Subsea ice‐bearing permafrost on the U.S. Beaufort Margin: 1. Minimum seaward extent defined from multichannel seismic reflection data
Subsea ice‐bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociatin...
Saved in:
Published in | Geochemistry, geophysics, geosystems : G3 Vol. 17; no. 11; pp. 4354 - 4365 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Subsea ice‐bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociating gas hydrate deposits. Previous studies interpreted the distribution of subsea permafrost on the U.S. Beaufort continental shelf based on geographically sparse data sets and modeling of expected thermal history. The most cited work projects subsea permafrost to the shelf edge (∼100 m isobath). This study uses a compilation of stacking velocity analyses from ∼100,000 line‐km of industry‐collected multichannel seismic reflection data acquired over 57,000 km2 of the U.S. Beaufort shelf to delineate continuous subsea IBPF. Gridded average velocities of the uppermost 750 ms two‐way travel time range from 1475 to 3110 m s−1. The monotonic, cross‐shore pattern in velocity distribution suggests that the seaward extent of continuous IBPF is within 37 km of the modern shoreline at water depths < 25 m. These interpretations corroborate recent Beaufort seismic refraction studies and provide the best, margin‐scale evidence that continuous subsea IBPF does not currently extend to the northern limits of the continental shelf.
Key Points:
Spatially extensive and dense velocity analyses are used to map subsea permafrost distribution on the U.S. Beaufort continental shelf
This study provides margin‐scale evidence that continuous subsea IBPF does not currently extend to the edge of the continental shelf
U.S. Beaufort subsea permafrost has degraded substantially and the shelf‐edge should be dismissed as the presumed extent of continuous IBPF |
---|---|
AbstractList | Subsea ice-bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociating gas hydrate deposits. Previous studies interpreted the distribution of subsea permafrost on the U.S. Beaufort continental shelf based on geographically sparse data sets and modeling of expected thermal history. The most cited work projects subsea permafrost to the shelf edge (100 m isobath). This study uses a compilation of stacking velocity analyses from 100,000 line-km of industry-collected multichannel seismic reflection data acquired over 57,000 km2 of the U.S. Beaufort shelf to delineate continuous subsea IBPF. Gridded average velocities of the uppermost 750 ms two-way travel time range from 1475 to 3110 m s-1. The monotonic, cross-shore pattern in velocity distribution suggests that the seaward extent of continuous IBPF is within 37 km of the modern shoreline at water depths<25 m. These interpretations corroborate recent Beaufort seismic refraction studies and provide the best, margin-scale evidence that continuous subsea IBPF does not currently extend to the northern limits of the continental shelf. Key Points: Spatially extensive and dense velocity analyses are used to map subsea permafrost distribution on the U.S. Beaufort continental shelf This study provides margin-scale evidence that continuous subsea IBPF does not currently extend to the edge of the continental shelf U.S. Beaufort subsea permafrost has degraded substantially and the shelf-edge should be dismissed as the presumed extent of continuous IBPF Subsea ice‐bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociating gas hydrate deposits. Previous studies interpreted the distribution of subsea permafrost on the U.S. Beaufort continental shelf based on geographically sparse data sets and modeling of expected thermal history. The most cited work projects subsea permafrost to the shelf edge (∼100 m isobath). This study uses a compilation of stacking velocity analyses from ∼100,000 line‐km of industry‐collected multichannel seismic reflection data acquired over 57,000 km2 of the U.S. Beaufort shelf to delineate continuous subsea IBPF. Gridded average velocities of the uppermost 750 ms two‐way travel time range from 1475 to 3110 m s−1. The monotonic, cross‐shore pattern in velocity distribution suggests that the seaward extent of continuous IBPF is within 37 km of the modern shoreline at water depths < 25 m. These interpretations corroborate recent Beaufort seismic refraction studies and provide the best, margin‐scale evidence that continuous subsea IBPF does not currently extend to the northern limits of the continental shelf. Key Points: Spatially extensive and dense velocity analyses are used to map subsea permafrost distribution on the U.S. Beaufort continental shelf This study provides margin‐scale evidence that continuous subsea IBPF does not currently extend to the edge of the continental shelf U.S. Beaufort subsea permafrost has degraded substantially and the shelf‐edge should be dismissed as the presumed extent of continuous IBPF Subsea ice-bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociating gas hydrate deposits. Previous studies interpreted the distribution of subsea permafrost on the U.S. Beaufort continental shelf based on geographically sparse data sets and modeling of expected thermal history. The most cited work projects subsea permafrost to the shelf edge (100 m isobath). This study uses a compilation of stacking velocity analyses from 100,000 line-km of industry-collected multichannel seismic reflection data acquired over 57,000 km super(2) of the U.S. Beaufort shelf to delineate continuous subsea IBPF. Gridded average velocities of the uppermost 750 ms two-way travel time range from 1475 to 3110 m s super(-1). The monotonic, cross-shore pattern in velocity distribution suggests that the seaward extent of continuous IBPF is within 37 km of the modern shoreline at water depths<25 m. These interpretations corroborate recent Beaufort seismic refraction studies and provide the best, margin-scale evidence that continuous subsea IBPF does not currently extend to the northern limits of the continental shelf. Key Points: * Spatially extensive and dense velocity analyses are used to map subsea permafrost distribution on the U.S. Beaufort continental shelf * This study provides margin-scale evidence that continuous subsea IBPF does not currently extend to the edge of the continental shelf * U.S. Beaufort subsea permafrost has degraded substantially and the shelf-edge should be dismissed as the presumed extent of continuous IBPF |
Author | Herman, Bruce M. Hart, Patrick E. Ruppel, Carolyn D. Brothers, Laura L. |
Author_xml | – sequence: 1 givenname: Laura L. surname: Brothers fullname: Brothers, Laura L. email: lbrothers@usgs.gov organization: U.S. Geological Survey – sequence: 2 givenname: Bruce M. surname: Herman fullname: Herman, Bruce M. organization: Bureau of Ocean Energy Management – sequence: 3 givenname: Patrick E. surname: Hart fullname: Hart, Patrick E. organization: U.S. Geological Survey – sequence: 4 givenname: Carolyn D. surname: Ruppel fullname: Ruppel, Carolyn D. organization: U.S. Geological Survey |
BookMark | eNp9kTFv1TAQgC1UJNrCxg-wxMLyHj47dhw2eGoDUqsOpXN0ic-tq8R52I5KN8aO_EZ-CUFlqBg63Q2fvjvpO2IHcY7E2FsQWxBCfpACTLsTwmhbvWCHoKXeSCHrgyf7K3aU860QUGltD9nD5dJnQh4G-v3zV0-YQrzme0oT-jTnwufIyw3xq-3lln8mXPycCj_HdB3iRw5bfh5imJaJr5I7TI7Tj0KxcEc-RHJ8lUx8WsYShhuMkcYVDHkKA0_kRxpKWA84LPiavfQ4Znrzbx6zq9OTb7svm7OL9uvu09kGVdXApumJCDxYlCCtN4asUo6cJouonfVSOkGyETU2YkDlwNS9cWSsVL0kr47Z-0fvPs3fF8qlm0IeaBwx0rzkDqxuqkabyqzou__Q23lJcf2ugwYAmrrW4lnKarGmUEaulHqk7sJI990-hQnTfQei-1uue1qua9v2RAIYUH8A67OPtA |
ContentType | Journal Article |
Copyright | 2016. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2016. American Geophysical Union. All Rights Reserved. |
DBID | 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1002/2016GC006584 |
DatabaseName | Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1525-2027 |
EndPage | 4365 |
ExternalDocumentID | 4283139381 GGGE21161 |
Genre | article |
GeographicLocations | United States--US PN, Arctic |
GeographicLocations_xml | – name: United States--US – name: PN, Arctic |
GrantInformation_xml | – fundername: DOE NETL/NRC Methane Hydrate Fellowship funderid: DE‐FC26‐05NT42248 – fundername: USGS–DOE Interagency Agreements funderid: DE‐FE000291 and 0023495 |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 3V. 50Y 5GY 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AANHP AAYCA AAZKR ABCUV ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACGFS ACGOD ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIYS ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFBPY AFGKR AFKRA AFPWT AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D1J DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OK1 P-X P2W PCBAR PQQKQ PROAC Q2X R.K ROL SUPJJ UB1 WBKPD WYJ ZZTAW ~02 ~OA 7TG 7TN AAFWJ AAMMB AEFGJ AFPKN AGQPQ AGXDD AIDQK AIDYY F1W H96 KL. L.G WIN |
ID | FETCH-LOGICAL-a3491-9beee1f18a2128f66e833ded5e8aa5d8f22d0e2907a90ca3d167b6de6823b2ef3 |
ISSN | 1525-2027 |
IngestDate | Thu Jul 10 16:47:40 EDT 2025 Wed Aug 13 06:29:09 EDT 2025 Sat Jul 26 01:17:28 EDT 2025 Wed Jan 22 16:25:08 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a3491-9beee1f18a2128f66e833ded5e8aa5d8f22d0e2907a90ca3d167b6de6823b2ef3 |
Notes | This article is a companion to Ruppel et al. [2016], doi . 10.1002/2016GC006582 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2016GC006584 |
PQID | 1850584362 |
PQPubID | 54722 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1859495646 proquest_journals_1911197750 proquest_journals_1850584362 wiley_primary_10_1002_2016GC006584_GGGE21161 |
PublicationCentury | 2000 |
PublicationDate | November 2016 20161101 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 1990; 346 1980; 85 1991; 96 1974 1985; 22 2007; 34 1979 1978 2005; 25 1990 1993; 77 2010; 115 2013; 118 1993; 30 1987 1985 1984 1983 1982 2011; 28 1979; 65 1989 1988 2014; 119 2011; 2 1986; 51 2010; 327 2011 2000; 68 2013; 40 2015; 120 1981; 5 2009 1997 2007 1996 2005 2012; 39 1993 2003 1955; 20 2015; 9 2015; 8 1989; 94 2015; 60 2002; 21 1985; 114 1988a 2016 2015 1988b 2013 2012; 117 1968; 33 1967 |
References_xml | – year: 1985 – year: 2011 – year: 2009 – volume: 346 start-page: 456 year: 1990 end-page: 458 article-title: U‐Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130,000 years publication-title: Nature – volume: 5 start-page: 13 year: 1981 end-page: 27 article-title: Estimates of permafrost thickness from well logs in northern Alaska publication-title: Cold Reg. Sci. Technol. – volume: 114 start-page: 133 year: 1985 end-page: 161 article-title: Quaternary sedimentation of the Alaskan Beaufort shelf‐ influence of regional tectonics, fluctuating sea levels and glacial sediment sources publication-title: Tectonophysics – year: 2005 – start-page: 44 year: 1984 – volume: 28 start-page: 279 issue: 2 year: 2011 end-page: 294 article-title: Permafrost‐associated natural gas hydrate occurrences on the Alaska North Slope publication-title: Mar. Pet. Geol. – year: 1989 – volume: 9 start-page: 1 year: 2015 end-page: 35 article-title: Coastal dynamics and subsea permafrost in shallow water of the central Laptev Sea, East Siberia publication-title: Cryosphere Discuss. – volume: 33 start-page: 584 issue: 4 year: 1968 end-page: 595 article-title: Velocity of compressional waves in porous media at permafrost temperatures publication-title: Geophysics – year: 1979 – volume: 119 start-page: 2082 year: 2014 end-page: 2094 article-title: Modeling the evolution of climate‐sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal Shelf publication-title: J. Geophys. Res. Biogeosci. – volume: 34 start-page: L01603 year: 2007 article-title: Origin of pingo‐like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates publication-title: Geophys. Res. Lett. – volume: 115 start-page: C01002 year: 2010 article-title: Atmospheric methane flux from bubbling seeps: Spatially extrapolated quantification from a Black Sea shelf area publication-title: J. Geophys. Res. – start-page: 317 year: 1988a end-page: 353 – start-page: 259 year: 1984 end-page: 274 – start-page: 22 year: 1987 end-page: 24 – volume: 77 start-page: 793 issue: 5 year: 1993 end-page: 812 article-title: Natural gas hydrates of the Prudhoe Bay and Kuparuk River Area, North Slope, Alaska publication-title: AAPG Bull. – volume: 20 start-page: 68 issue: 1 year: 1955 end-page: 86 article-title: Seismic velocities from surface measurements publication-title: Geophysics – year: 1982 – volume: 39 start-page: L15501 year: 2012 article-title: Minimum distribution of subsea ice‐bearing permafrost on the US Beaufort Sea continental shelf publication-title: Geophys. Res. Lett. – volume: 22 start-page: 1383 issue: 10 year: 1985 end-page: 1393 article-title: A sea‐level curve for the Canadian Beaufort Shelf publication-title: Can. J. Earth Sci. – volume: 96 start-page: 4423 issue: B3 year: 1991 end-page: 4434 article-title: Variations in permafrost thickness in response to changes in paleoclimate publication-title: J. Geophys. Res. – volume: 117 start-page: F03028 year: 2012 article-title: Modeling sub‐sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region publication-title: J. Geophys. Res. – year: 1997 – volume: 65 start-page: 909 issue: 4 year: 1979 end-page: 922 article-title: Sound velocity gradients in marine sediments publication-title: J. Acoust. Soc. Am. – volume: 25 start-page: 183 issue: 2‐3 year: 2005 end-page: 189 article-title: Submarine permafrost in the nearshore zone of the southwestern Kara Sea publication-title: Geo Mar. Lett. – year: 1993 – volume: 8 start-page: 6738 year: 2015 end-page: 6764 article-title: Models of talik, permafrost and gas hydrate histories–Beaufort Mackenzie Basin, Canada publication-title: Energies – year: 2015 – volume: 2 start-page: 12 issue: 12 year: 2011 article-title: Methane hydrates and contemporary climate change publication-title: Nat. Educ. Knowledge – volume: 51 start-page: 1285 year: 1986 end-page: 1290 article-title: The effect of the extent of freezing on seismic velocities in unconsolidated permafrost publication-title: Geophysics – year: 1983 – volume: 94 start-page: 16,227 issue: C11 year: 1989 end-page: 16,236 article-title: Characteristics of the active layer and shallow subsea permafrost publication-title: J. Geophys. Res. – volume: 120 start-page: 417 year: 2015 end-page: 423 article-title: Effects of submarine groundwater discharge on the present‐day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf publication-title: J. Geophys. Res. Solid Earth – year: 2007 – year: 1987 – start-page: 138 year: 1967 end-page: 151, – volume: 120 start-page: 1515 year: 2015 end-page: 1529 article-title: Methane release from pingo‐like features across the South Kara Sea shelf, an area of thawing offshore permafrost publication-title: J. Geophys. Res. Solid Earth – year: 1996 – volume: 118 start-page: 2365 year: 2013 end-page: 2379 article-title: Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial publication-title: J. Geophys. Res. Solid Earth – start-page: 43 year: 2003 end-page: 60 – year: 2016 – volume: 85 start-page: 4845 issue: B9 year: 1980 end-page: 4853 article-title: Geophysical evidence of shallow nearshore permafrost, Prudhoe Bay, Alaska publication-title: J. Geophys. Res. – volume: 40 start-page: 3962 year: 2013 end-page: 3967 article-title: Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf publication-title: Geophys. Res. Lett. – start-page: 237 year: 1984 end-page: 258, – start-page: 15 year: 1987 end-page: 17 – year: 1984 – start-page: 355 year: 1988b end-page: 377 – volume: 21 start-page: 9 year: 2002 end-page: 31 article-title: The Laurentide and Innuitian ice sheets during the Last Glacial Maximum publication-title: Quat. Sci. Rev. – start-page: 539 year: 1990 end-page: 549, – volume: 60 start-page: 429 issue: 2 year: 2015 end-page: 436 article-title: Permafrost‐associated gas hydrate: Is it really approximately 1% of the global system publication-title: J. Chem. Eng. Data – volume: 327 start-page: 1246 issue: 5970 year: 2010 end-page: 1250 article-title: Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf publication-title: Science – year: 1988 – start-page: 77 year: 1982 end-page: 102 – start-page: 401 year: 1974 end-page: 415 – year: 1978 – volume: 30 start-page: 103 year: 1993 end-page: 108 article-title: Holocene sea‐level history of the Canadian Beaufort shelf publication-title: Can. J. Earth Sci. – volume: 68 start-page: 237 year: 2000 end-page: 245 article-title: Environmental evolution in the Laptev Sea region during late Pleistocene and Holocene publication-title: Polarforschung – year: 2013 |
SSID | ssj0014558 |
Score | 2.3534522 |
Snippet | Subsea ice‐bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last... Subsea ice-bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 4354 |
SubjectTerms | Arctic Ocean Average velocity Climate Climate change Continental shelves Data Degassing Gas hydrates Geographical distribution Global warming History Hydrates Ice Isobaths Modelling multichannel seismic data Permafrost Permafrost distribution Pleistocene Reflection Refraction Saline intrusion Saltwater intrusion Seismic refraction Shelf edge Shorelines subsea permafrost Travel time Velocity Velocity distribution Water depth |
Title | Subsea ice‐bearing permafrost on the U.S. Beaufort Margin: 1. Minimum seaward extent defined from multichannel seismic reflection data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GC006584 https://www.proquest.com/docview/1850584362 https://www.proquest.com/docview/1911197750 https://www.proquest.com/docview/1859495646 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqRUhcEE9RWJCRuIWEOA8n4cYuJStEOcBW2lvk1JNVxTat2uSwHBBHjvxGLvwNxo8mQVSI5VK1cWq1mc_2N-P5PIQ8AybnOMgyV4YMHRQeZW4Wx9KFRO2i8QS_pdTI0_f8ZBa9PYvPRqOfg6yltim9-ee9upL_sSpeQ7sqlewVLNt1ihfwPdoXX9HC-PpPNlajXikd59DlLJSIXC0wVzNupSQddjvAmXkfPecIRIs0tVEanfOFzupgnjNd1Itlu3SwM5VE6-jIeONIqJCDSiNB0ZmHSiZcwwXeuNgu9eHP1QWYYuNW5NYx3RxULS5TTE7Z8RxWJoqytZ_MGdJbHZPIu9nnaKMlYdudZls477w-Xrux8VqNSGfatwijPDIFBz45k67lQ7tem0QEndpyWTuvvWGkg3Er-RtMzkHsqmCNWbv2XNvN6MkQuWwwPyM5jAZrfRSaQhV_rCPmXFr1I_Jjw9L69XKXI9DdF__tTk0V8jyfoKet3PRrAfozqtTG9Muk2-6KYl1ItvszVqGBvb8Y9vybFzT0pTQZOr1Fblovhr4ykLxNRlDfIddzXSX68i75ZoBJEZg_vn63kKQ9JOmqpmhlqiBJd5CkBpIvKfOoBSS1gKQGkNQCkipA0iEgqQUk7QFJFSDvkdmbyenxiWtLfrgijDLmZiUAsIqlAilVWnEOaRhKkDGkQsQyrYJA-hBkfiIyfy5CyXhScgk8DcIygCq8Tw7qVQ0PCGVxieRdcFyl0kiWqQAWlCwCv0pEKpJwTA53D7OwY3pbIHv18UEjq9vfrKgBekyxPyZPu2YcSmqXTdSwanUXmYo6RHxMnmsbFWtzcExhjggPiqFNiw4bD692-yNyox8kh-Sg2bTwGAlyUz7R4PoFM_61TQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subsea+ice%E2%80%90bearing+permafrost+on+the+U.S.+Beaufort+Margin%3A+1.+Minimum+seaward+extent+defined+from+multichannel+seismic+reflection+data&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Brothers%2C+Laura+L.&rft.au=Herman%2C+Bruce+M.&rft.au=Hart%2C+Patrick+E.&rft.au=Ruppel%2C+Carolyn+D.&rft.date=2016-11-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=17&rft.issue=11&rft.spage=4354&rft.epage=4365&rft_id=info:doi/10.1002%2F2016GC006584&rft.externalDBID=10.1002%252F2016GC006584&rft.externalDocID=GGGE21161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |