Bifunctional N‑Heterocyclic Carbenes Derived from l‑Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis

Conspectus In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 53; no. 3; pp. 690 - 702
Main Authors Chen, Xiang-Yu, Gao, Zhong-Hua, Ye, Song
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conspectus In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed. This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut–Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed. In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon–carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.
AbstractList In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.
Conspectus In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed. This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut–Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed. In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon–carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.
In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.
Author Ye, Song
Chen, Xiang-Yu
Gao, Zhong-Hua
AuthorAffiliation Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences
School of Chemical Sciences
University of the Chinese Academy of Sciences
AuthorAffiliation_xml – name: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences
– name: School of Chemical Sciences
– name: University of the Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Xiang-Yu
  surname: Chen
  fullname: Chen, Xiang-Yu
  organization: University of the Chinese Academy of Sciences
– sequence: 2
  givenname: Zhong-Hua
  orcidid: 0000-0002-2727-7195
  surname: Gao
  fullname: Gao, Zhong-Hua
  organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences
– sequence: 3
  givenname: Song
  orcidid: 0000-0002-3962-7738
  surname: Ye
  fullname: Ye, Song
  email: songye@iccas.ac.cn
  organization: University of the Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32142245$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URNPCGyDkJZukvs2NXUgLrVS1LMraOuM5U1x57GDPVMqOBS_QV-yT4JBkw4Ku7CN_32_Z_wk58sEjIe85W3Am-BmYtABjwuTHtGhaxkpZvCIzXgg2V3VTH5EZY4znvRLH5CSlhzwKVVZvyLEUXAmhihn5_dn2kzejDR4cvXn-9XSJI8ZgNsZZQ1cQW_SY6DlG-4gd7WMYqMvYt00M924aYcjY0tiOgu_o3Q-0kS7X6yzDNjRR6-mFB5-HhA7zTY9Ib-M9-JAJcJtk01vyugeX8N1-PSXfv1zcrS7n17dfr1bL6zlIVY9zLGXdmw5NxbumQV5jL0qJrEYA0Vdd1ddSlNC1TQtCMd5CWxZM9ahEyUVRylPycZe7juHnhGnUg00GnQOPYUpayEpJXheNzOiHPTq1A3Z6He0AcaMPP5eBTzvAxJBSxF4bO_598hjBOs2Z3takc036UJPe15Rl9Y98yH9BYztte_oQppg7S_9X_gBJWbCn
CitedBy_id crossref_primary_10_1002_ange_202016506
crossref_primary_10_1021_acs_orglett_0c03589
crossref_primary_10_1039_D3OB01227A
crossref_primary_10_1021_acs_orglett_2c03642
crossref_primary_10_1039_D3QO01222K
crossref_primary_10_1039_D4CC01754D
crossref_primary_10_1039_D0QO00963F
crossref_primary_10_1002_adma_202210727
crossref_primary_10_1080_00397911_2024_2395993
crossref_primary_10_1002_cctc_202301331
crossref_primary_10_1038_s41467_024_52823_3
crossref_primary_10_1002_ajoc_202300371
crossref_primary_10_1002_adsc_202301082
crossref_primary_10_1055_a_2253_4365
crossref_primary_10_1038_s41467_022_31760_z
crossref_primary_10_1016_j_gresc_2024_04_007
crossref_primary_10_1021_acscatal_1c03861
crossref_primary_10_1039_D1QO00706H
crossref_primary_10_1039_D3OB01078C
crossref_primary_10_1021_acs_orglett_1c01128
crossref_primary_10_1039_D0GC02555K
crossref_primary_10_6023_cjoc202105002
crossref_primary_10_1002_anie_202421151
crossref_primary_10_1002_ajoc_202200080
crossref_primary_10_1002_ejoc_202001544
crossref_primary_10_1021_acs_orglett_2c04070
crossref_primary_10_1002_tcr_202300046
crossref_primary_10_1021_acs_jpca_4c06435
crossref_primary_10_1039_D0SC03595E
crossref_primary_10_1039_D2QO01751B
crossref_primary_10_1002_ange_202211977
crossref_primary_10_1002_anie_202103415
crossref_primary_10_1002_ange_202117340
crossref_primary_10_1021_acs_orglett_2c00954
crossref_primary_10_3390_catal14040219
crossref_primary_10_1007_s11426_023_1909_5
crossref_primary_10_1002_anie_202116629
crossref_primary_10_1021_acs_orglett_0c03208
crossref_primary_10_1039_D3CP05581G
crossref_primary_10_1002_asia_202100351
crossref_primary_10_1039_D3CC01625K
crossref_primary_10_20517_cs_2023_04
crossref_primary_10_1002_asia_202400097
crossref_primary_10_1039_D0QO00868K
crossref_primary_10_1002_cctc_202200099
crossref_primary_10_1021_jacs_4c10486
crossref_primary_10_1021_acscatal_3c01709
crossref_primary_10_1002_adsc_202300686
crossref_primary_10_1016_j_gresc_2022_05_010
crossref_primary_10_1021_acs_joc_2c02010
crossref_primary_10_1021_acs_orglett_4c04453
crossref_primary_10_1002_adsc_202000900
crossref_primary_10_1039_D3QO00667K
crossref_primary_10_1002_advs_202303517
crossref_primary_10_1021_acs_jpca_4c02522
crossref_primary_10_1039_D4CS00417E
crossref_primary_10_1039_D0QO01508C
crossref_primary_10_1021_acs_joc_3c00854
crossref_primary_10_1002_ange_202416519
crossref_primary_10_1002_anie_202202040
crossref_primary_10_1038_s41467_024_45218_x
crossref_primary_10_1002_ange_202212005
crossref_primary_10_1039_D3QO01129A
crossref_primary_10_1055_a_1967_1073
crossref_primary_10_1021_acs_orglett_0c02573
crossref_primary_10_1002_tcr_202300091
crossref_primary_10_1016_j_tet_2021_132456
crossref_primary_10_1039_D2CY01118B
crossref_primary_10_1016_j_tet_2021_132337
crossref_primary_10_1038_s44160_023_00416_1
crossref_primary_10_1021_acs_orglett_2c01301
crossref_primary_10_1021_acs_orglett_1c02780
crossref_primary_10_1002_ejoc_202200039
crossref_primary_10_1016_j_cclet_2024_109495
crossref_primary_10_1039_D3OB01057K
crossref_primary_10_1002_ange_202012581
crossref_primary_10_1007_s11426_023_1744_2
crossref_primary_10_1002_ange_202303007
crossref_primary_10_3390_molecules27185952
crossref_primary_10_1021_acs_joc_2c02392
crossref_primary_10_1002_anie_202117340
crossref_primary_10_1039_D3CC04765B
crossref_primary_10_1021_acs_orglett_3c02323
crossref_primary_10_1016_j_tet_2021_132330
crossref_primary_10_1016_j_cclet_2020_08_027
crossref_primary_10_1039_D3SC03274D
crossref_primary_10_1002_anie_202016506
crossref_primary_10_1039_D4NJ03410D
crossref_primary_10_1016_j_checat_2024_100915
crossref_primary_10_1016_j_tetlet_2024_155319
crossref_primary_10_1055_a_2005_5372
crossref_primary_10_1021_jacs_1c01022
crossref_primary_10_1021_acs_orglett_1c01203
crossref_primary_10_1021_acs_orglett_2c03061
crossref_primary_10_1021_acs_orglett_3c03762
crossref_primary_10_3389_fchem_2022_1110240
crossref_primary_10_1021_acs_accounts_3c00063
crossref_primary_10_1039_D1QO01507A
crossref_primary_10_1002_ange_202104712
crossref_primary_10_1021_acscatal_4c00793
crossref_primary_10_1039_D1SC00469G
crossref_primary_10_1039_D3QO00503H
crossref_primary_10_1039_D2SC04251G
crossref_primary_10_1021_acscatal_4c03263
crossref_primary_10_1021_acs_orglett_4c00242
crossref_primary_10_1021_acs_orglett_0c03883
crossref_primary_10_1021_acs_orglett_1c00024
crossref_primary_10_1021_acs_orglett_4c02082
crossref_primary_10_1021_acscatal_2c02875
crossref_primary_10_1021_acscatal_4c00513
crossref_primary_10_1002_ange_202017017
crossref_primary_10_1016_j_apcata_2022_118976
crossref_primary_10_1039_D3QO00539A
crossref_primary_10_20517_cs_2023_43
crossref_primary_10_1016_j_checat_2021_03_004
crossref_primary_10_1039_D2QO01993K
crossref_primary_10_1021_acs_orglett_5c00315
crossref_primary_10_1021_acs_joc_2c02978
crossref_primary_10_1021_acs_joc_1c00782
crossref_primary_10_1021_acs_orglett_3c03076
crossref_primary_10_1002_ange_202103415
crossref_primary_10_1039_D0SC03297B
crossref_primary_10_1002_anie_202104712
crossref_primary_10_1039_D3OB00394A
crossref_primary_10_1002_ange_202303388
crossref_primary_10_1021_acs_joc_3c01171
crossref_primary_10_1021_acs_orglett_3c00006
crossref_primary_10_1039_D4OB00756E
crossref_primary_10_1039_D2CC03104C
crossref_primary_10_34133_2021_9867915
crossref_primary_10_1021_acs_orglett_1c01221
crossref_primary_10_1021_acscatal_4c01973
crossref_primary_10_1021_acs_orglett_0c01112
crossref_primary_10_1038_s41467_024_46376_8
crossref_primary_10_1021_acs_orglett_0c02202
crossref_primary_10_1039_D1QO01661J
crossref_primary_10_1021_acscatal_2c05570
crossref_primary_10_1002_anie_202017017
crossref_primary_10_1002_tcr_202200219
crossref_primary_10_1021_acsomega_3c05064
crossref_primary_10_1039_D1OB00720C
crossref_primary_10_1039_D0QO00494D
crossref_primary_10_1002_ejoc_202300832
crossref_primary_10_1039_D4CY00470A
crossref_primary_10_1002_chem_202100700
crossref_primary_10_1002_ejoc_202100090
crossref_primary_10_1021_acs_orglett_3c04397
crossref_primary_10_1039_D4QO00660G
crossref_primary_10_1021_acscatal_4c02157
crossref_primary_10_1039_D4RA05596A
crossref_primary_10_1021_acs_accounts_1c00620
crossref_primary_10_3390_catal11080972
crossref_primary_10_1002_anie_202303388
crossref_primary_10_1021_acscatal_3c02844
crossref_primary_10_1039_D2QO01721K
crossref_primary_10_1002_ajoc_202200238
crossref_primary_10_1021_jacsau_4c01166
crossref_primary_10_1038_s41467_024_44743_z
crossref_primary_10_1021_acscatal_2c05725
crossref_primary_10_1016_j_mcat_2023_113621
crossref_primary_10_1021_acs_orglett_2c03007
crossref_primary_10_1039_D4GC04550E
crossref_primary_10_1039_D4OB01568A
crossref_primary_10_1002_cjoc_202400170
crossref_primary_10_1021_acscatal_1c05517
crossref_primary_10_1002_anie_202212005
crossref_primary_10_1002_cctc_202201320
crossref_primary_10_1039_D0OB00777C
crossref_primary_10_3390_molecules28093743
crossref_primary_10_1021_acs_joc_3c01194
crossref_primary_10_1021_acs_orglett_0c04164
crossref_primary_10_1021_acs_orglett_2c03808
crossref_primary_10_1021_acscatal_3c04733
crossref_primary_10_1039_D2OB01859D
crossref_primary_10_1021_acs_orglett_1c01400
crossref_primary_10_1016_j_mcat_2022_112122
crossref_primary_10_1002_cctc_202000910
crossref_primary_10_1021_acs_orglett_1c01761
crossref_primary_10_1039_D2QO01027E
crossref_primary_10_1039_D2QO01940J
crossref_primary_10_6023_cjoc202401009
crossref_primary_10_34133_research_0012
crossref_primary_10_1002_ange_202421151
crossref_primary_10_1002_anie_202416519
crossref_primary_10_1039_D1OB00443C
crossref_primary_10_1002_anie_202012581
crossref_primary_10_1021_acs_orglett_2c04340
crossref_primary_10_1007_s11426_022_1328_5
crossref_primary_10_1007_s11426_023_1578_y
crossref_primary_10_1039_D1SC01910D
crossref_primary_10_1002_chem_202401811
crossref_primary_10_1021_acs_joc_3c00793
crossref_primary_10_1002_anie_202303007
crossref_primary_10_1016_j_tchem_2023_100044
crossref_primary_10_1016_j_xcrp_2021_100490
crossref_primary_10_1021_acs_orglett_4c00043
crossref_primary_10_1021_acs_orglett_4c01253
crossref_primary_10_1021_acs_orglett_3c00734
crossref_primary_10_1039_D1QO01127H
crossref_primary_10_1002_hlca_202100015
crossref_primary_10_1039_D0OB02017F
crossref_primary_10_1002_anie_202016938
crossref_primary_10_1002_chem_202004059
crossref_primary_10_1016_j_gresc_2024_10_004
crossref_primary_10_1021_acscatal_1c00081
crossref_primary_10_1016_j_cclet_2024_109790
crossref_primary_10_1002_ajoc_202400704
crossref_primary_10_1039_D0CC06867E
crossref_primary_10_1021_acs_orglett_1c03059
crossref_primary_10_1039_D0RA08326G
crossref_primary_10_1039_D2QO00350C
crossref_primary_10_1002_chem_202402259
crossref_primary_10_1021_acs_orglett_2c02180
crossref_primary_10_1016_j_tet_2020_131703
crossref_primary_10_1021_acs_joc_3c01099
crossref_primary_10_1016_j_comptc_2022_114007
crossref_primary_10_1002_anie_202303478
crossref_primary_10_1055_a_1822_4690
crossref_primary_10_1021_acs_joc_2c00234
crossref_primary_10_1016_j_tet_2022_133239
crossref_primary_10_1021_acs_orglett_0c02523
crossref_primary_10_1002_ajoc_202200383
crossref_primary_10_1039_D1SC01891D
crossref_primary_10_1002_adsc_202101369
crossref_primary_10_1002_ange_202116629
crossref_primary_10_1002_ejoc_202200548
crossref_primary_10_1007_s11426_022_1327_4
crossref_primary_10_1002_adhm_202002139
crossref_primary_10_1002_ange_202016938
crossref_primary_10_1002_ange_202303478
crossref_primary_10_1016_j_gresc_2021_05_002
crossref_primary_10_1039_D3QO01553J
crossref_primary_10_1002_cctc_202001513
crossref_primary_10_1021_jacs_2c11209
crossref_primary_10_1021_acs_orglett_2c02118
crossref_primary_10_1021_acs_orglett_0c03026
crossref_primary_10_6023_cjoc202203048
crossref_primary_10_1039_D1QO00743B
crossref_primary_10_1021_acs_joc_4c01655
crossref_primary_10_1002_ejoc_202100261
crossref_primary_10_1002_ange_202112860
crossref_primary_10_1039_D4GC03113J
crossref_primary_10_1002_cjoc_202200628
crossref_primary_10_1002_ange_202202040
crossref_primary_10_1039_D4QO00372A
crossref_primary_10_1021_acscatal_1c01908
crossref_primary_10_1039_D3QO00423F
crossref_primary_10_1021_acscatal_2c02805
crossref_primary_10_1038_s41467_022_33444_0
crossref_primary_10_1021_acs_orglett_1c04317
crossref_primary_10_1038_s41467_024_44756_8
crossref_primary_10_1016_j_tetlet_2023_154483
crossref_primary_10_1039_D1SC06100C
crossref_primary_10_1039_D3OB01006F
crossref_primary_10_1002_anie_202207824
crossref_primary_10_1515_zkri_2021_2040
crossref_primary_10_1039_D2SC03745A
crossref_primary_10_1021_acscatal_3c05731
crossref_primary_10_1039_D1CC03165A
crossref_primary_10_1039_D1QO01462E
crossref_primary_10_1002_ange_202311709
crossref_primary_10_1002_ange_202207824
crossref_primary_10_1021_acs_orglett_0c03006
crossref_primary_10_1038_s41467_023_39707_8
crossref_primary_10_1002_anie_202112860
crossref_primary_10_1021_acs_organomet_1c00209
crossref_primary_10_1021_acs_joc_4c02644
crossref_primary_10_1021_acs_orglett_2c01165
crossref_primary_10_1021_acs_joc_1c01230
crossref_primary_10_1002_ange_202301126
crossref_primary_10_1039_D4QO02193B
crossref_primary_10_1002_anie_202311709
crossref_primary_10_1002_anie_202211977
crossref_primary_10_1002_anie_202404979
crossref_primary_10_1021_acs_joc_2c00952
crossref_primary_10_1021_acs_orglett_2c01729
crossref_primary_10_1039_D0RA07271K
crossref_primary_10_1021_acs_orglett_4c01386
crossref_primary_10_1038_s41467_024_49799_5
crossref_primary_10_1039_D1SC06102J
crossref_primary_10_1039_D2QO00908K
crossref_primary_10_1038_s41467_023_39988_z
crossref_primary_10_34133_research_0474
crossref_primary_10_1039_D1OB00065A
crossref_primary_10_1039_D2QO00257D
crossref_primary_10_1021_acs_orglett_0c01756
crossref_primary_10_1039_D0CC04661B
crossref_primary_10_1002_advs_202406095
crossref_primary_10_1039_D0CC03290E
crossref_primary_10_1002_ange_202404979
crossref_primary_10_1002_anie_202301126
crossref_primary_10_1039_D4CC00502C
crossref_primary_10_1002_tcr_202200054
crossref_primary_10_1007_s11426_020_9851_8
crossref_primary_10_6023_cjoc202010039
crossref_primary_10_1021_acs_orglett_3c01840
Cites_doi 10.1002/adsc.201000240
10.1039/b908517c
10.1002/chem.201301996
10.1016/j.tetasy.2008.05.017
10.1002/chem.201103358
10.1002/hlca.19960790712
10.1002/anie.200705523
10.1016/j.tetlet.2010.02.122
10.1039/c1cc13860j
10.1002/1521-3773(20020517)41:10<1743::AID-ANIE1743>3.0.CO;2-Q
10.1021/ja066380r
10.1002/anie.200400650
10.1021/cr068372z
10.1021/acs.accounts.8b00550
10.1021/ja042650z
10.1002/chem.201204539
10.1055/s-0033-1338956
10.1039/C5CS00162E
10.1002/anie.201405178
10.1002/chem.201405828
10.1021/acscatal.6b03663
10.1021/ol501205v
10.1021/ja062707c
10.1021/ol502365r
10.1002/asia.201800902
10.1002/anie.201405381
10.1002/anie.201201643
10.1021/ja00967a049
10.1002/anie.201709684
10.1248/yakushi1881.63.6_296
10.1039/C8QO01302K
10.1002/anie.201003532
10.1002/anie.200461572
10.1039/b800857b
10.1021/ja058222q
10.1021/ja103631u
10.1021/acs.chemrev.5b00060
10.1021/ja405833m
10.1021/jo902018j
10.1039/b801004h
10.1002/anie.201004593
10.1039/C2OB26804C
10.1016/S0021-9258(20)80532-8
10.1007/s11434-010-3122-7
10.1021/ja027411v
10.1039/c2cs15333e
10.1002/jlac.18320030302
10.1002/anie.201301304
10.1021/ol702759b
10.1039/c3cs35522e
10.1039/b903816g
10.1002/anie.201407469
10.1021/jo101318u
10.1021/ar400239v
10.1021/ja044714b
10.1055/s-2008-1067216
10.1039/B414574G
10.1021/ol402877n
10.1002/chem.201203707
10.1002/anie.199510211
10.1039/C6SC04135C
10.1002/anie.201303903
10.1021/ar030050j
10.1039/C1SC00621E
10.1002/adsc.201100622
10.1039/a803635g
10.1002/anie.200804487
10.1021/ja905501z
10.1055/s-0029-1219543
10.1021/acs.joc.6b00313
10.1039/C7OB00148G
10.1002/adsc.200800532
10.1021/ja055918a
10.1002/ejoc.201301366
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.accounts.9b00635
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 702
ExternalDocumentID 32142245
10_1021_acs_accounts_9b00635
a597155244
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a348t-e638fcdec71d99e18ef263e08eaa2f7d7f8326adb9ba2401bab6504fe42612563
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Thu Jul 10 18:23:33 EDT 2025
Thu Apr 03 07:04:34 EDT 2025
Thu Apr 24 22:51:58 EDT 2025
Tue Jul 01 03:16:04 EDT 2025
Thu Aug 27 22:10:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-e638fcdec71d99e18ef263e08eaa2f7d7f8326adb9ba2401bab6504fe42612563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3962-7738
0000-0002-2727-7195
PMID 32142245
PQID 2374318593
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2374318593
pubmed_primary_32142245
crossref_citationtrail_10_1021_acs_accounts_9b00635
crossref_primary_10_1021_acs_accounts_9b00635
acs_journals_10_1021_acs_accounts_9b00635
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-17
PublicationDateYYYYMMDD 2020-03-17
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref1/cit1d
ref13/cit13a
ref16/cit16
ref13/cit13b
ref52/cit52
ref23/cit23
ref31/cit31
ref2/cit2
ref1/cit1a
ref34/cit34
ref1/cit1c
ref37/cit37
ref1/cit1b
ref20/cit20
ref48/cit48
ref5/cit5b
ref17/cit17
ref7/cit7m
ref10/cit10
ref5/cit5a
ref7/cit7l
ref35/cit35
ref53/cit53
ref7/cit7g
ref19/cit19
ref7/cit7f
ref21/cit21
ref7/cit7e
ref7/cit7d
ref3/cit3b
ref7/cit7k
ref42/cit42
ref7/cit7j
ref11/cit11b
ref46/cit46
ref7/cit7i
ref3/cit3a
ref7/cit7h
Sundström M. (ref8/cit8) 1993; 268
ref11/cit11a
ref49/cit49
ref7/cit7c
ref7/cit7b
ref7/cit7a
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref44/cit44a
ref26/cit26
ref4/cit4a
ref4/cit4b
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref30/cit30
ref47/cit47
ref44/cit44b
References_xml – ident: ref44/cit44a
  doi: 10.1002/adsc.201000240
– ident: ref50/cit50
  doi: 10.1039/b908517c
– ident: ref1/cit1d
  doi: 10.1002/chem.201301996
– ident: ref11/cit11a
  doi: 10.1016/j.tetasy.2008.05.017
– ident: ref49/cit49
  doi: 10.1002/chem.201103358
– ident: ref3/cit3a
  doi: 10.1002/hlca.19960790712
– ident: ref1/cit1b
  doi: 10.1002/anie.200705523
– ident: ref27/cit27
  doi: 10.1016/j.tetlet.2010.02.122
– ident: ref30/cit30
  doi: 10.1039/c1cc13860j
– ident: ref4/cit4b
  doi: 10.1002/1521-3773(20020517)41:10<1743::AID-ANIE1743>3.0.CO;2-Q
– ident: ref18/cit18
  doi: 10.1021/ja066380r
– ident: ref1/cit1a
  doi: 10.1002/anie.200400650
– ident: ref7/cit7b
  doi: 10.1021/cr068372z
– ident: ref7/cit7l
  doi: 10.1021/acs.accounts.8b00550
– ident: ref10/cit10
  doi: 10.1021/ja042650z
– ident: ref43/cit43
  doi: 10.1002/chem.201204539
– ident: ref51/cit51
  doi: 10.1055/s-0033-1338956
– ident: ref7/cit7i
  doi: 10.1039/C5CS00162E
– ident: ref32/cit32
  doi: 10.1002/anie.201405178
– ident: ref38/cit38
  doi: 10.1002/chem.201405828
– ident: ref7/cit7j
  doi: 10.1021/acscatal.6b03663
– ident: ref22/cit22
  doi: 10.1021/ol501205v
– ident: ref5/cit5b
  doi: 10.1021/ja062707c
– ident: ref35/cit35
  doi: 10.1021/ol502365r
– ident: ref7/cit7m
  doi: 10.1002/asia.201800902
– ident: ref39/cit39
  doi: 10.1002/anie.201405381
– ident: ref31/cit31
  doi: 10.1002/anie.201201643
– ident: ref2/cit2
  doi: 10.1021/ja00967a049
– ident: ref7/cit7k
  doi: 10.1002/anie.201709684
– ident: ref13/cit13a
  doi: 10.1248/yakushi1881.63.6_296
– ident: ref41/cit41
  doi: 10.1039/C8QO01302K
– ident: ref23/cit23
  doi: 10.1002/anie.201003532
– ident: ref28/cit28
  doi: 10.1002/anie.200461572
– ident: ref20/cit20
  doi: 10.1039/b800857b
– ident: ref42/cit42
  doi: 10.1021/ja058222q
– ident: ref44/cit44b
  doi: 10.1021/ja103631u
– ident: ref7/cit7h
  doi: 10.1021/acs.chemrev.5b00060
– ident: ref37/cit37
  doi: 10.1021/ja405833m
– ident: ref15/cit15
  doi: 10.1021/jo902018j
– ident: ref6/cit6
  doi: 10.1039/b801004h
– ident: ref45/cit45
  doi: 10.1002/anie.201004593
– ident: ref25/cit25
  doi: 10.1039/C2OB26804C
– volume: 268
  start-page: 24346
  year: 1993
  ident: ref8/cit8
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(20)80532-8
– ident: ref14/cit14
  doi: 10.1007/s11434-010-3122-7
– ident: ref5/cit5a
  doi: 10.1021/ja027411v
– ident: ref7/cit7c
  doi: 10.1039/c2cs15333e
– ident: ref13/cit13b
  doi: 10.1002/jlac.18320030302
– ident: ref16/cit16
  doi: 10.1002/anie.201301304
– ident: ref11/cit11b
  doi: 10.1021/ol702759b
– ident: ref7/cit7f
  doi: 10.1039/c3cs35522e
– ident: ref1/cit1c
  doi: 10.1039/b903816g
– ident: ref46/cit46
  doi: 10.1002/anie.201407469
– ident: ref26/cit26
  doi: 10.1021/jo101318u
– ident: ref7/cit7g
  doi: 10.1021/ar400239v
– ident: ref29/cit29
  doi: 10.1021/ja044714b
– ident: ref12/cit12
  doi: 10.1055/s-2008-1067216
– ident: ref9/cit9
  doi: 10.1039/B414574G
– ident: ref19/cit19
  doi: 10.1021/ol402877n
– ident: ref7/cit7e
  doi: 10.1002/chem.201203707
– ident: ref3/cit3b
  doi: 10.1002/anie.199510211
– ident: ref33/cit33
  doi: 10.1039/C6SC04135C
– ident: ref36/cit36
  doi: 10.1002/anie.201303903
– ident: ref7/cit7a
  doi: 10.1021/ar030050j
– ident: ref7/cit7d
  doi: 10.1039/C1SC00621E
– ident: ref48/cit48
  doi: 10.1002/adsc.201100622
– ident: ref4/cit4a
  doi: 10.1039/a803635g
– ident: ref24/cit24
  doi: 10.1002/anie.200804487
– ident: ref47/cit47
  doi: 10.1021/ja905501z
– ident: ref52/cit52
  doi: 10.1055/s-0029-1219543
– ident: ref40/cit40
  doi: 10.1021/acs.joc.6b00313
– ident: ref34/cit34
  doi: 10.1039/C7OB00148G
– ident: ref21/cit21
  doi: 10.1002/adsc.200800532
– ident: ref17/cit17
  doi: 10.1021/ja055918a
– ident: ref53/cit53
  doi: 10.1002/ejoc.201301366
SSID ssj0002467
Score 2.6806808
SecondaryResourceType review_article
Snippet Conspectus In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to...
In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 690
SubjectTerms Catalysis
Heterocyclic Compounds - chemistry
Methane - analogs & derivatives
Methane - chemistry
Organic Chemicals - chemistry
Pyrrolidonecarboxylic Acid - chemistry
Stereoisomerism
Title Bifunctional N‑Heterocyclic Carbenes Derived from l‑Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis
URI http://dx.doi.org/10.1021/acs.accounts.9b00635
https://www.ncbi.nlm.nih.gov/pubmed/32142245
https://www.proquest.com/docview/2374318593
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDnBhX8omI3HhkEIc10mPpYAqJBYJkLhFjhcUUSWoaZHKiQM_wC_yJcxkKZsQcI2ckWyPPW88yyNkRyhhXNmA249ZcFCEdJ2AS-NYaSTgCQ-MDNY7n56JzjU_uWncvDuKXyP4zN2TKgPROXNCVscOfmAix8kkE4GPzlarfTm6eRkXRY9McJF5wFlVKveDFDRIKvtskH5Ambm1OZ4l51XNTpFkclcf9KO6evzewvGPE5kjMyXwpK1CU-bJmEkWyFS74ntbJM8HMRq54m2Qnr0-vXQwVSZVQ9WNFW3LXoT3Ij0EnX0wmmJhCu3CsIthL70FBUZme9pSsaYy0fQKIxC09SE-TuOEHmHeTZxmOfsOiKF5LWiaPyJhb5Qlcn18dNXuOCVHgyM9HvQdA-fXKm2U7-pm07iBsUx4Zj8wUjLra9_ClSGkjpqRBPDgRjICTMitQdcN4Ja3TCaSNDGrhPpuBGObiGADrvd1gAwUHtfCSk8zy2tkF5YwLM9YFubhc-aG-LFa17Bc1xrxqk0NVdnsHDk3ur_85Yz-ui-affwyfrvSlxA2C0MtMjHpIAuZh8gMe8nVyEqhSCOJSA0FwKmx9o_5rJNpho4-JhL6G2Si3xuYTUBD_WgrPwJvVH0LbQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xOMAFWkohUMoicenBabze2M4xBFBoIUJqQNys9T4qq5GN4gQJThz4A_xFfgkzfqQtEkJcV7ujfczOfLvzAtj3lW9c2Ubpxy0-UHzpOqGQxrHSSMQTHioZinc-G_j9C_Hjqn01B-06FgYnkSOlvDDi_80u4H6nNlkWUMiblMgPNeU8LCIe4fTm6vZ-zQQwF36ZKhNfyiIUvI6Ye4UK6SWV_6-XXgGbhdI5XoXL2XQLX5M_zekkbqq7F5kc372eD7BSwVDWLfnmI8yZdA2WenX1t0_wcJCQyit_Ctng6f6xT44zmbpVo0SxnhzHJCXZIXLwjdGMwlTYCLud346z38jOVOeedVWimUw1G5I9gnX_sZazJGVH5IWTZHlRiwfJsCIyNCu-lChTyjpcHB8Ne32nqtjgSE-EE8fgbbZKGxW4utMxbmgs9z3TCo2U3AY6sChAfKnjTiwRSrixjBEhCmvoIYfgy_sMC2mWmk1ggRtj3w7h2VDolg6pHoUntG-lp7kVDfiGWxhVNy6PCmM6dyNqrPc1qva1AV59tpGqUp9TBY7RG6Oc2ajrMvXHG_33araJ8LDI8CJTk03ziHuE0yizXAM2Sn6aUaRCUQij2lvvWM8uLPWHZ6fR6cng5zYsc_oCIBfD4AssTMZTs4M4aRJ_LW7FMyc5E84
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RkIBLCxRKoAUjcelhA-t1djfHNBCFV4QESIjLyusHWjXaRdmkEj31wB_oX-wvYWYfESAhRK-Wbfkxj88eez6AXV_5xpUttH7c4gHFl64TCmkcK41EPOGhk6H_zmcDv38ljq9b10-ovnAQOfaUF0F80uo7basMA-4elcuSRCFvUjI_9JYfYI4id3Tu6nQvpkaYC79Ml4mnZREKXv-ae6UX8k0qf-6bXgGchePpfYKb6ZCL9yY_m5Nx3FS_X2Rz_K85LcHHCo6yTik_yzBj0hVY6NYscJ_h4UdCrq-8MWSDf3_-9ukBTabu1TBRrCtHMVlLdoCS_MtoRt9V2BCrnd-PslsUa-K7Zx2VaCZTzS4pLsE6T6LmLEnZIb3GSbK84OTBbljxQzQrrpYoY8oqXPUOL7t9p2JucKQnwrFjUKut0kYFrm63jRsay33P7IdGSm4DHVg0JL7UcTuWCCncWMaIFIU1dKBDEOatwWyapWYdWODGWLdNuDYUel-HxEvhCe1b6WluRQO-4xJGleblURFU525EhfW6RtW6NsCr9zdSVQp0YuIYvtHKmba6K1OAvFF_pxadCDeLAjAyNdkkj7hHeI0yzDXgSylT0x6JMArhVGvjHfPZhvnzg150ejQ42YRFTjcB9NIw-Aqz49HEfEO4NI63CsV4BNN-FlE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+N-Heterocyclic+Carbenes+Derived+from+l-Pyroglutamic+Acid+and+Their+Applications+in+Enantioselective+Organocatalysis&rft.jtitle=Accounts+of+chemical+research&rft.au=Chen%2C+Xiang-Yu&rft.au=Gao%2C+Zhong-Hua&rft.au=Ye%2C+Song&rft.date=2020-03-17&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=53&rft.issue=3&rft.spage=690&rft_id=info:doi/10.1021%2Facs.accounts.9b00635&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon