Restoring Murray River floodplain wetlands: Does the sediment record inform on watering regime?

The floodplain wetlands of the southern Murray Darling Basin (MDB) have been subject to the impacts of catchment and water resource development for more than a century. Their current degraded state is attributed to the regulation of the rivers and ion of water volume for irrigation. The MDB Plan is...

Full description

Saved in:
Bibliographic Details
Published inRiver research and applications Vol. 36; no. 4; pp. 620 - 629
Main Author Gell, Peter A.
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The floodplain wetlands of the southern Murray Darling Basin (MDB) have been subject to the impacts of catchment and water resource development for more than a century. Their current degraded state is attributed to the regulation of the rivers and ion of water volume for irrigation. The MDB Plan is to return at least 2,750 Gl of mean annual flow to the system to restore the condition of waterways. Considerable recent investment in infrastructure enables water to be released into the basin's floodplain wetlands. The proposed watering regime is underpinned by modelling that suggests that, before regulation, overbank flows would have occurred regularly as discharge peaked in winter and spring. Sediment cores have been extracted from over 50 floodplain wetlands of the southern Murray Basin. Those from several, large meander wavelength billabongs extend for 1,000–5,000 years suggesting that these sites were permanently inundated over that time. Others extend to ~200 years and are presumed not to have accumulated sediment until more recently. The records of most wetlands, however, only extend to the onset of river regulation in the 1920s, suggesting that before then they were not inundated for sufficient duration for net accumulation to occur. Preserved diatoms suggest that the shallow, plant‐dominated wetlands of the past have transitioned to deep, turbid water systems today. As rivers are identified as a source of sediment to wetlands, less regular inundation, rather than more, is a viable option in restoring the ecological function of these floodplain wetlands and in slowing sediment infill.
AbstractList The floodplain wetlands of the southern Murray Darling Basin (MDB) have been subject to the impacts of catchment and water resource development for more than a century. Their current degraded state is attributed to the regulation of the rivers and abstraction of water volume for irrigation. The MDB Plan is to return at least 2,750 Gl of mean annual flow to the system to restore the condition of waterways. Considerable recent investment in infrastructure enables water to be released into the basin's floodplain wetlands. The proposed watering regime is underpinned by modelling that suggests that, before regulation, overbank flows would have occurred regularly as discharge peaked in winter and spring. Sediment cores have been extracted from over 50 floodplain wetlands of the southern Murray Basin. Those from several, large meander wavelength billabongs extend for 1,000–5,000 years suggesting that these sites were permanently inundated over that time. Others extend to ~200 years and are presumed not to have accumulated sediment until more recently. The records of most wetlands, however, only extend to the onset of river regulation in the 1920s, suggesting that before then they were not inundated for sufficient duration for net accumulation to occur. Preserved diatoms suggest that the shallow, plant‐dominated wetlands of the past have transitioned to deep, turbid water systems today. As rivers are identified as a source of sediment to wetlands, less regular inundation, rather than more, is a viable option in restoring the ecological function of these floodplain wetlands and in slowing sediment infill.
The floodplain wetlands of the southern Murray Darling Basin (MDB) have been subject to the impacts of catchment and water resource development for more than a century. Their current degraded state is attributed to the regulation of the rivers and ion of water volume for irrigation. The MDB Plan is to return at least 2,750 Gl of mean annual flow to the system to restore the condition of waterways. Considerable recent investment in infrastructure enables water to be released into the basin's floodplain wetlands. The proposed watering regime is underpinned by modelling that suggests that, before regulation, overbank flows would have occurred regularly as discharge peaked in winter and spring. Sediment cores have been extracted from over 50 floodplain wetlands of the southern Murray Basin. Those from several, large meander wavelength billabongs extend for 1,000–5,000 years suggesting that these sites were permanently inundated over that time. Others extend to ~200 years and are presumed not to have accumulated sediment until more recently. The records of most wetlands, however, only extend to the onset of river regulation in the 1920s, suggesting that before then they were not inundated for sufficient duration for net accumulation to occur. Preserved diatoms suggest that the shallow, plant‐dominated wetlands of the past have transitioned to deep, turbid water systems today. As rivers are identified as a source of sediment to wetlands, less regular inundation, rather than more, is a viable option in restoring the ecological function of these floodplain wetlands and in slowing sediment infill.
The floodplain wetlands of the southern Murray Darling Basin (MDB) have been subject to the impacts of catchment and water resource development for more than a century. Their current degraded state is attributed to the regulation of the rivers and abstraction of water volume for irrigation. The MDB Plan is to return at least 2,750 Gl of mean annual flow to the system to restore the condition of waterways. Considerable recent investment in infrastructure enables water to be released into the basin's floodplain wetlands. The proposed watering regime is underpinned by modelling that suggests that, before regulation, overbank flows would have occurred regularly as discharge peaked in winter and spring. Sediment cores have been extracted from over 50 floodplain wetlands of the southern Murray Basin. Those from several, large meander wavelength billabongs extend for 1,000–5,000 years suggesting that these sites were permanently inundated over that time. Others extend to ~200 years and are presumed not to have accumulated sediment until more recently. The records of most wetlands, however, only extend to the onset of river regulation in the 1920s, suggesting that before then they were not inundated for sufficient duration for net accumulation to occur. Preserved diatoms suggest that the shallow, plant‐dominated wetlands of the past have transitioned to deep, turbid water systems today. As rivers are identified as a source of sediment to wetlands, less regular inundation, rather than more, is a viable option in restoring the ecological function of these floodplain wetlands and in slowing sediment infill.
Author Gell, Peter A.
Author_xml – sequence: 1
  givenname: Peter A.
  orcidid: 0000-0002-2251-5158
  surname: Gell
  fullname: Gell, Peter A.
  email: p.gell@federation.edu.au
  organization: Federation University Australia
BookMark eNp1kF1LwzAUhoNMcJuCPyHgjTedadKveCNjfsJEKHod0vZ0ZrTJTFrH_r3ZJgpDr865eN6Hc94RGmijAaHzkExCQuiVtXLCIsaP0DCMWRyEUZIOfvaYn6CRc0tCwjTj2RCJHFxnrNIL_Nz77Abn6hMsrhtjqlUjlcZr6BqpK3eNbw043L0DdlCpFnSHLZTGVljp2tgWGw_LDnY2CwuP3Jyi41o2Ds6-5xi93d-9zh6D-cvD02w6DySLOA94nElGQcaE1oSQDLIkpoTTFLIoLQiNSZkVBa9ZVrACCIvqKi2jhIe04MChYGN0ufeurPno_U-iVa6Exl8OpneCxmnEaJgw4tGLA3Rpeqv9dYIynnKWkIj9CktrnLNQi5VVrbQbERKxbVr4tsS2aY9ODtBSdbJTRndWquavQLAPrFUDm3_FIs-nO_4LFOyQWw
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_167260
crossref_primary_10_1016_j_ancene_2021_100315
crossref_primary_10_1071_MF20344
crossref_primary_10_1111_gcb_70017
crossref_primary_10_1002_rra_3622
crossref_primary_10_4081_jlimnol_2020_1971
crossref_primary_10_1002_rra_3515
Cites_doi 10.1002/hyp.7445
10.1002/1099-1646(200009/10)16:5<497::AID-RRR600>3.0.CO;2-Y
10.1007/s10750-007-0806-3
10.1002/rrr.3450100103
10.1007/s10750-017-3451-5
10.1046/j.1442-8903.2002.00092.x
10.1071/MF15293
10.1080/03721426.2017.1373411
10.1071/MF04107
10.1007/s10933-006-9067-9
10.1016/j.biocon.2015.08.041
10.1002/rra.845
10.1002/eco.1965
10.1111/j.1365-2427.2011.02680.x
10.1007/s10933-009-9333-8
10.1016/j.ancene.2014.12.002
10.1093/oso/9780198766384.003.0013
10.1071/MF01021
10.1038/s41598-019-39516-4
10.1007/BF00045929
10.1046/j.1365-2427.1999.00439.x
10.1007/s003820050284
10.1007/978-94-024-0990-1_23
10.3389/fevo.2016.00016
10.22459/TA34.01.2012.22
10.1007/s12237-014-9920-4
10.1016/j.quascirev.2013.01.001
10.1007/s10933-011-9572-3
10.1002/rra.840
10.1007/s10750-007-0799-y
10.1017/CBO9780511805561.009
10.1111/fwb.12521
10.1016/0031-0182(86)90116-1
10.1016/j.ancene.2017.11.005
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
– notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7SN
7SS
7ST
7UA
C1K
F1W
H95
H96
L.G
SOI
7S9
L.6
DOI 10.1002/rra.3439
DatabaseName CrossRef
Aqualine
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Entomology Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1535-1467
EndPage 629
ExternalDocumentID 10_1002_rra_3439
RRA3439
Genre article
GeographicLocations Murray River
GeographicLocations_xml – name: Murray River
GroupedDBID ..I
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QH
7SN
7SS
7ST
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H95
H96
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-a3499-958a32ea502f0008e86520927e847b0250c8bb9f38b3be034fd7c46912b9e9eb3
IEDL.DBID DR2
ISSN 1535-1459
IngestDate Fri Jul 11 18:31:35 EDT 2025
Fri Aug 29 22:19:47 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Tue Jul 01 00:52:48 EDT 2025
Wed Jan 22 16:33:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3499-958a32ea502f0008e86520927e847b0250c8bb9f38b3be034fd7c46912b9e9eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2251-5158
PQID 2397936043
PQPubID 1046366
PageCount 10
ParticipantIDs proquest_miscellaneous_2574321630
proquest_journals_2397936043
crossref_primary_10_1002_rra_3439
crossref_citationtrail_10_1002_rra_3439
wiley_primary_10_1002_rra_3439_RRA3439
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle River research and applications
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 23
2019; 9
2015; 38
1986; 110
2002; 53
1986; 54
2010
1995; 10
1998
2018; 809
2002; 3
2006
2005; 21
2008; 325
2011; 56
1999; 41
1991
2002
2018; 21
2012; 34
2014; 60
2007; 38
2016; 4
2002; 28
2010; 43
1986; 125
2015; 192
2000; 16
2007; 591
1999; 15
2013; 74
2019
2018
2017
2016
2017; 141
2014
2013
2012; 47
2014; 8
2018; 11
1902
2005; 56
2016; 67
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Williams M. A. J. (e_1_2_11_51_1) 1998
Reid M. A. (e_1_2_11_44_1) 2002; 28
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Lloyd L. N. (e_1_2_11_33_1) 1986; 110
e_1_2_11_21_1
Reid M. A. (e_1_2_11_43_1) 2008
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 809
  start-page: 91
  year: 2018
  end-page: 110
  article-title: Subfossil chironomid head capsules reveal assemblage differences in permanent and temporary wetlands of south‐eastern Australia
  publication-title: Hydrobiologia
– volume: 8
  start-page: 39
  year: 2014
  end-page: 45
  article-title: Assessing change in floodplain wetland condition in the Murray Darling Basin
  publication-title: The Anthropocene
– volume: 21
  start-page: 257
  year: 2005
  end-page: 269
  article-title: Accessing limnological change and variability using fossil diatom assemblages, south‐east Australia
  publication-title: River Research and Applications
– volume: 38
  start-page: 2101
  year: 2015
  end-page: 2116
  article-title: Hydrological change in the Coorong Estuary, Australia, past and present: Evidence from fossil invertebrate and algal assemblages
  publication-title: Estuaries and Coasts
– volume: 56
  start-page: 2637
  year: 2011
  end-page: 2652
  article-title: Using water plant functional groups to investigate environmental water requirements
  publication-title: Freshwater Biology
– volume: 53
  start-page: 981
  year: 2002
  end-page: 992
  article-title: Seasonal and interannual variations in diatom assemblages in Murray River connected wetlands in north‐west Victoria, Australia
  publication-title: Marine and Freshwater Research
– start-page: 162
  year: 2010
  end-page: 188
– volume: 15
  start-page: 319
  year: 1999
  end-page: 322
  article-title: Inter‐decadal modulation of the impact of ENSO on Australia
  publication-title: Climate Dynamics
– volume: 591
  start-page: 117
  year: 2007
  end-page: 134
  article-title: Paleolimnological evidence for the independent evolution of neighbouring terminal lakes, the Murray Darling Basin, Australia
  publication-title: Hydrobiologia
– year: 1902
– volume: 56
  start-page: 441
  year: 2005
  end-page: 456
  article-title: Tareena Billabong—A palaeolimnological history of an everchanging wetland, Chowilla Floodplain, lower Murray‐Darling Basin
  publication-title: Marine and Freshwater Research
– volume: 3
  start-page: 5
  year: 2002
  end-page: 14
  article-title: Repairing wetlands of the lower Murray: Learning from restoration practice
  publication-title: Ecological Management and Restoration
– start-page: 283
  year: 2018
  end-page: 305
– volume: 4
  start-page: 16
  year: 2016
  article-title: Muddied waters: The case for mitigating sediment and nutrient flux to optimize restoration response in the Murray‐Darling Basin, Australia
  publication-title: Frontiers in Ecology and Evolution
– year: 2016
– volume: 41
  start-page: 407
  year: 1999
  end-page: 423
  article-title: Establishing the condition of lowland floodplain rivers: A palaeo‐ecological approach
  publication-title: Freshwater Biology
– year: 2018
– volume: 125
  start-page: 111
  year: 1986
  end-page: 129
  article-title: A review of the ecological effects of river regulation in Australia
  publication-title: Hydrobiologia
– volume: 21
  start-page: 1
  year: 2018
  end-page: 15
  article-title: Reconstruction of historical riverine sediment production of the goldfields of Victoria, Australia
  publication-title: Anthropocene
– year: 2014
– year: 1998
– volume: 10
  start-page: 15
  year: 1995
  end-page: 38
  article-title: Effects of regulation on the flow regime of the River Murray, Australia
  publication-title: Regulated Rivers: Research and Management
– volume: 11
  year: 2018
  article-title: History, hydrology and hydraulics: Rethinking the ecological management of large rivers
  publication-title: Ecohydrology
– volume: 67
  start-page: 687
  year: 2016
  end-page: 694
  article-title: Role of palaeoecology in describing the ecological character of wetlands
  publication-title: Marine and Freshwater Research
– volume: 34
  start-page: 445
  year: 2012
  end-page: 457
– volume: 141
  start-page: 169
  year: 2017
  end-page: 192
  article-title: Flow regulation simplifies a lowland fish assemblage in the Lower River Murray, South Australia
  publication-title: Transactions of the Royal Society of South Australia
– volume: 192
  start-page: 91
  year: 2015
  end-page: 100
  article-title: Regional extinction, rediscovery and rescue of a freshwater fish from a highly modified environment: The need for rapid response
  publication-title: Biological Conservation
– volume: 9
  start-page: 2667
  year: 2019
  article-title: Modelling Holocene analogues of coastal plain estuaries reveals the magnitude of sea‐level threat
  publication-title: Nature Scientific Reports
– volume: 110
  start-page: 49
  year: 1986
  end-page: 57
  article-title: Distribution and conservation status of small freshwater fish in the river Murray, South Australia
  publication-title: Transactions of the Royal Society of South Australia
– volume: 47
  start-page: 205
  year: 2012
  end-page: 219
  article-title: Interaction between a river and its wetland: Evidence from spatial variability in diatom and radioisotope records
  publication-title: Journal of Paleolimnology
– volume: 16
  start-page: 497
  year: 2000
  end-page: 512
  article-title: Modern and historical variation in aquatic macrophyte cover of billabongs associated with catchment development
  publication-title: Regulated Rivers: Research & Management
– year: 2002
– year: 2006
– volume: 60
  start-page: 711
  year: 2014
  end-page: 723
  article-title: Tracking a century of change in trophic structure and dynamics in a floodplain wetland: Integrating palaeo‐ecological, and palaeo‐isotopic, evidence
  publication-title: Freshwater Biology
– volume: 38
  start-page: 191
  year: 2007
  end-page: 208
  article-title: Palaeolimnolgical evidence for submerged plant loss in a floodplain lake associated with accelerated catchment erosion (Murray River, Australia)
  publication-title: Journal of Paleolimnology
– volume: 54
  start-page: 21
  year: 1986
  end-page: 41
  article-title: Spatial variability and hydrologic evolution of Australian lake basins: Analogue for Pleistocene hydrologic change and evaporate formation
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– year: 2017
– year: 1991
– volume: 325
  start-page: 584
  year: 2008
  end-page: 590
– volume: 43
  start-page: 309
  year: 2010
  end-page: 322
  article-title: Testing the efficacy of electrical conductivity (EC) reconstructions from the lower Murray River (SE Australia): A comparison between measured and inferred EC
  publication-title: Journal of Paleolimnology
– volume: 591
  start-page: 135
  year: 2007
  end-page: 146
  article-title: The impact of regulation and salinisation on floodplain lakes: The lower River Murray, Australia
  publication-title: Hydrobiologia
– year: 2019
– volume: 23
  start-page: 3440
  year: 2009
  end-page: 3452
  article-title: Salinization risk in semi‐arid floodplain wetlands subjected to engineered wetting and drying cycles
  publication-title: Hydrological Processes
– volume: 21
  start-page: 187
  year: 2005
  end-page: 200
  article-title: Waterbird breeding and environmental flow management in the Macquarie marshes, arid Australia
  publication-title: River Research and Applications
– start-page: 587
  year: 2017
  end-page: 613
– year: 2013
– volume: 74
  start-page: 21
  year: 2013
  end-page: 35
  article-title: Climate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region: An OZ‐INTIMATE compilation
  publication-title: Quaternary Science Reviews
– volume: 28
  start-page: 710
  year: 2002
  end-page: 716
  article-title: Long‐term perspectives on human impacts on floodplain‐river ecosystems, Murray‐Darling Basin, Australia
  publication-title: Verhandlungen Des Internationalen Verein Limnologie
– ident: e_1_2_11_5_1
  doi: 10.1002/hyp.7445
– ident: e_1_2_11_16_1
– ident: e_1_2_11_39_1
  doi: 10.1002/1099-1646(200009/10)16:5<497::AID-RRR600>3.0.CO;2-Y
– ident: e_1_2_11_15_1
  doi: 10.1007/s10750-007-0806-3
– ident: e_1_2_11_35_1
  doi: 10.1002/rrr.3450100103
– ident: e_1_2_11_10_1
– ident: e_1_2_11_47_1
– ident: e_1_2_11_3_1
  doi: 10.1007/s10750-017-3451-5
– ident: e_1_2_11_30_1
  doi: 10.1046/j.1442-8903.2002.00092.x
– ident: e_1_2_11_46_1
– ident: e_1_2_11_9_1
  doi: 10.1071/MF15293
– ident: e_1_2_11_50_1
  doi: 10.1080/03721426.2017.1373411
– ident: e_1_2_11_17_1
  doi: 10.1071/MF04107
– volume-title: Quaternary environments
  year: 1998
  ident: e_1_2_11_51_1
– ident: e_1_2_11_38_1
– ident: e_1_2_11_45_1
  doi: 10.1007/s10933-006-9067-9
– ident: e_1_2_11_28_1
  doi: 10.1016/j.biocon.2015.08.041
– ident: e_1_2_11_23_1
  doi: 10.1002/rra.845
– ident: e_1_2_11_36_1
  doi: 10.1002/eco.1965
– ident: e_1_2_11_25_1
– ident: e_1_2_11_4_1
  doi: 10.1111/j.1365-2427.2011.02680.x
– ident: e_1_2_11_12_1
  doi: 10.1007/s10933-009-9333-8
– volume: 28
  start-page: 710
  year: 2002
  ident: e_1_2_11_44_1
  article-title: Long‐term perspectives on human impacts on floodplain‐river ecosystems, Murray‐Darling Basin, Australia
  publication-title: Verhandlungen Des Internationalen Verein Limnologie
– ident: e_1_2_11_21_1
  doi: 10.1016/j.ancene.2014.12.002
– ident: e_1_2_11_19_1
– ident: e_1_2_11_20_1
  doi: 10.1093/oso/9780198766384.003.0013
– volume: 110
  start-page: 49
  year: 1986
  ident: e_1_2_11_33_1
  article-title: Distribution and conservation status of small freshwater fish in the river Murray, South Australia
  publication-title: Transactions of the Royal Society of South Australia
– ident: e_1_2_11_26_1
  doi: 10.1071/MF01021
– ident: e_1_2_11_29_1
  doi: 10.1038/s41598-019-39516-4
– ident: e_1_2_11_49_1
  doi: 10.1007/BF00045929
– ident: e_1_2_11_48_1
  doi: 10.1046/j.1365-2427.1999.00439.x
– ident: e_1_2_11_40_1
  doi: 10.1007/s003820050284
– ident: e_1_2_11_14_1
  doi: 10.1007/978-94-024-0990-1_23
– ident: e_1_2_11_22_1
  doi: 10.3389/fevo.2016.00016
– ident: e_1_2_11_8_1
– ident: e_1_2_11_24_1
  doi: 10.22459/TA34.01.2012.22
– ident: e_1_2_11_42_1
  doi: 10.1007/s12237-014-9920-4
– ident: e_1_2_11_37_1
– ident: e_1_2_11_41_1
  doi: 10.1016/j.quascirev.2013.01.001
– ident: e_1_2_11_27_1
  doi: 10.1007/s10933-011-9572-3
– ident: e_1_2_11_32_1
  doi: 10.1002/rra.840
– ident: e_1_2_11_11_1
  doi: 10.1007/s10750-007-0799-y
– ident: e_1_2_11_13_1
  doi: 10.1017/CBO9780511805561.009
– ident: e_1_2_11_31_1
  doi: 10.1111/fwb.12521
– ident: e_1_2_11_2_1
  doi: 10.1016/0031-0182(86)90116-1
– ident: e_1_2_11_34_1
– ident: e_1_2_11_18_1
– ident: e_1_2_11_7_1
– start-page: 584
  volume-title: Sediment Dynamics in Changing Environments
  year: 2008
  ident: e_1_2_11_43_1
– ident: e_1_2_11_6_1
  doi: 10.1016/j.ancene.2017.11.005
SSID ssj0017898
Score 2.3108516
Snippet The floodplain wetlands of the southern Murray Darling Basin (MDB) have been subject to the impacts of catchment and water resource development for more than a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 620
SubjectTerms basins
Cores
Diatoms
Ecological function
ecological restoration
environmental flows
Flooding
Floodplains
irrigation
Irrigation water
Murray Darling Basin
palaeoecology
Redevelopment
Resource development
resource management
river regulation
River regulations
Rivers
Sediment
Sediments
spring
Volume transport
Water resources
Water resources development
Watersheds
Waterways
Wavelength
wavelengths
Wetlands
winter
Title Restoring Murray River floodplain wetlands: Does the sediment record inform on watering regime?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frra.3439
https://www.proquest.com/docview/2397936043
https://www.proquest.com/docview/2574321630
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78FucXEURP3dok_fIiQx3Dg4fiYOChJG0ConaydYj-9b6XtnOKgnhqoC9p0-T1_V7y8nuEnCjtSxMbBYpkcgf8DSjlQjsClJyJIDdebqN8b4PBUNyM_FEdVYlnYSp-iPmCG2qG_V-jgks17X6Shk4mssPBnMLvF0O1EA8lc-YoL4xsGlzQZ9_xhB83vLMu6zYVv1qiT3i5CFKtlemvkfvm_argksfOrFSd7P0bdeP_OrBOVmvwSXvVbNkgS7rYJCsLlIRbJE1sqhkoUxiDiXyjCUZuUIMB7i9P8qGgr7q0B4TP6dVYTykgSDoFE4jLjLRa86EVHSsdg7AsbcsUM0A864ttMuxf310OnDoJgyO5QPZOP5Kcaem7zCBg0FGAkTMs1GDXFCKoLFIqNjxSXGmXC5OHGfjcHlOxjsFV3yGtYlzoXUIVnngwIosZ1I3CXPlaCBHyLDfGBF7eJmfNgKRZzVCOiTKe0opbmaXQ7RQ_WZsczyVfKlaOH2QOmjFNa72cpgy3MXngCg5NzG-DRuE2iSz0eAYyPqAqBjjVbZNTO4C_PiNNkh5e9_4quE-WGTrsNmLygLTKyUwfAqop1ZGdvx8RVfWe
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPbQcSilFbEuLkVB7ypLYzqscKlRAy_MQgcShkmUntoSALNrNqmp_fWeczQIVlSpOsZSxE8eezDf2-BuALWNj7XJnUJFcFaC_gaVK2kCiknOZVC6qfJTvWTK4kEeX8eUc7HRnYVp-iNmCG2mG_1-TgtOC9PY9a-hopPsC7ek8vKCE3kScv1fMuKOiNPOJcFGj4yCScd4xz4Z8u6v52BbdA8yHMNXbmYMl-NG9YRtect2fNKZf_v6LvPGZXXgDr6f4k-22E2YZ5mz9FhYfsBKugCp8thksMxyGkf7FCgreYI5i3O9u9FXNftrGnxH-yvaGdswQRLIxWkFaaWTtsg9rGVnZEIV141tmlATi1n57BxcH--ffB8E0D0OghSQCzzjTglsdh9wRZrBZQsEzPLVo2gyBqDIzJnciM8LYUEhXpSW63RE3uc3RW1-FhXpY2zVghg49OFnmHOtmaWViK6VMRVk555Ko6sGXbkRUOSUpp1wZN6qlV-YKu63ok_VgcyZ51xJzPCGz3g2qmqrmWHHayRRJKAU2MbuNSkU7Jbq2wwnKxAisOELVsAef_Qj-8xmqKHbp-v5_BTfg5eD89ESdHJ4df4BXnPx3H0C5DgvNaGI_IshpzCc_mf8AY4_5ug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9sBWkf_BbPthpB9Gmvu0n2qy9Seh71gyKLhUIfQrJJQGz3jrs9RP96Z7K71yoWxKcN7CS72WR2fpNMfgPwyrhU-9IbVCRvI_Q3sGSliyQqOZeZ9YkNUb4n2fGp_HCWnvVRlXQWpuOHWC-4kWaE_zUp-Nz6_SvS0MVCjwWa0w24LbO4pLQNk2pNHZXkRciDiwqdRolMy4F4Nub7Q83fTdEVvryOUoOZmd6D8-EFu-iSb-NVa8b1zz-4G_-vB_fhbo8-2WE3XR7ALdc8hO1rnISPQFUh1wyWGQ7CQv9gFYVuME8R7vML_bVh310bTggfsMnMLRlCSLZEG0jrjKxb9GEdHyubobBuQ8uMUkBcureP4XT67svRcdRnYYi0kETfmRZacKfTmHtCDK7IKHSG5w4NmyEIVRfGlF4URhgXC-ltXqPTnXBTuhJ99Sew2cwa9xSYoSMPXtYlx7pFbk3qpJS5qK33PkvsCN4MA6LqnqKcMmVcqI5cmSvstqJPNoKXa8l5R8vxF5ndYUxVr5hLxWkfU2SxFNjE-jaqFO2T6MbNViiTIqziCFTjEbwOA3jjM1RVHdL12b8KvoA7nydT9en9yccd2OLkvIfoyV3YbBcrt4cIpzXPw1T-BYU7-Gk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoring+Murray+River+floodplain+wetlands%3A+Does+the+sediment+record+inform+on+watering+regime%3F&rft.jtitle=River+research+and+applications&rft.au=Gell%2C+Peter+A&rft.date=2020-05-01&rft.issn=1535-1459&rft.volume=36&rft.issue=4+p.620-629&rft.spage=620&rft.epage=629&rft_id=info:doi/10.1002%2Frra.3439&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-1459&client=summon