North-South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD(50) of the venom and the crotoxin + crotamine concentration) along the North-South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom. We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A(2) (PLA(2) crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn(2+)-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD(50)), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North-South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD(50) of the venom and the crotoxin + crotamine concentration) along the North-South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom. |
Author | Sanz, Libia Calvete, Juan J Angulo, Yamileth Dos Santos, M. Cristina Flores-Díaz, Marietta de la Torre, Pilar Cid, Pedro Lomonte, Bruno Gutiérrez, José María Borges, Adolfo Bremo, Adolfo Alape-Girón, Alberto |
Author_xml | – sequence: 1 givenname: Juan J surname: Calvete fullname: Calvete, Juan J email: jcalvete@ibv.csic.es – sequence: 2 givenname: Libia surname: Sanz fullname: Sanz, Libia – sequence: 3 givenname: Pedro surname: Cid fullname: Cid, Pedro – sequence: 4 givenname: Pilar surname: de la Torre fullname: de la Torre, Pilar – sequence: 5 givenname: Marietta surname: Flores-Díaz fullname: Flores-Díaz, Marietta – sequence: 6 givenname: M. Cristina surname: Dos Santos fullname: Dos Santos, M. Cristina – sequence: 7 givenname: Adolfo surname: Borges fullname: Borges, Adolfo – sequence: 8 givenname: Adolfo surname: Bremo fullname: Bremo, Adolfo – sequence: 9 givenname: Yamileth surname: Angulo fullname: Angulo, Yamileth – sequence: 10 givenname: Bruno surname: Lomonte fullname: Lomonte, Bruno – sequence: 11 givenname: Alberto surname: Alape-Girón fullname: Alape-Girón, Alberto – sequence: 12 givenname: José María surname: Gutiérrez fullname: Gutiérrez, José María |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19863078$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctuFDEQRS2UiDxgwQ8gbxBiMYm73Q97OWqeUgQRCWxb1XYN4-C2G9uNkh_le_BkkoxA2VTV4txbpbpHZM95h4S8KNhJwcridAqSMdFW8gk5LGpeL7hk7d79LCQ_IEcxXjFW1C3jT8lBIUXDWSsOyZ8LBz-RfkfnR6Mi9Sua1kg7dCmApcsRg1Hg6FdIyWK8hbvgE9g50mjGXMHpW82Fn9N6p3ig9BxMjHno_DhZvKbn3rgUafL0M86Z8tdGmXRDYeNFlxqmZH4jPQfUfvRhWhtFLwPmNWC9-7FzfmvihCHmO437d_0zsr8CG_H5XT8m396_u-w-Ls6-fPjULc8WwCuZFk0jVhUbBK8UslI3SpdNOeih0kxLXtYAZcukBjWIomUl1A1ADW3NRCN5XQp-TF5vfafgf80YUz-aqNBacOjn2LecN0wIUWTy5R05DyPqfgpmhHDT30eRgTdbQAUfY8DVDmH9Jub-IebMnv7H5gdCMn6TmrGPKl5tFaBif-Xn4PJbHuH-AldkuYY |
CitedBy_id | crossref_primary_10_1016_j_toxicon_2021_01_006 crossref_primary_10_1016_j_cytogfr_2021_05_003 crossref_primary_10_1016_j_jprot_2011_12_016 crossref_primary_10_1016_j_jprot_2018_09_002 crossref_primary_10_1016_j_toxicon_2016_05_005 crossref_primary_10_1016_j_biologicals_2014_09_001 crossref_primary_10_1016_j_toxicon_2023_107307 crossref_primary_10_3390_toxins14080532 crossref_primary_10_3390_toxins14120875 crossref_primary_10_3390_toxins16110458 crossref_primary_10_1016_j_bmcl_2017_03_007 crossref_primary_10_1016_j_jprot_2012_09_003 crossref_primary_10_1093_icb_icaa083 crossref_primary_10_1016_j_jprot_2016_10_006 crossref_primary_10_1016_j_jprot_2014_09_009 crossref_primary_10_1042_BCJ20160577 crossref_primary_10_1016_j_molimm_2020_01_012 crossref_primary_10_1016_j_toxicon_2014_05_011 crossref_primary_10_1016_j_toxicon_2020_03_006 crossref_primary_10_1534_genetics_114_172437 crossref_primary_10_1643_OT_12_041 crossref_primary_10_1016_j_biocel_2018_09_011 crossref_primary_10_1016_j_toxicon_2010_02_028 crossref_primary_10_1021_acs_jproteome_8b00610 crossref_primary_10_1016_j_toxcx_2020_100044 crossref_primary_10_1016_j_toxcx_2019_100007 crossref_primary_10_1016_j_toxcx_2020_100047 crossref_primary_10_3390_toxins12070455 crossref_primary_10_1021_pr901027r crossref_primary_10_1016_j_euprot_2015_05_006 crossref_primary_10_1093_trstmh_tru102 crossref_primary_10_3390_toxins13060372 crossref_primary_10_1016_j_toxicon_2021_04_005 crossref_primary_10_1016_j_cub_2018_02_031 crossref_primary_10_1534_g3_115_020578 crossref_primary_10_1016_j_toxcx_2020_100053 crossref_primary_10_1111_j_1365_294X_2011_05426_x crossref_primary_10_1016_j_jprot_2013_01_021 crossref_primary_10_3390_toxins8070210 crossref_primary_10_1016_j_colsurfb_2020_111128 crossref_primary_10_3390_toxins11010005 crossref_primary_10_1016_j_toxicon_2021_09_006 crossref_primary_10_1016_j_actatropica_2021_106119 crossref_primary_10_1016_j_toxicon_2020_07_001 crossref_primary_10_3109_15563650_2013_802796 crossref_primary_10_1016_j_toxicon_2023_107300 crossref_primary_10_1016_j_toxrep_2024_101795 crossref_primary_10_1016_j_toxcx_2020_100061 crossref_primary_10_3390_toxins9050163 crossref_primary_10_3389_fimmu_2021_659515 crossref_primary_10_1371_journal_pntd_0005768 crossref_primary_10_1016_j_toxicon_2013_03_020 crossref_primary_10_1038_s41598_024_60885_y crossref_primary_10_1021_pr201021d crossref_primary_10_1186_1471_2164_15_1061 crossref_primary_10_1016_j_toxicon_2021_10_008 crossref_primary_10_1016_j_toxicon_2015_08_010 crossref_primary_10_1590_1678_9199_jvatitd_2019_0053 crossref_primary_10_3390_toxins8060188 crossref_primary_10_1016_j_toxicon_2024_107748 crossref_primary_10_3390_toxins14080572 crossref_primary_10_1016_j_toxcx_2021_100070 crossref_primary_10_1038_s41598_018_30578_4 crossref_primary_10_1021_pr100545d crossref_primary_10_1016_j_jprot_2012_05_026 crossref_primary_10_1080_08923973_2020_1810272 crossref_primary_10_3390_toxins16010002 crossref_primary_10_1186_s12915_024_01960_8 crossref_primary_10_1111_mec_13240 crossref_primary_10_3390_toxins10010035 crossref_primary_10_1016_j_toxicon_2016_08_001 crossref_primary_10_3389_fimmu_2021_612846 crossref_primary_10_1016_j_bbagen_2016_08_003 crossref_primary_10_1002_pmic_201100287 crossref_primary_10_1093_mollus_eyaa020 crossref_primary_10_1016_j_toxicon_2024_107746 crossref_primary_10_1093_molbev_msy207 crossref_primary_10_1016_j_toxicon_2018_04_015 crossref_primary_10_1016_j_toxicon_2021_04_016 crossref_primary_10_1186_s40409_017_0117_8 crossref_primary_10_1534_genetics_115_180547 crossref_primary_10_1016_j_toxicon_2022_05_001 crossref_primary_10_1016_j_jprot_2010_06_001 crossref_primary_10_3390_toxins11010053 crossref_primary_10_1186_1471_2164_12_259 crossref_primary_10_3390_toxins10020085 crossref_primary_10_1016_j_cbpc_2017_10_008 crossref_primary_10_1021_acs_jproteome_7b00414 crossref_primary_10_7717_peerj_3249 crossref_primary_10_3390_reports3020009 crossref_primary_10_1016_j_jprot_2018_02_020 crossref_primary_10_1016_j_toxicon_2025_108236 crossref_primary_10_3390_toxins8060178 crossref_primary_10_1016_j_toxicon_2018_04_030 crossref_primary_10_3390_toxins10120501 crossref_primary_10_1093_molbev_msx334 crossref_primary_10_1371_journal_pntd_0001526 crossref_primary_10_1016_j_ijbiomac_2020_05_171 crossref_primary_10_1111_jeb_12001 crossref_primary_10_1016_j_toxicon_2017_06_005 crossref_primary_10_1016_j_peptides_2011_10_011 crossref_primary_10_1073_pnas_2313440121 crossref_primary_10_1186_s40409_017_0118_7 crossref_primary_10_1016_j_biochi_2021_10_006 crossref_primary_10_1016_j_jprot_2017_02_015 crossref_primary_10_1016_j_toxicon_2009_12_015 crossref_primary_10_1016_j_jprot_2014_04_011 crossref_primary_10_1016_j_toxicon_2015_10_024 crossref_primary_10_3389_fimmu_2020_617429 crossref_primary_10_1155_2019_2745286 crossref_primary_10_1016_j_jprot_2011_09_003 crossref_primary_10_1016_j_toxicon_2013_05_006 crossref_primary_10_1371_journal_pntd_0002442 crossref_primary_10_1016_j_bbagen_2016_12_022 crossref_primary_10_1586_epr_11_61 crossref_primary_10_3724_SP_J_1245_2014_00119 crossref_primary_10_15446_rev_colomb_biote_v23n1_94211 crossref_primary_10_1016_j_jprot_2011_06_013 crossref_primary_10_1093_trstmh_traa081 crossref_primary_10_11144_Javeriana_umed61_1_anti crossref_primary_10_1016_j_jprot_2021_104315 crossref_primary_10_1016_j_toxicon_2010_07_001 crossref_primary_10_1016_j_tree_2012_10_020 crossref_primary_10_3390_tropicalmed3020066 crossref_primary_10_1371_journal_pone_0193105 crossref_primary_10_1016_j_bbapap_2014_09_012 crossref_primary_10_1016_j_toxicon_2015_01_006 crossref_primary_10_1186_1471_2164_14_394 crossref_primary_10_1186_s12864_020_6545_9 crossref_primary_10_1016_j_toxicon_2010_11_016 crossref_primary_10_1016_j_ijbiomac_2024_135581 crossref_primary_10_1016_j_toxicon_2015_02_015 crossref_primary_10_2174_0126661217296708240506074324 crossref_primary_10_1086_714936 crossref_primary_10_1016_j_toxicon_2017_09_002 crossref_primary_10_1016_j_toxicon_2019_10_242 crossref_primary_10_1016_j_biochi_2014_10_010 crossref_primary_10_1016_j_biologicals_2011_02_005 crossref_primary_10_3390_toxins14040235 crossref_primary_10_1016_j_jprot_2012_08_008 crossref_primary_10_1371_journal_pone_0080199 crossref_primary_10_1016_j_biochi_2019_05_009 crossref_primary_10_1016_j_jprot_2013_10_036 crossref_primary_10_1021_pr901042p crossref_primary_10_3390_toxins15110658 crossref_primary_10_1016_j_jprot_2020_103865 crossref_primary_10_3390_toxins12100659 crossref_primary_10_1039_c1mb05309d crossref_primary_10_1002_jbt_21553 crossref_primary_10_1016_j_toxicon_2017_08_016 crossref_primary_10_1073_pnas_2014634118 crossref_primary_10_3390_toxins6123388 crossref_primary_10_1002_bies_201000117 crossref_primary_10_1016_j_cbpc_2021_109034 crossref_primary_10_1016_j_jprot_2013_05_024 crossref_primary_10_1016_j_toxicon_2020_08_029 crossref_primary_10_1590_0037_8682_0526_2018 crossref_primary_10_1016_j_jprot_2011_05_027 crossref_primary_10_1016_j_jprot_2011_01_003 crossref_primary_10_1016_j_jprot_2015_03_015 crossref_primary_10_1016_j_toxicon_2021_12_008 crossref_primary_10_1016_j_jprot_2014_01_019 crossref_primary_10_2174_1568026619666190725094851 crossref_primary_10_1371_journal_pone_0226807 crossref_primary_10_1016_j_jprot_2013_11_005 crossref_primary_10_1016_j_jprot_2013_11_001 crossref_primary_10_1016_j_toxicon_2015_01_010 crossref_primary_10_22159_ijcpr_2022v14i1_44106 crossref_primary_10_1016_j_jprot_2014_01_013 crossref_primary_10_3109_15563650_2016_1156688 crossref_primary_10_3390_toxins12020131 crossref_primary_10_1016_j_toxicon_2018_02_053 crossref_primary_10_1016_j_toxicon_2012_11_010 crossref_primary_10_1643_OT_13_005 crossref_primary_10_1186_s13227_020_00171_w crossref_primary_10_3389_fimmu_2021_661457 crossref_primary_10_1016_j_cbpc_2024_110019 crossref_primary_10_1016_j_toxicon_2012_09_004 crossref_primary_10_3390_toxins14070472 crossref_primary_10_1016_j_toxicon_2012_11_016 crossref_primary_10_1590_1678_9199_jvatitd_2020_0016 crossref_primary_10_1038_s41598_021_02552_0 crossref_primary_10_1016_j_toxicon_2017_08_009 crossref_primary_10_1016_j_toxicon_2024_108211 crossref_primary_10_1016_j_jprot_2014_02_021 crossref_primary_10_1016_j_jprot_2014_02_020 crossref_primary_10_1016_j_toxicon_2019_03_027 crossref_primary_10_1016_j_jprot_2013_04_003 crossref_primary_10_3390_ph18010054 crossref_primary_10_1186_1471_2164_14_234 crossref_primary_10_1016_j_toxicon_2017_10_009 crossref_primary_10_3390_toxins10070271 crossref_primary_10_3109_15563650_2014_925561 crossref_primary_10_1016_j_biochi_2015_11_031 crossref_primary_10_3390_toxins15080487 crossref_primary_10_1021_pr101040f crossref_primary_10_1586_14789450_2014_900447 crossref_primary_10_1016_j_toxicon_2012_11_027 crossref_primary_10_1016_j_cbpc_2018_03_008 crossref_primary_10_1111_evo_14239 |
Cites_doi | 10.1126/science.115.2994.541.b 10.1016/j.jprot.2007.10.004 10.1016/j.toxicon.2006.01.007 10.1096/fj.08-113555 10.1016/0041-0101(85)90367-8 10.1016/0041-0101(91)90201-2 10.1016/S0041-0101(98)00248-7 10.2307/1447591 10.1021/pr8000139 10.1016/j.jprot.2008.05.003 10.1016/S0041-0101(98)00117-2 10.1002/jms.1242 10.1016/0041-0101(91)90116-9 10.1126/science.129.3359.1361 10.1016/j.jprot.2009.01.008 10.1590/S0036-46651992000400013 10.1016/j.toxicon.2007.03.012 10.2307/1437993 10.1016/j.febslet.2009.03.029 10.1093/sysbio/42.3.356 10.1016/j.toxicon.2005.02.029 10.1021/pr8003826 10.1016/j.toxicon.2006.09.005 10.1093/oxfordjournals.molbev.a025932 10.1643/HA03-037.1 10.1111/j.1365-294X.2006.03057.x 10.1016/j.toxicon.2004.05.011 10.1042/bj20031860 10.1111/j.1365-2699.2007.01707.x 10.1086/285437 10.1111/j.1476-5381.1978.tb07811.x 10.1670/103-03N 10.1093/icb/23.2.431 10.1016/0041-0101(92)90505-Y 10.1590/S0001-37652002000100005 10.1016/S0041-0101(00)00155-0 10.1021/pr900249q 10.1093/nar/25.17.3389 10.1242/jeb.006965 10.1016/j.ympev.2005.12.014 10.1525/9780520935433 10.1016/j.toxicon.2009.01.034 10.1016/j.toxicon.2005.06.009 10.1002/pmic.200300415 10.1186/1477-5956-4-11 10.1016/S0041-0101(96)00077-3 10.1016/j.jprot.2008.10.003 10.1016/0041-0101(88)90248-6 10.1371/journal.pmed.0030150 10.1021/pr700610z 10.1097/MBC.0b013e328304e02e 10.2307/1445927 10.1016/0041-0101(94)90087-6 10.1655/0018-0831(2002)058[0303:ANISOP]2.0.CO;2 10.1643/0045-8511(2006)6[818:COPVIT]2.0.CO;2 10.1098/rspb.2009.0048 10.1016/j.toxicon.2005.02.012 10.1016/S0041-0101(03)00171-5 10.1201/9781420008661.ch24 10.1111/j.1365-2699.2008.01991.x 10.1016/0041-0101(93)90211-Z 10.1080/01650529509360946 10.1016/j.jprot.2009.01.005 10.1111/j.1096-3642.1922.tb00464.x 10.1101/gr.3228405 10.1016/j.toxicon.2004.03.011 10.1590/S1678-91992003000200005 10.1074/jbc.M605850200 10.1038/379537a0 10.1016/0041-0101(83)90094-6 10.1038/nbt0207-173 10.1016/j.toxicon.2005.06.008 10.1021/pr800332p 10.1016/j.toxicon.2008.05.023 10.1016/j.toxicon.2007.01.010 10.1111/j.1365-294X.2005.02471.x 10.1016/S0041-0101(98)00121-4 10.5962/bhl.part.9599 10.1093/molbev/msh091 10.1016/j.jprot.2009.07.013 |
ContentType | Journal Article |
Copyright | Copyright © 2009 American Chemical Society |
Copyright_xml | – notice: Copyright © 2009 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/pr9008749 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Venomics of the Tropical Rattlesnake Complex |
EISSN | 1535-3907 |
EndPage | 544 |
ExternalDocumentID | 19863078 10_1021_pr9008749 c264713688 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | South America |
GeographicLocations_xml | – name: South America |
GroupedDBID | - 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F ZA5 --- AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK 6TJ AFFNX CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a349t-668f40b834ce02d6cd262bdb4d0d9325aa2709dacb81702a56aa5a75086935283 |
IEDL.DBID | ACS |
ISSN | 1535-3893 1535-3907 |
IngestDate | Fri Jul 11 15:32:55 EDT 2025 Thu Jan 02 22:03:37 EST 2025 Tue Jul 01 01:36:18 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Thu Aug 27 13:42:44 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Crotalus durissus antibothropic and anticrotalic ABC antivenom snake venom protein families Crotalus simus polyvalent (Crotalinae) ICP antivenom crotoxin paedomorphism snake venomics ontogenetic shift antivenomics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a349t-668f40b834ce02d6cd262bdb4d0d9325aa2709dacb81702a56aa5a75086935283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10669/29333 |
PMID | 19863078 |
PQID | 733608881 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_733608881 pubmed_primary_19863078 crossref_primary_10_1021_pr9008749 crossref_citationtrail_10_1021_pr9008749 acs_journals_10_1021_pr9008749 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-04 |
PublicationDateYYYYMMDD | 2010-01-04 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of proteome research |
PublicationTitleAlternate | J. Proteome Res |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Saravia P. (ref27/cit27) 2002; 50 Dos-Santos M. C. (ref43/cit43) 1993; 31 De Oliveira R. C. (ref102/cit102) 2009 Gutiérrez J. M. (ref98/cit98) 2006; 3 Marques O. A. V. (ref89/cit89) 2002; 58 Rojas G. (ref51/cit51) 1994; 32 Starkov V. G. (ref97/cit97) 2007; 49 Fry B. G. (ref64/cit64) 2004; 21 Schenberg S. (ref87/cit87) 1959; 129 Campbell J. A. (ref15/cit15) 2004 Mackessy S. P. (ref71/cit71) 2008 Greene H. (ref11/cit11) 1997 Sanz L. (ref57/cit57) 2008; 71 Golding G. B. (ref20/cit20) 1998; 15 Gutiérrez J. M. (ref29/cit29) 2009 ref74/cit74 Klauber L. M. (ref14/cit14) 1997 Azevedo-Marques M. M. (ref38/cit38) 2009 Bober M. A. (ref86/cit86) 1988; 26 Murphy R. W. (ref7/cit7) 2002 Mackessy S. P. (ref70/cit70) 2003; 2003 Calvete J. J. (ref23/cit23) 2009; 583 Fan H. W. (ref34/cit34) 1995 Aguilar I. (ref61/cit61) 2007; 50 Alape-Girón A. (ref55/cit55) 2008; 7 Gutiérrez J. M. (ref67/cit67) 2005; 45 Gutiérrez J. M. (ref99/cit99) 2007; 49 Dos-Santos M. C. (ref49/cit49) 2005; 46 Warrell D. A. (ref25/cit25) 2004 Mackessy S. P. (ref80/cit80) 2006; 47 Núñez V. (ref47/cit47) 2009; 73 Greene H. W. (ref21/cit21) 1983; 23 Parkinson C. L. (ref12/cit12) 2002 Santoro M. L. (ref36/cit36) 1999; 122 Gibbs H. L. (ref78/cit78) 2009; 53 Calvete J. J. (ref110/cit110) 2009; 8 Bolaños R. (ref101/cit101) 1982; 3 Azofeifa-Cordero A (ref107/cit107) 2008; 52 Wüster W. (ref82/cit82) 1999; 37 Beghini D. G. (ref109/cit109) 2004; 44 Bolaños R. (ref28/cit28) 1981; 24 Daltry J. C. (ref79/cit79) 1996; 379 Sanz L. (ref58/cit58) 2008; 71 Raw I. (ref68/cit68) 1986; 19 Chippaux J. P. (ref104/cit104) 2002; 62 Jorge M. T. (ref103/cit103) 1992; 34 Chippaux J. P. (ref60/cit60) 1991; 29 Le Blanc J. C. (ref54/cit54) 2003; 3 Lewontin R. C. (ref18/cit18) 1974 Bakken G. S. (ref2/cit2) 2007; 210 Salomão M. G. (ref93/cit93) 1995; 30 Castoe T. A. (ref4/cit4) 2006; 39 Marques O. A. V. (ref73/cit73) 2002; 58 Sasa M. (ref81/cit81) 1999; 37 Wüster W. (ref16/cit16) 2005; 14 Gutiérrez J. M. (ref26/cit26) 1991; 29 Lomonte B. (ref44/cit44) 2008; 7 Vital Brazil O. (ref40/cit40) 1966; 33 Saldarriaga M. M. (ref72/cit72) 2003; 42 McCue M. D. (ref75/cit75) 2006; 2006 Mouhat S. (ref85/cit85) 2004; 378 Furtado M. F. D. (ref94/cit94) 2009; 9 Fasman D. G. (ref52/cit52) 1992 World Health Organization (ref106/cit106) 2007 ref8/cit8 Gutiérrez J. M. (ref24/cit24) 2009; 72 Vanzolini P. E. (ref63/cit63) 2002; 74 Lomonte B. (ref31/cit31) 1983; 21 Mancin A. C. (ref84/cit84) 1998; 36 Fox J. W. (ref66/cit66) 2005; 45 Calvete J. J. (ref46/cit46) 2009; 72 Otero R. (ref33/cit33) 1994 Salazar A, M. (ref62/cit62) 2008; 19 Fry B. G. (ref65/cit65) 2005; 15 Azevedo-Marques M. M. (ref32/cit32) 1985; 23 Bon C. (ref30/cit30) 1997 Pawlak J. (ref95/cit95) 2006; 281 Quijada-Mascareñas J. A. (ref17/cit17) 2007; 34 Place A. J. (ref10/cit10) 2004; 38 Stock R. P. (ref100/cit100) 2007; 2 Wagstaff S. C. (ref59/cit59) 2009; 71 Sánchez E. F. (ref35/cit35) 1992; 30 Angulo Y. (ref50/cit50) 1997; 35 Chang C. C. (ref41/cit41) 1978; 63 Rosenfeld G. (ref37/cit37) 1971; 2 Castoe T. A. (ref3/cit3) 2009; 36 Rodriguez J. P. (ref108/cit108) 2006; 66 Yoshida-Kanashiro E. (ref39/cit39) 2003; 55 Pawlak J. (ref96/cit96) 2009; 23 Klauber L. M. (ref13/cit13) 1971; 2 Angulo Y. (ref56/cit56) 2008; 7 Altschul S. F. (ref53/cit53) 1997; 25 Brattstrom B. H. (ref9/cit9) 1964; 13 Rangel-Santos A. (ref92/cit92) 2004; 43 Calvete J. J. (ref22/cit22) 2007; 42 Powell R. L. (ref91/cit91) 2008 Orr H. A. (ref19/cit19) 1992; 140 Garstang W. (ref88/cit88) 1922 Mebs D. (ref83/cit83) 2001; 39 Knight A. (ref5/cit5) 1993; 42 Gutiérrez J. M. (ref45/cit45) 2008; 7 Mackessy S. P. (ref77/cit77) 1988; 1988 Parkinson C. L. (ref6/cit6) 1999; 1999 Oguiura N. (ref42/cit42) 2005; 46 Baslow A. (ref76/cit76) 2009; 276 Zavaleta A. (ref105/cit105) 1996 Guércio R. A. P. (ref69/cit69) 2006; 4 Bullock T. H. (ref1/cit1) 1952; 115 Savage J. M. (ref48/cit48) 2005; 36 Grazziotin F. G. (ref90/cit90) 2006; 15 |
References_xml | – volume-title: Manual de Diagnóstico y Tratamiento del Accidente Ofídico year: 1994 ident: ref33/cit33 – start-page: 241 volume-title: Emergencias en Medicina Interna year: 1996 ident: ref105/cit105 – volume: 115 start-page: 541 year: 1952 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.115.2994.541.b – volume: 71 start-page: 46 year: 2008 ident: ref57/cit57 publication-title: J. Proteomics doi: 10.1016/j.jprot.2007.10.004 – volume: 47 start-page: 537 year: 2006 ident: ref80/cit80 publication-title: Toxicon doi: 10.1016/j.toxicon.2006.01.007 – volume: 23 start-page: 534 year: 2009 ident: ref96/cit96 publication-title: FASEB J. doi: 10.1096/fj.08-113555 – start-page: 269 volume-title: Venom phospholipase A2 enzymes: structure, function and mechanism year: 1997 ident: ref30/cit30 – volume: 23 start-page: 631 year: 1985 ident: ref32/cit32 publication-title: Toxicon doi: 10.1016/0041-0101(85)90367-8 – volume: 29 start-page: 1273 year: 1991 ident: ref26/cit26 publication-title: Toxicon doi: 10.1016/0041-0101(91)90201-2 – start-page: 667 volume-title: Handbook of Clinical Toxicology of Animal Venoms and Poisons year: 1995 ident: ref34/cit34 – volume: 37 start-page: 253 year: 1999 ident: ref82/cit82 publication-title: Toxicon doi: 10.1016/S0041-0101(98)00248-7 – start-page: 108 volume-title: Animais Peçonhentos no Brasil. Biología, Clínica e Terapeutica dos Acidentes year: 2009 ident: ref38/cit38 – volume: 1999 start-page: 576 year: 1999 ident: ref6/cit6 publication-title: Copeia doi: 10.2307/1447591 – volume: 7 start-page: 2445 year: 2008 ident: ref44/cit44 publication-title: J. Proteome Res. doi: 10.1021/pr8000139 – volume: 71 start-page: 198 year: 2008 ident: ref58/cit58 publication-title: J. Proteomics doi: 10.1016/j.jprot.2008.05.003 – volume: 36 start-page: 1927 year: 1998 ident: ref84/cit84 publication-title: Toxicon doi: 10.1016/S0041-0101(98)00117-2 – volume-title: The genetic basis of evolutionary change year: 1974 ident: ref18/cit18 – volume: 42 start-page: 1405 year: 2007 ident: ref22/cit22 publication-title: J. Mass Spectrom. doi: 10.1002/jms.1242 – volume: 29 start-page: 1279 year: 1991 ident: ref60/cit60 publication-title: Toxicon doi: 10.1016/0041-0101(91)90116-9 – volume: 129 start-page: 1361 year: 1959 ident: ref87/cit87 publication-title: Science doi: 10.1126/science.129.3359.1361 – volume: 72 start-page: 165 year: 2009 ident: ref24/cit24 publication-title: J. Proteomics doi: 10.1016/j.jprot.2009.01.008 – volume: 2 start-page: 115 volume-title: Crotalus and Sistrurus year: 1971 ident: ref13/cit13 – start-page: 551 volume-title: The Biology of Rattlesnakes year: 2008 ident: ref91/cit91 – volume: 34 start-page: 347 year: 1992 ident: ref103/cit103 publication-title: Rev. Inst. Med. Trop. Sao Paulo doi: 10.1590/S0036-46651992000400013 – volume: 50 start-page: 214 year: 2007 ident: ref61/cit61 publication-title: Toxicon doi: 10.1016/j.toxicon.2007.03.012 – ident: ref8/cit8 doi: 10.2307/1437993 – volume: 583 start-page: 1736 year: 2009 ident: ref23/cit23 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.03.029 – volume: 42 start-page: 356 year: 1993 ident: ref5/cit5 publication-title: Systematics Biol. doi: 10.1093/sysbio/42.3.356 – volume: 45 start-page: 997 year: 2005 ident: ref67/cit67 publication-title: Toxicon doi: 10.1016/j.toxicon.2005.02.029 – volume: 7 start-page: 4396 year: 2008 ident: ref45/cit45 publication-title: J. Proteome Res. doi: 10.1021/pr8003826 – volume: 49 start-page: 30 year: 2007 ident: ref99/cit99 publication-title: Toxicon doi: 10.1016/j.toxicon.2006.09.005 – volume: 19 start-page: 333 year: 1986 ident: ref68/cit68 publication-title: Braz. J. Med. Biol. Res. – volume: 15 start-page: 355 year: 1998 ident: ref20/cit20 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a025932 – volume: 2003 start-page: 769 year: 2003 ident: ref70/cit70 publication-title: Copeia doi: 10.1643/HA03-037.1 – volume: 15 start-page: 3969 year: 2006 ident: ref90/cit90 publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2006.03057.x – volume: 44 start-page: 141 year: 2004 ident: ref109/cit109 publication-title: Toxicon doi: 10.1016/j.toxicon.2004.05.011 – volume-title: The Venomous Reptiles of the Western Hemisphere year: 2004 ident: ref15/cit15 – volume: 378 start-page: 717 year: 2004 ident: ref85/cit85 publication-title: Biochem. J. doi: 10.1042/bj20031860 – volume: 34 start-page: 1296 year: 2007 ident: ref17/cit17 publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2007.01707.x – start-page: 709 volume-title: The Venomous Reptiles of the Western Hemisphere year: 2004 ident: ref25/cit25 – volume: 140 start-page: 725 year: 1992 ident: ref19/cit19 publication-title: Am. Nat. doi: 10.1086/285437 – volume: 63 start-page: 551 year: 1978 ident: ref41/cit41 publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.1978.tb07811.x – start-page: 69 volume-title: Biology of the Vipers year: 2002 ident: ref7/cit7 – volume: 38 start-page: 152 year: 2004 ident: ref10/cit10 publication-title: J. Herpetol. doi: 10.1670/103-03N – volume: 23 start-page: 431 year: 1983 ident: ref21/cit21 publication-title: Am. Zool. doi: 10.1093/icb/23.2.431 – volume: 30 start-page: 95 year: 1992 ident: ref35/cit35 publication-title: Toxicon doi: 10.1016/0041-0101(92)90505-Y – volume: 3 start-page: 165 year: 1982 ident: ref101/cit101 publication-title: Rev. Costarric. Cien. Méd. – volume: 74 start-page: 37 year: 2002 ident: ref63/cit63 publication-title: An. Acad. Bras. Ciênc. doi: 10.1590/S0001-37652002000100005 – volume: 39 start-page: 87 year: 2001 ident: ref83/cit83 publication-title: Toxicon doi: 10.1016/S0041-0101(00)00155-0 – volume: 8 start-page: 3055 year: 2009 ident: ref110/cit110 publication-title: J. Proteome Res. doi: 10.1021/pr900249q – volume: 25 start-page: 3389 year: 1997 ident: ref53/cit53 publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.17.3389 – volume: 33 start-page: 981 year: 1966 ident: ref40/cit40 publication-title: Mem. Inst. Butantan – volume: 210 start-page: 2801 year: 2007 ident: ref2/cit2 publication-title: J. Exp. Biol. doi: 10.1242/jeb.006965 – volume: 39 start-page: 91 year: 2006 ident: ref4/cit4 publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2005.12.014 – volume-title: Snakes: The Evolution of Mystery in Nature year: 1997 ident: ref11/cit11 doi: 10.1525/9780520935433 – start-page: 6 volume-title: Animais Peçonhentos no Brasil. Biologia, Clínica e Terapêutica dos Acidentes year: 2009 ident: ref102/cit102 – volume: 53 start-page: 672 year: 2009 ident: ref78/cit78 publication-title: Toxicon doi: 10.1016/j.toxicon.2009.01.034 – volume: 46 start-page: 363 year: 2005 ident: ref42/cit42 publication-title: Toxicon doi: 10.1016/j.toxicon.2005.06.009 – volume: 3 start-page: 859 year: 2003 ident: ref54/cit54 publication-title: Proteomics doi: 10.1002/pmic.200300415 – volume: 4 start-page: 11 year: 2006 ident: ref69/cit69 publication-title: Proteome Sci. doi: 10.1186/1477-5956-4-11 – volume: 35 start-page: 81 year: 1997 ident: ref50/cit50 publication-title: Toxicon doi: 10.1016/S0041-0101(96)00077-3 – start-page: 495 volume-title: The Biology of Rattlesnakes year: 2008 ident: ref71/cit71 – volume: 71 start-page: 609 year: 2009 ident: ref59/cit59 publication-title: J. Proteomics doi: 10.1016/j.jprot.2008.10.003 – volume: 26 start-page: 665 year: 1988 ident: ref86/cit86 publication-title: Toxicon doi: 10.1016/0041-0101(88)90248-6 – volume: 24 start-page: 211 year: 1981 ident: ref28/cit28 publication-title: Acta Méd. Costarric. – volume: 3 start-page: e150 year: 2006 ident: ref98/cit98 publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030150 – volume: 7 start-page: 708 year: 2008 ident: ref56/cit56 publication-title: J. Proteome Res. doi: 10.1021/pr700610z – volume: 19 start-page: 525 year: 2008 ident: ref62/cit62 publication-title: Blood Coagulation Fibrinolysis doi: 10.1097/MBC.0b013e328304e02e – volume: 2 start-page: 345 volume-title: Crotalus and Sistrurus year: 1971 ident: ref37/cit37 – volume: 1988 start-page: 92 year: 1988 ident: ref77/cit77 publication-title: Copeia doi: 10.2307/1445927 – volume: 32 start-page: 59 year: 1994 ident: ref51/cit51 publication-title: Toxicon doi: 10.1016/0041-0101(94)90087-6 – volume: 58 start-page: 303 year: 2002 ident: ref73/cit73 publication-title: Herpetologica doi: 10.1655/0018-0831(2002)058[0303:ANISOP]2.0.CO;2 – volume: 2006 start-page: 818 year: 2006 ident: ref75/cit75 publication-title: Copeia doi: 10.1643/0045-8511(2006)6[818:COPVIT]2.0.CO;2 – volume: 62 start-page: 177 year: 2002 ident: ref104/cit104 publication-title: Méd. Trop. – volume: 276 start-page: 2443 year: 2009 ident: ref76/cit76 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2009.0048 – volume: 45 start-page: 969 year: 2005 ident: ref66/cit66 publication-title: Toxicon doi: 10.1016/j.toxicon.2005.02.012 – volume: 66 start-page: 512 year: 2006 ident: ref108/cit108 publication-title: Med. (B. Aires) – volume: 42 start-page: 405 year: 2003 ident: ref72/cit72 publication-title: Toxicon doi: 10.1016/S0041-0101(03)00171-5 – start-page: 491 volume-title: Handbook of venoms and toxins of reptiles year: 2009 ident: ref29/cit29 doi: 10.1201/9781420008661.ch24 – volume: 36 start-page: 88 year: 2009 ident: ref3/cit3 publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2008.01991.x – volume: 31 start-page: 1459 year: 1993 ident: ref43/cit43 publication-title: Toxicon doi: 10.1016/0041-0101(93)90211-Z – volume: 30 start-page: 101 year: 1995 ident: ref93/cit93 publication-title: Stud. Neotrop. Fauna Environ. doi: 10.1080/01650529509360946 – volume: 72 start-page: 227 year: 2009 ident: ref46/cit46 publication-title: J. Proteomics doi: 10.1016/j.jprot.2009.01.005 – start-page: 81 year: 1922 ident: ref88/cit88 publication-title: Linn. Soc. Jour. Zool. doi: 10.1111/j.1096-3642.1922.tb00464.x – volume: 15 start-page: 403 year: 2005 ident: ref65/cit65 publication-title: Genome Res. doi: 10.1101/gr.3228405 – volume: 43 start-page: 801 year: 2004 ident: ref92/cit92 publication-title: Toxicon doi: 10.1016/j.toxicon.2004.03.011 – volume: 9 start-page: 186 year: 2009 ident: ref94/cit94 publication-title: J. Venom. Anim. Toxins incl. Trop. Dis. doi: 10.1590/S1678-91992003000200005 – volume: 281 start-page: 29030 year: 2006 ident: ref95/cit95 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605850200 – volume: 379 start-page: 537 year: 1996 ident: ref79/cit79 publication-title: Nature doi: 10.1038/379537a0 – volume: 21 start-page: 379 year: 1983 ident: ref31/cit31 publication-title: Toxicon doi: 10.1016/0041-0101(83)90094-6 – start-page: 93 volume-title: Biology of the Vipers year: 2002 ident: ref12/cit12 – volume: 50 start-page: 337 year: 2002 ident: ref27/cit27 publication-title: Rev. Biol. Trop. – volume-title: Rabies and envenomings. A neglected public health issue: Report of a consultative meeting year: 2007 ident: ref106/cit106 – volume-title: Practical Handbook of Biochemistry and Molecular Biology year: 1992 ident: ref52/cit52 – volume: 2 start-page: 173 year: 2007 ident: ref100/cit100 publication-title: Nat. Biotechnol. doi: 10.1038/nbt0207-173 – volume-title: Rattlesnakes: Their Habitats, Life Histories, and Influence on Mankind. year: 1997 ident: ref14/cit14 – volume: 46 start-page: 958 year: 2005 ident: ref49/cit49 publication-title: Toxicon doi: 10.1016/j.toxicon.2005.06.008 – volume: 7 start-page: 3556 year: 2008 ident: ref55/cit55 publication-title: J. Proteome Res. doi: 10.1021/pr800332p – ident: ref74/cit74 – volume: 58 start-page: 303 year: 2002 ident: ref89/cit89 publication-title: Herpetologica doi: 10.1655/0018-0831(2002)058[0303:ANISOP]2.0.CO;2 – volume: 52 start-page: 302 year: 2008 ident: ref107/cit107 publication-title: Toxicon doi: 10.1016/j.toxicon.2008.05.023 – volume: 49 start-page: 995 year: 2007 ident: ref97/cit97 publication-title: Toxicon doi: 10.1016/j.toxicon.2007.01.010 – volume: 14 start-page: 1095 year: 2005 ident: ref16/cit16 publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2005.02471.x – volume: 37 start-page: 249 year: 1999 ident: ref81/cit81 publication-title: Toxicon doi: 10.1016/S0041-0101(98)00121-4 – volume: 122 start-page: 61 year: 1999 ident: ref36/cit36 publication-title: Comp. Biochem. Physiol. C – volume: 36 start-page: 369 year: 2005 ident: ref48/cit48 publication-title: Herpetol. Rev. – volume: 13 start-page: 185 year: 1964 ident: ref9/cit9 publication-title: Trans. San Diego Soc. Nat. History doi: 10.5962/bhl.part.9599 – volume: 21 start-page: 870 year: 2004 ident: ref64/cit64 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msh091 – volume: 73 start-page: 57 year: 2009 ident: ref47/cit47 publication-title: J. Proteomics doi: 10.1016/j.jprot.2009.07.013 – volume: 55 start-page: 38 year: 2003 ident: ref39/cit39 publication-title: Rev. Cubana Med. Tropical |
SSID | ssj0015703 |
Score | 2.393221 |
Snippet | We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 528 |
SubjectTerms | Age Factors Amino Acid Sequence Animals Antivenins - metabolism Crotalid Venoms - chemistry Crotalid Venoms - genetics Crotalid Venoms - metabolism Crotalus - genetics Crotalus - metabolism Evolution, Molecular Molecular Sequence Data Neurotoxins - genetics Neurotoxins - metabolism Proteome Reptilian Proteins - chemistry Reptilian Proteins - genetics Reptilian Proteins - metabolism South America Spectrometry, Mass, Electrospray Ionization |
Title | Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along Crotalus Dispersal in South America |
URI | http://dx.doi.org/10.1021/pr9008749 https://www.ncbi.nlm.nih.gov/pubmed/19863078 https://www.proquest.com/docview/733608881 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKOcCF92N5VCPgwCUlySbe-LjaUlVIoIpS1Fs0fhRF3dqrdVaq-kP7exg7yS4VLVxyGk8szXj82eP5hrEPUmhBx4AskaZMk0KjSsQYwx38hHxIGo2x6v3rN35wXHw5KU-22PtbMvh59mmxFIE3rRB32N2cV5NwwprOjtapgkAh1ZGilknYfQf6oD-Hhq1H-etbzy14Mu4r-w_Z3lCd0z0nOdtdtXJXXf5N1vivKT9iD3pcCdPOER6zLWOfsHuzoZ3bU3Z1ZPHMwE8T65A9uFMg7Af97S4MmRv4HlmNfRSeLR1h85UH35zTF62OY2Lbvc2ItVQoeSQzeghBZm4u4NA1tvXQOogcIK27aBShfsCgC6YaFyHYwiEa7c4dWbxREB_pAs6d_bXRvNcEQnNP82zs9d8_Y8f7n3_MDpK-qUOC40K0CefVaZHKalwok-aaK53zXGpZ6FQTliwR80kqyGdkoA7MseSIJRKuqbiITDTP2bZ11rxkEJpuFaQnUxIJ1WmpUdL50oQeWRKVHrEdsnrdL0pfx3x7ntVr84zYx8EhatVToofOHPObRN-tRRcdD8hNQjB4VU3WDakXtMatfB1IJymeV9mIvei8baNFVJwCbfXqf7N9ze53TxcyWklv2Ha7XJm3hIhauRNXxG-ozwiu |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKOZQLlPdCKSMEEpeUJJukyaGH1ZZqSx-qaIt6C-NHUdRtvFpnReGn9K_wP_g9jJ3HUlTEqRKXnCaTkf3FM2OPv2HsNc9kRmlA4HEV-14kUXhZH-0e_DphiCuJ7tb73n4yOo4-nMQnC-yyvQtDRhjSZNwh_pxdIHg3mWaWPi3KmgLKHfXtK6VnZmN7k-byTRhuvT8ajrymg4CH_SirvCRJTyOfp_1IKD-UiZBhEnLJI-lLClxixHDdz8hAbnnqQowTxBjJiaZJ5mhPSO8tdpuCntAmdoPhYXdCYZmrai7W2LNOv2Ut-t1U6_GEuerx_hLGOne2dY_96AbCVbGcrc0qvia-_8ER-X-O1DK720TRMKhhf58tqPIBWxq2zesesp-HJZ4p-KTcrWsD-hQo0oVmLxvacyr46DicjRMeTjVlIjMDpjinJ5bSveOaDM7f6KTsBU8CrQG7pI7VBRzooqwMVBoc40mlLwpBOQ6g1QUDiRPrWuAAldTnmvBdCHAlyYBjXX6Za94sLH27ITuL8urnH7HjGxnWx2yx1KV6ysC2GItITyA4UgwruURO2bSyHcE4Ctljq4SGvFmCTO6qC8Ig7-DQY29bHOaiIYC3fUjG14m-6kQnNevJdULQgjmn2bUHTVgqPTO5pdgk75UGPfakBvlcS5Ym5FbSZ_-y9iVbGh3t7ea72_s7z9mdumgjoDVkhS1W05l6QbFgxVfdTwns801j-xfhRmmj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEF6VIgEX3o_wKCMEEhcX27Fd-8AhSohaClVEKerNnX0EWU29UdYRhR_DX-Ff8HuYXT9CURGnSlx8Go9H6887M57Zbxh7zjOZURoQeFzFvhdJFF7WR_sPfoswxJVEd-r9_V6yfRC9PYwP19j39iwMGWFIk3FFfPtVz-W0YRgIXs0XmaVQi7KmiXJXff1CKZp5vTOi9_kiDMdvPg63vWaKgIf9KKu8JEmnkc_TfiSUH8pEyDAJueSR9CUFLzFiuOVnZCS3XHUhxglijORI0yRz1Cek9xK7bMuDNrkbDPe7KoVlr6r5WGPPOv6Wueh3U63XE-as1_tLKOtc2vgG-9EthutkOd5cVnxTfPuDJ_L_Xa2b7HoTTcOghv8ttqbK2-zqsB1id4f93C_xWMEn5U5fG9BToIgXmn_a0Nar4IPjcjZOeLjQlJEsDZjihK5YSnePGza4uqOTsgc9CbwG7NY6U6cw0UVZGag0OOaTSp8WgnIdQKsLBhLn1sXABJXUJ5pwXghwrcmAM11-XmkeFZbG3ZCdRXn28XfZwYUs6z22XupSPWBgR41FpCcQHCmWlVwip6xa2clgHIXssQ1CRN5sRSZ3XQZhkHdw6LGXLRZz0RDB23kks_NEn3Wi85r95DwhaAGd09u1BScslV6a3FJtkhdLgx67XwN9pSVLE3Iv6cN_WfuUXZmMxvm7nb3dR-xa3bsR0FbymK1Xi6V6QiFhxTfcdwns6KKh_Qu2AWwm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Snake+venomics+of+the+Central+American+rattlesnake+Crotalus+simus+and+the+South+American+Crotalus+durissus+complex+points+to+neurotoxicity+as+an+adaptive+paedomorphic+trend+along+Crotalus+dispersal+in+South+America&rft.jtitle=Journal+of+proteome+research&rft.au=Calvete%2C+Juan+J&rft.au=Sanz%2C+Libia&rft.au=Cid%2C+Pedro&rft.au=de+la+Torre%2C+Pilar&rft.date=2010-01-04&rft.issn=1535-3907&rft.eissn=1535-3907&rft.volume=9&rft.issue=1&rft.spage=528&rft_id=info:doi/10.1021%2Fpr9008749&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon |