Bifunctional N‑Heterocyclic Carbenes Derived from l‑Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis
Conspectus In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene...
Saved in:
Published in | Accounts of chemical research Vol. 53; no. 3; pp. 690 - 702 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed. This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut–Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed. In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon–carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group. |
---|---|
AbstractList | In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group. Conspectus In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed. This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut–Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed. In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon–carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group. In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group. |
Author | Ye, Song Chen, Xiang-Yu Gao, Zhong-Hua |
AuthorAffiliation | Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences School of Chemical Sciences University of the Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences – name: School of Chemical Sciences – name: University of the Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Xiang-Yu surname: Chen fullname: Chen, Xiang-Yu organization: University of the Chinese Academy of Sciences – sequence: 2 givenname: Zhong-Hua orcidid: 0000-0002-2727-7195 surname: Gao fullname: Gao, Zhong-Hua organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences – sequence: 3 givenname: Song orcidid: 0000-0002-3962-7738 surname: Ye fullname: Ye, Song email: songye@iccas.ac.cn organization: University of the Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32142245$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URNPCGyDkJZukvs2NXUgLrVS1LMraOuM5U1x57GDPVMqOBS_QV-yT4JBkw4Ku7CN_32_Z_wk58sEjIe85W3Am-BmYtABjwuTHtGhaxkpZvCIzXgg2V3VTH5EZY4znvRLH5CSlhzwKVVZvyLEUXAmhihn5_dn2kzejDR4cvXn-9XSJI8ZgNsZZQ1cQW_SY6DlG-4gd7WMYqMvYt00M924aYcjY0tiOgu_o3Q-0kS7X6yzDNjRR6-mFB5-HhA7zTY9Ib-M9-JAJcJtk01vyugeX8N1-PSXfv1zcrS7n17dfr1bL6zlIVY9zLGXdmw5NxbumQV5jL0qJrEYA0Vdd1ddSlNC1TQtCMd5CWxZM9ahEyUVRylPycZe7juHnhGnUg00GnQOPYUpayEpJXheNzOiHPTq1A3Z6He0AcaMPP5eBTzvAxJBSxF4bO_598hjBOs2Z3takc036UJPe15Rl9Y98yH9BYztte_oQppg7S_9X_gBJWbCn |
CitedBy_id | crossref_primary_10_1002_ange_202016506 crossref_primary_10_1021_acs_orglett_0c03589 crossref_primary_10_1039_D3OB01227A crossref_primary_10_1021_acs_orglett_2c03642 crossref_primary_10_1039_D3QO01222K crossref_primary_10_1039_D4CC01754D crossref_primary_10_1039_D0QO00963F crossref_primary_10_1002_adma_202210727 crossref_primary_10_1080_00397911_2024_2395993 crossref_primary_10_1002_cctc_202301331 crossref_primary_10_1038_s41467_024_52823_3 crossref_primary_10_1002_ajoc_202300371 crossref_primary_10_1002_adsc_202301082 crossref_primary_10_1055_a_2253_4365 crossref_primary_10_1038_s41467_022_31760_z crossref_primary_10_1016_j_gresc_2024_04_007 crossref_primary_10_1021_acscatal_1c03861 crossref_primary_10_1039_D1QO00706H crossref_primary_10_1039_D3OB01078C crossref_primary_10_1021_acs_orglett_1c01128 crossref_primary_10_1039_D0GC02555K crossref_primary_10_6023_cjoc202105002 crossref_primary_10_1002_anie_202421151 crossref_primary_10_1002_ajoc_202200080 crossref_primary_10_1002_ejoc_202001544 crossref_primary_10_1021_acs_orglett_2c04070 crossref_primary_10_1002_tcr_202300046 crossref_primary_10_1021_acs_jpca_4c06435 crossref_primary_10_1039_D0SC03595E crossref_primary_10_1039_D2QO01751B crossref_primary_10_1002_ange_202211977 crossref_primary_10_1002_anie_202103415 crossref_primary_10_1002_ange_202117340 crossref_primary_10_1021_acs_orglett_2c00954 crossref_primary_10_3390_catal14040219 crossref_primary_10_1007_s11426_023_1909_5 crossref_primary_10_1002_anie_202116629 crossref_primary_10_1021_acs_orglett_0c03208 crossref_primary_10_1039_D3CP05581G crossref_primary_10_1002_asia_202100351 crossref_primary_10_1039_D3CC01625K crossref_primary_10_20517_cs_2023_04 crossref_primary_10_1002_asia_202400097 crossref_primary_10_1039_D0QO00868K crossref_primary_10_1002_cctc_202200099 crossref_primary_10_1021_jacs_4c10486 crossref_primary_10_1021_acscatal_3c01709 crossref_primary_10_1002_adsc_202300686 crossref_primary_10_1016_j_gresc_2022_05_010 crossref_primary_10_1021_acs_joc_2c02010 crossref_primary_10_1021_acs_orglett_4c04453 crossref_primary_10_1002_adsc_202000900 crossref_primary_10_1039_D3QO00667K crossref_primary_10_1002_advs_202303517 crossref_primary_10_1021_acs_jpca_4c02522 crossref_primary_10_1039_D4CS00417E crossref_primary_10_1039_D0QO01508C crossref_primary_10_1021_acs_joc_3c00854 crossref_primary_10_1002_ange_202416519 crossref_primary_10_1002_anie_202202040 crossref_primary_10_1038_s41467_024_45218_x crossref_primary_10_1002_ange_202212005 crossref_primary_10_1039_D3QO01129A crossref_primary_10_1055_a_1967_1073 crossref_primary_10_1021_acs_orglett_0c02573 crossref_primary_10_1002_tcr_202300091 crossref_primary_10_1016_j_tet_2021_132456 crossref_primary_10_1039_D2CY01118B crossref_primary_10_1016_j_tet_2021_132337 crossref_primary_10_1038_s44160_023_00416_1 crossref_primary_10_1021_acs_orglett_2c01301 crossref_primary_10_1021_acs_orglett_1c02780 crossref_primary_10_1002_ejoc_202200039 crossref_primary_10_1016_j_cclet_2024_109495 crossref_primary_10_1039_D3OB01057K crossref_primary_10_1002_ange_202012581 crossref_primary_10_1007_s11426_023_1744_2 crossref_primary_10_1002_ange_202303007 crossref_primary_10_3390_molecules27185952 crossref_primary_10_1021_acs_joc_2c02392 crossref_primary_10_1002_anie_202117340 crossref_primary_10_1039_D3CC04765B crossref_primary_10_1021_acs_orglett_3c02323 crossref_primary_10_1016_j_tet_2021_132330 crossref_primary_10_1016_j_cclet_2020_08_027 crossref_primary_10_1039_D3SC03274D crossref_primary_10_1002_anie_202016506 crossref_primary_10_1039_D4NJ03410D crossref_primary_10_1016_j_checat_2024_100915 crossref_primary_10_1016_j_tetlet_2024_155319 crossref_primary_10_1055_a_2005_5372 crossref_primary_10_1021_jacs_1c01022 crossref_primary_10_1021_acs_orglett_1c01203 crossref_primary_10_1021_acs_orglett_2c03061 crossref_primary_10_1021_acs_orglett_3c03762 crossref_primary_10_3389_fchem_2022_1110240 crossref_primary_10_1021_acs_accounts_3c00063 crossref_primary_10_1039_D1QO01507A crossref_primary_10_1002_ange_202104712 crossref_primary_10_1021_acscatal_4c00793 crossref_primary_10_1039_D1SC00469G crossref_primary_10_1039_D3QO00503H crossref_primary_10_1039_D2SC04251G crossref_primary_10_1021_acscatal_4c03263 crossref_primary_10_1021_acs_orglett_4c00242 crossref_primary_10_1021_acs_orglett_0c03883 crossref_primary_10_1021_acs_orglett_1c00024 crossref_primary_10_1021_acs_orglett_4c02082 crossref_primary_10_1021_acscatal_2c02875 crossref_primary_10_1021_acscatal_4c00513 crossref_primary_10_1002_ange_202017017 crossref_primary_10_1016_j_apcata_2022_118976 crossref_primary_10_1039_D3QO00539A crossref_primary_10_20517_cs_2023_43 crossref_primary_10_1016_j_checat_2021_03_004 crossref_primary_10_1039_D2QO01993K crossref_primary_10_1021_acs_orglett_5c00315 crossref_primary_10_1021_acs_joc_2c02978 crossref_primary_10_1021_acs_joc_1c00782 crossref_primary_10_1021_acs_orglett_3c03076 crossref_primary_10_1002_ange_202103415 crossref_primary_10_1039_D0SC03297B crossref_primary_10_1002_anie_202104712 crossref_primary_10_1039_D3OB00394A crossref_primary_10_1002_ange_202303388 crossref_primary_10_1021_acs_joc_3c01171 crossref_primary_10_1021_acs_orglett_3c00006 crossref_primary_10_1039_D4OB00756E crossref_primary_10_1039_D2CC03104C crossref_primary_10_34133_2021_9867915 crossref_primary_10_1021_acs_orglett_1c01221 crossref_primary_10_1021_acscatal_4c01973 crossref_primary_10_1021_acs_orglett_0c01112 crossref_primary_10_1038_s41467_024_46376_8 crossref_primary_10_1021_acs_orglett_0c02202 crossref_primary_10_1039_D1QO01661J crossref_primary_10_1021_acscatal_2c05570 crossref_primary_10_1002_anie_202017017 crossref_primary_10_1002_tcr_202200219 crossref_primary_10_1021_acsomega_3c05064 crossref_primary_10_1039_D1OB00720C crossref_primary_10_1039_D0QO00494D crossref_primary_10_1002_ejoc_202300832 crossref_primary_10_1039_D4CY00470A crossref_primary_10_1002_chem_202100700 crossref_primary_10_1002_ejoc_202100090 crossref_primary_10_1021_acs_orglett_3c04397 crossref_primary_10_1039_D4QO00660G crossref_primary_10_1021_acscatal_4c02157 crossref_primary_10_1039_D4RA05596A crossref_primary_10_1021_acs_accounts_1c00620 crossref_primary_10_3390_catal11080972 crossref_primary_10_1002_anie_202303388 crossref_primary_10_1021_acscatal_3c02844 crossref_primary_10_1039_D2QO01721K crossref_primary_10_1002_ajoc_202200238 crossref_primary_10_1021_jacsau_4c01166 crossref_primary_10_1038_s41467_024_44743_z crossref_primary_10_1021_acscatal_2c05725 crossref_primary_10_1016_j_mcat_2023_113621 crossref_primary_10_1021_acs_orglett_2c03007 crossref_primary_10_1039_D4GC04550E crossref_primary_10_1039_D4OB01568A crossref_primary_10_1002_cjoc_202400170 crossref_primary_10_1021_acscatal_1c05517 crossref_primary_10_1002_anie_202212005 crossref_primary_10_1002_cctc_202201320 crossref_primary_10_1039_D0OB00777C crossref_primary_10_3390_molecules28093743 crossref_primary_10_1021_acs_joc_3c01194 crossref_primary_10_1021_acs_orglett_0c04164 crossref_primary_10_1021_acs_orglett_2c03808 crossref_primary_10_1021_acscatal_3c04733 crossref_primary_10_1039_D2OB01859D crossref_primary_10_1021_acs_orglett_1c01400 crossref_primary_10_1016_j_mcat_2022_112122 crossref_primary_10_1002_cctc_202000910 crossref_primary_10_1021_acs_orglett_1c01761 crossref_primary_10_1039_D2QO01027E crossref_primary_10_1039_D2QO01940J crossref_primary_10_6023_cjoc202401009 crossref_primary_10_34133_research_0012 crossref_primary_10_1002_ange_202421151 crossref_primary_10_1002_anie_202416519 crossref_primary_10_1039_D1OB00443C crossref_primary_10_1002_anie_202012581 crossref_primary_10_1021_acs_orglett_2c04340 crossref_primary_10_1007_s11426_022_1328_5 crossref_primary_10_1007_s11426_023_1578_y crossref_primary_10_1039_D1SC01910D crossref_primary_10_1002_chem_202401811 crossref_primary_10_1021_acs_joc_3c00793 crossref_primary_10_1002_anie_202303007 crossref_primary_10_1016_j_tchem_2023_100044 crossref_primary_10_1016_j_xcrp_2021_100490 crossref_primary_10_1021_acs_orglett_4c00043 crossref_primary_10_1021_acs_orglett_4c01253 crossref_primary_10_1021_acs_orglett_3c00734 crossref_primary_10_1039_D1QO01127H crossref_primary_10_1002_hlca_202100015 crossref_primary_10_1039_D0OB02017F crossref_primary_10_1002_anie_202016938 crossref_primary_10_1002_chem_202004059 crossref_primary_10_1016_j_gresc_2024_10_004 crossref_primary_10_1021_acscatal_1c00081 crossref_primary_10_1016_j_cclet_2024_109790 crossref_primary_10_1002_ajoc_202400704 crossref_primary_10_1039_D0CC06867E crossref_primary_10_1021_acs_orglett_1c03059 crossref_primary_10_1039_D0RA08326G crossref_primary_10_1039_D2QO00350C crossref_primary_10_1002_chem_202402259 crossref_primary_10_1021_acs_orglett_2c02180 crossref_primary_10_1016_j_tet_2020_131703 crossref_primary_10_1021_acs_joc_3c01099 crossref_primary_10_1016_j_comptc_2022_114007 crossref_primary_10_1002_anie_202303478 crossref_primary_10_1055_a_1822_4690 crossref_primary_10_1021_acs_joc_2c00234 crossref_primary_10_1016_j_tet_2022_133239 crossref_primary_10_1021_acs_orglett_0c02523 crossref_primary_10_1002_ajoc_202200383 crossref_primary_10_1039_D1SC01891D crossref_primary_10_1002_adsc_202101369 crossref_primary_10_1002_ange_202116629 crossref_primary_10_1002_ejoc_202200548 crossref_primary_10_1007_s11426_022_1327_4 crossref_primary_10_1002_adhm_202002139 crossref_primary_10_1002_ange_202016938 crossref_primary_10_1002_ange_202303478 crossref_primary_10_1016_j_gresc_2021_05_002 crossref_primary_10_1039_D3QO01553J crossref_primary_10_1002_cctc_202001513 crossref_primary_10_1021_jacs_2c11209 crossref_primary_10_1021_acs_orglett_2c02118 crossref_primary_10_1021_acs_orglett_0c03026 crossref_primary_10_6023_cjoc202203048 crossref_primary_10_1039_D1QO00743B crossref_primary_10_1021_acs_joc_4c01655 crossref_primary_10_1002_ejoc_202100261 crossref_primary_10_1002_ange_202112860 crossref_primary_10_1039_D4GC03113J crossref_primary_10_1002_cjoc_202200628 crossref_primary_10_1002_ange_202202040 crossref_primary_10_1039_D4QO00372A crossref_primary_10_1021_acscatal_1c01908 crossref_primary_10_1039_D3QO00423F crossref_primary_10_1021_acscatal_2c02805 crossref_primary_10_1038_s41467_022_33444_0 crossref_primary_10_1021_acs_orglett_1c04317 crossref_primary_10_1038_s41467_024_44756_8 crossref_primary_10_1016_j_tetlet_2023_154483 crossref_primary_10_1039_D1SC06100C crossref_primary_10_1039_D3OB01006F crossref_primary_10_1002_anie_202207824 crossref_primary_10_1515_zkri_2021_2040 crossref_primary_10_1039_D2SC03745A crossref_primary_10_1021_acscatal_3c05731 crossref_primary_10_1039_D1CC03165A crossref_primary_10_1039_D1QO01462E crossref_primary_10_1002_ange_202311709 crossref_primary_10_1002_ange_202207824 crossref_primary_10_1021_acs_orglett_0c03006 crossref_primary_10_1038_s41467_023_39707_8 crossref_primary_10_1002_anie_202112860 crossref_primary_10_1021_acs_organomet_1c00209 crossref_primary_10_1021_acs_joc_4c02644 crossref_primary_10_1021_acs_orglett_2c01165 crossref_primary_10_1021_acs_joc_1c01230 crossref_primary_10_1002_ange_202301126 crossref_primary_10_1039_D4QO02193B crossref_primary_10_1002_anie_202311709 crossref_primary_10_1002_anie_202211977 crossref_primary_10_1002_anie_202404979 crossref_primary_10_1021_acs_joc_2c00952 crossref_primary_10_1021_acs_orglett_2c01729 crossref_primary_10_1039_D0RA07271K crossref_primary_10_1021_acs_orglett_4c01386 crossref_primary_10_1038_s41467_024_49799_5 crossref_primary_10_1039_D1SC06102J crossref_primary_10_1039_D2QO00908K crossref_primary_10_1038_s41467_023_39988_z crossref_primary_10_34133_research_0474 crossref_primary_10_1039_D1OB00065A crossref_primary_10_1039_D2QO00257D crossref_primary_10_1021_acs_orglett_0c01756 crossref_primary_10_1039_D0CC04661B crossref_primary_10_1002_advs_202406095 crossref_primary_10_1039_D0CC03290E crossref_primary_10_1002_ange_202404979 crossref_primary_10_1002_anie_202301126 crossref_primary_10_1039_D4CC00502C crossref_primary_10_1002_tcr_202200054 crossref_primary_10_1007_s11426_020_9851_8 crossref_primary_10_6023_cjoc202010039 crossref_primary_10_1021_acs_orglett_3c01840 |
Cites_doi | 10.1002/adsc.201000240 10.1039/b908517c 10.1002/chem.201301996 10.1016/j.tetasy.2008.05.017 10.1002/chem.201103358 10.1002/hlca.19960790712 10.1002/anie.200705523 10.1016/j.tetlet.2010.02.122 10.1039/c1cc13860j 10.1002/1521-3773(20020517)41:10<1743::AID-ANIE1743>3.0.CO;2-Q 10.1021/ja066380r 10.1002/anie.200400650 10.1021/cr068372z 10.1021/acs.accounts.8b00550 10.1021/ja042650z 10.1002/chem.201204539 10.1055/s-0033-1338956 10.1039/C5CS00162E 10.1002/anie.201405178 10.1002/chem.201405828 10.1021/acscatal.6b03663 10.1021/ol501205v 10.1021/ja062707c 10.1021/ol502365r 10.1002/asia.201800902 10.1002/anie.201405381 10.1002/anie.201201643 10.1021/ja00967a049 10.1002/anie.201709684 10.1248/yakushi1881.63.6_296 10.1039/C8QO01302K 10.1002/anie.201003532 10.1002/anie.200461572 10.1039/b800857b 10.1021/ja058222q 10.1021/ja103631u 10.1021/acs.chemrev.5b00060 10.1021/ja405833m 10.1021/jo902018j 10.1039/b801004h 10.1002/anie.201004593 10.1039/C2OB26804C 10.1016/S0021-9258(20)80532-8 10.1007/s11434-010-3122-7 10.1021/ja027411v 10.1039/c2cs15333e 10.1002/jlac.18320030302 10.1002/anie.201301304 10.1021/ol702759b 10.1039/c3cs35522e 10.1039/b903816g 10.1002/anie.201407469 10.1021/jo101318u 10.1021/ar400239v 10.1021/ja044714b 10.1055/s-2008-1067216 10.1039/B414574G 10.1021/ol402877n 10.1002/chem.201203707 10.1002/anie.199510211 10.1039/C6SC04135C 10.1002/anie.201303903 10.1021/ar030050j 10.1039/C1SC00621E 10.1002/adsc.201100622 10.1039/a803635g 10.1002/anie.200804487 10.1021/ja905501z 10.1055/s-0029-1219543 10.1021/acs.joc.6b00313 10.1039/C7OB00148G 10.1002/adsc.200800532 10.1021/ja055918a 10.1002/ejoc.201301366 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acs.accounts.9b00635 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 702 |
ExternalDocumentID | 32142245 10_1021_acs_accounts_9b00635 a597155244 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a348t-e638fcdec71d99e18ef263e08eaa2f7d7f8326adb9ba2401bab6504fe42612563 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Thu Jul 10 18:23:33 EDT 2025 Thu Apr 03 07:04:34 EDT 2025 Thu Apr 24 22:51:58 EDT 2025 Tue Jul 01 03:16:04 EDT 2025 Thu Aug 27 22:10:50 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-e638fcdec71d99e18ef263e08eaa2f7d7f8326adb9ba2401bab6504fe42612563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3962-7738 0000-0002-2727-7195 |
PMID | 32142245 |
PQID | 2374318593 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2374318593 pubmed_primary_32142245 crossref_citationtrail_10_1021_acs_accounts_9b00635 crossref_primary_10_1021_acs_accounts_9b00635 acs_journals_10_1021_acs_accounts_9b00635 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-17 |
PublicationDateYYYYMMDD | 2020-03-17 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref1/cit1d ref13/cit13a ref16/cit16 ref13/cit13b ref52/cit52 ref23/cit23 ref31/cit31 ref2/cit2 ref1/cit1a ref34/cit34 ref1/cit1c ref37/cit37 ref1/cit1b ref20/cit20 ref48/cit48 ref5/cit5b ref17/cit17 ref7/cit7m ref10/cit10 ref5/cit5a ref7/cit7l ref35/cit35 ref53/cit53 ref7/cit7g ref19/cit19 ref7/cit7f ref21/cit21 ref7/cit7e ref7/cit7d ref3/cit3b ref7/cit7k ref42/cit42 ref7/cit7j ref11/cit11b ref46/cit46 ref7/cit7i ref3/cit3a ref7/cit7h Sundström M. (ref8/cit8) 1993; 268 ref11/cit11a ref49/cit49 ref7/cit7c ref7/cit7b ref7/cit7a ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref44/cit44a ref26/cit26 ref4/cit4a ref4/cit4b ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref30/cit30 ref47/cit47 ref44/cit44b |
References_xml | – ident: ref44/cit44a doi: 10.1002/adsc.201000240 – ident: ref50/cit50 doi: 10.1039/b908517c – ident: ref1/cit1d doi: 10.1002/chem.201301996 – ident: ref11/cit11a doi: 10.1016/j.tetasy.2008.05.017 – ident: ref49/cit49 doi: 10.1002/chem.201103358 – ident: ref3/cit3a doi: 10.1002/hlca.19960790712 – ident: ref1/cit1b doi: 10.1002/anie.200705523 – ident: ref27/cit27 doi: 10.1016/j.tetlet.2010.02.122 – ident: ref30/cit30 doi: 10.1039/c1cc13860j – ident: ref4/cit4b doi: 10.1002/1521-3773(20020517)41:10<1743::AID-ANIE1743>3.0.CO;2-Q – ident: ref18/cit18 doi: 10.1021/ja066380r – ident: ref1/cit1a doi: 10.1002/anie.200400650 – ident: ref7/cit7b doi: 10.1021/cr068372z – ident: ref7/cit7l doi: 10.1021/acs.accounts.8b00550 – ident: ref10/cit10 doi: 10.1021/ja042650z – ident: ref43/cit43 doi: 10.1002/chem.201204539 – ident: ref51/cit51 doi: 10.1055/s-0033-1338956 – ident: ref7/cit7i doi: 10.1039/C5CS00162E – ident: ref32/cit32 doi: 10.1002/anie.201405178 – ident: ref38/cit38 doi: 10.1002/chem.201405828 – ident: ref7/cit7j doi: 10.1021/acscatal.6b03663 – ident: ref22/cit22 doi: 10.1021/ol501205v – ident: ref5/cit5b doi: 10.1021/ja062707c – ident: ref35/cit35 doi: 10.1021/ol502365r – ident: ref7/cit7m doi: 10.1002/asia.201800902 – ident: ref39/cit39 doi: 10.1002/anie.201405381 – ident: ref31/cit31 doi: 10.1002/anie.201201643 – ident: ref2/cit2 doi: 10.1021/ja00967a049 – ident: ref7/cit7k doi: 10.1002/anie.201709684 – ident: ref13/cit13a doi: 10.1248/yakushi1881.63.6_296 – ident: ref41/cit41 doi: 10.1039/C8QO01302K – ident: ref23/cit23 doi: 10.1002/anie.201003532 – ident: ref28/cit28 doi: 10.1002/anie.200461572 – ident: ref20/cit20 doi: 10.1039/b800857b – ident: ref42/cit42 doi: 10.1021/ja058222q – ident: ref44/cit44b doi: 10.1021/ja103631u – ident: ref7/cit7h doi: 10.1021/acs.chemrev.5b00060 – ident: ref37/cit37 doi: 10.1021/ja405833m – ident: ref15/cit15 doi: 10.1021/jo902018j – ident: ref6/cit6 doi: 10.1039/b801004h – ident: ref45/cit45 doi: 10.1002/anie.201004593 – ident: ref25/cit25 doi: 10.1039/C2OB26804C – volume: 268 start-page: 24346 year: 1993 ident: ref8/cit8 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)80532-8 – ident: ref14/cit14 doi: 10.1007/s11434-010-3122-7 – ident: ref5/cit5a doi: 10.1021/ja027411v – ident: ref7/cit7c doi: 10.1039/c2cs15333e – ident: ref13/cit13b doi: 10.1002/jlac.18320030302 – ident: ref16/cit16 doi: 10.1002/anie.201301304 – ident: ref11/cit11b doi: 10.1021/ol702759b – ident: ref7/cit7f doi: 10.1039/c3cs35522e – ident: ref1/cit1c doi: 10.1039/b903816g – ident: ref46/cit46 doi: 10.1002/anie.201407469 – ident: ref26/cit26 doi: 10.1021/jo101318u – ident: ref7/cit7g doi: 10.1021/ar400239v – ident: ref29/cit29 doi: 10.1021/ja044714b – ident: ref12/cit12 doi: 10.1055/s-2008-1067216 – ident: ref9/cit9 doi: 10.1039/B414574G – ident: ref19/cit19 doi: 10.1021/ol402877n – ident: ref7/cit7e doi: 10.1002/chem.201203707 – ident: ref3/cit3b doi: 10.1002/anie.199510211 – ident: ref33/cit33 doi: 10.1039/C6SC04135C – ident: ref36/cit36 doi: 10.1002/anie.201303903 – ident: ref7/cit7a doi: 10.1021/ar030050j – ident: ref7/cit7d doi: 10.1039/C1SC00621E – ident: ref48/cit48 doi: 10.1002/adsc.201100622 – ident: ref4/cit4a doi: 10.1039/a803635g – ident: ref24/cit24 doi: 10.1002/anie.200804487 – ident: ref47/cit47 doi: 10.1021/ja905501z – ident: ref52/cit52 doi: 10.1055/s-0029-1219543 – ident: ref40/cit40 doi: 10.1021/acs.joc.6b00313 – ident: ref34/cit34 doi: 10.1039/C7OB00148G – ident: ref21/cit21 doi: 10.1002/adsc.200800532 – ident: ref17/cit17 doi: 10.1021/ja055918a – ident: ref53/cit53 doi: 10.1002/ejoc.201301366 |
SSID | ssj0002467 |
Score | 2.6806808 |
SecondaryResourceType | review_article |
Snippet | Conspectus In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to... In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 690 |
SubjectTerms | Catalysis Heterocyclic Compounds - chemistry Methane - analogs & derivatives Methane - chemistry Organic Chemicals - chemistry Pyrrolidonecarboxylic Acid - chemistry Stereoisomerism |
Title | Bifunctional N‑Heterocyclic Carbenes Derived from l‑Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis |
URI | http://dx.doi.org/10.1021/acs.accounts.9b00635 https://www.ncbi.nlm.nih.gov/pubmed/32142245 https://www.proquest.com/docview/2374318593 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDnBhX8omI3HhkEIc10mPpYAqJBYJkLhFjhcUUSWoaZHKiQM_wC_yJcxkKZsQcI2ckWyPPW88yyNkRyhhXNmA249ZcFCEdJ2AS-NYaSTgCQ-MDNY7n56JzjU_uWncvDuKXyP4zN2TKgPROXNCVscOfmAix8kkE4GPzlarfTm6eRkXRY9McJF5wFlVKveDFDRIKvtskH5Ambm1OZ4l51XNTpFkclcf9KO6evzewvGPE5kjMyXwpK1CU-bJmEkWyFS74ntbJM8HMRq54m2Qnr0-vXQwVSZVQ9WNFW3LXoT3Ij0EnX0wmmJhCu3CsIthL70FBUZme9pSsaYy0fQKIxC09SE-TuOEHmHeTZxmOfsOiKF5LWiaPyJhb5Qlcn18dNXuOCVHgyM9HvQdA-fXKm2U7-pm07iBsUx4Zj8wUjLra9_ClSGkjpqRBPDgRjICTMitQdcN4Ja3TCaSNDGrhPpuBGObiGADrvd1gAwUHtfCSk8zy2tkF5YwLM9YFubhc-aG-LFa17Bc1xrxqk0NVdnsHDk3ur_85Yz-ui-affwyfrvSlxA2C0MtMjHpIAuZh8gMe8nVyEqhSCOJSA0FwKmx9o_5rJNpho4-JhL6G2Si3xuYTUBD_WgrPwJvVH0LbQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xOMAFWkohUMoicenBabze2M4xBFBoIUJqQNys9T4qq5GN4gQJThz4A_xFfgkzfqQtEkJcV7ujfczOfLvzAtj3lW9c2Ubpxy0-UHzpOqGQxrHSSMQTHioZinc-G_j9C_Hjqn01B-06FgYnkSOlvDDi_80u4H6nNlkWUMiblMgPNeU8LCIe4fTm6vZ-zQQwF36ZKhNfyiIUvI6Ye4UK6SWV_6-XXgGbhdI5XoXL2XQLX5M_zekkbqq7F5kc372eD7BSwVDWLfnmI8yZdA2WenX1t0_wcJCQyit_Ctng6f6xT44zmbpVo0SxnhzHJCXZIXLwjdGMwlTYCLud346z38jOVOeedVWimUw1G5I9gnX_sZazJGVH5IWTZHlRiwfJsCIyNCu-lChTyjpcHB8Ne32nqtjgSE-EE8fgbbZKGxW4utMxbmgs9z3TCo2U3AY6sChAfKnjTiwRSrixjBEhCmvoIYfgy_sMC2mWmk1ggRtj3w7h2VDolg6pHoUntG-lp7kVDfiGWxhVNy6PCmM6dyNqrPc1qva1AV59tpGqUp9TBY7RG6Oc2ajrMvXHG_33araJ8LDI8CJTk03ziHuE0yizXAM2Sn6aUaRCUQij2lvvWM8uLPWHZ6fR6cng5zYsc_oCIBfD4AssTMZTs4M4aRJ_LW7FMyc5E84 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RkIBLCxRKoAUjcelhA-t1djfHNBCFV4QESIjLyusHWjXaRdmkEj31wB_oX-wvYWYfESAhRK-Wbfkxj88eez6AXV_5xpUttH7c4gHFl64TCmkcK41EPOGhk6H_zmcDv38ljq9b10-ovnAQOfaUF0F80uo7basMA-4elcuSRCFvUjI_9JYfYI4id3Tu6nQvpkaYC79Ml4mnZREKXv-ae6UX8k0qf-6bXgGchePpfYKb6ZCL9yY_m5Nx3FS_X2Rz_K85LcHHCo6yTik_yzBj0hVY6NYscJ_h4UdCrq-8MWSDf3_-9ukBTabu1TBRrCtHMVlLdoCS_MtoRt9V2BCrnd-PslsUa-K7Zx2VaCZTzS4pLsE6T6LmLEnZIb3GSbK84OTBbljxQzQrrpYoY8oqXPUOL7t9p2JucKQnwrFjUKut0kYFrm63jRsay33P7IdGSm4DHVg0JL7UcTuWCCncWMaIFIU1dKBDEOatwWyapWYdWODGWLdNuDYUel-HxEvhCe1b6WluRQO-4xJGleblURFU525EhfW6RtW6NsCr9zdSVQp0YuIYvtHKmba6K1OAvFF_pxadCDeLAjAyNdkkj7hHeI0yzDXgSylT0x6JMArhVGvjHfPZhvnzg150ejQ42YRFTjcB9NIw-Aqz49HEfEO4NI63CsV4BNN-FlE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+N-Heterocyclic+Carbenes+Derived+from+l-Pyroglutamic+Acid+and+Their+Applications+in+Enantioselective+Organocatalysis&rft.jtitle=Accounts+of+chemical+research&rft.au=Chen%2C+Xiang-Yu&rft.au=Gao%2C+Zhong-Hua&rft.au=Ye%2C+Song&rft.date=2020-03-17&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=53&rft.issue=3&rft.spage=690&rft_id=info:doi/10.1021%2Facs.accounts.9b00635&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |