Ultrasensitive Nanosensors Based on Upconversion Nanoparticles for Selective Hypoxia Imaging in Vivo upon Near-Infrared Excitation

Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 136; no. 27; pp. 9701 - 9709
Main Authors Liu, Jianan, Liu, Yong, Bu, Wenbo, Bu, Jiwen, Sun, Yong, Du, Jiulin, Shi, Jianlin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be helpful to estimate the malignant degree of tumor and subsequently implement more effective personalized treatment. Here, we report the design and synthesis of nanosensors that can selectively and reversibly detect the level of hypoxia both in vitro and in vivo. The designed nanosensor is composed of two main moieties: oxygen indicator [Ru(dpp)3]2+Cl2 for detection of hypoxia and upconversion nanoparticles for offering the excitation light of [Ru(dpp)3]2+Cl2 by upconversion process under 980 nm exposure. The results show that the nanosensors can reversibly become quenched or luminescent under hyperoxic or hypoxic conditions, respectively. Compared with free [Ru(dpp)3]2+Cl2, the designed nanosensors exhibit enhanced sensitivity for the detection of oxygen in hypoxic regions. More attractively, the nanosensors can image hypoxic regions with high penetration depth because the absorption and emission wavelength are within the NIR and far-red region, respectively. Most importantly, nanosensors display a high selectivity for detection of relevant oxygen changes in cells and zebrafish.
AbstractList Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be helpful to estimate the malignant degree of tumor and subsequently implement more effective personalized treatment. Here, we report the design and synthesis of nanosensors that can selectively and reversibly detect the level of hypoxia both in vitro and in vivo. The designed nanosensor is composed of two main moieties: oxygen indicator [Ru(dpp)3](2+)Cl2 for detection of hypoxia and upconversion nanoparticles for offering the excitation light of [Ru(dpp)3](2+)Cl2 by upconversion process under 980 nm exposure. The results show that the nanosensors can reversibly become quenched or luminescent under hyperoxic or hypoxic conditions, respectively. Compared with free [Ru(dpp)3](2+)Cl2, the designed nanosensors exhibit enhanced sensitivity for the detection of oxygen in hypoxic regions. More attractively, the nanosensors can image hypoxic regions with high penetration depth because the absorption and emission wavelength are within the NIR and far-red region, respectively. Most importantly, nanosensors display a high selectivity for detection of relevant oxygen changes in cells and zebrafish.Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be helpful to estimate the malignant degree of tumor and subsequently implement more effective personalized treatment. Here, we report the design and synthesis of nanosensors that can selectively and reversibly detect the level of hypoxia both in vitro and in vivo. The designed nanosensor is composed of two main moieties: oxygen indicator [Ru(dpp)3](2+)Cl2 for detection of hypoxia and upconversion nanoparticles for offering the excitation light of [Ru(dpp)3](2+)Cl2 by upconversion process under 980 nm exposure. The results show that the nanosensors can reversibly become quenched or luminescent under hyperoxic or hypoxic conditions, respectively. Compared with free [Ru(dpp)3](2+)Cl2, the designed nanosensors exhibit enhanced sensitivity for the detection of oxygen in hypoxic regions. More attractively, the nanosensors can image hypoxic regions with high penetration depth because the absorption and emission wavelength are within the NIR and far-red region, respectively. Most importantly, nanosensors display a high selectivity for detection of relevant oxygen changes in cells and zebrafish.
Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be helpful to estimate the malignant degree of tumor and subsequently implement more effective personalized treatment. Here, we report the design and synthesis of nanosensors that can selectively and reversibly detect the level of hypoxia both in vitro and in vivo. The designed nanosensor is composed of two main moieties: oxygen indicator [Ru(dpp)₃]²⁺Cl₂ for detection of hypoxia and upconversion nanoparticles for offering the excitation light of [Ru(dpp)₃]²⁺Cl₂ by upconversion process under 980 nm exposure. The results show that the nanosensors can reversibly become quenched or luminescent under hyperoxic or hypoxic conditions, respectively. Compared with free [Ru(dpp)₃]²⁺Cl₂, the designed nanosensors exhibit enhanced sensitivity for the detection of oxygen in hypoxic regions. More attractively, the nanosensors can image hypoxic regions with high penetration depth because the absorption and emission wavelength are within the NIR and far-red region, respectively. Most importantly, nanosensors display a high selectivity for detection of relevant oxygen changes in cells and zebrafish.
Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be helpful to estimate the malignant degree of tumor and subsequently implement more effective personalized treatment. Here, we report the design and synthesis of nanosensors that can selectively and reversibly detect the level of hypoxia both in vitro and in vivo. The designed nanosensor is composed of two main moieties: oxygen indicator [Ru(dpp)3](2+)Cl2 for detection of hypoxia and upconversion nanoparticles for offering the excitation light of [Ru(dpp)3](2+)Cl2 by upconversion process under 980 nm exposure. The results show that the nanosensors can reversibly become quenched or luminescent under hyperoxic or hypoxic conditions, respectively. Compared with free [Ru(dpp)3](2+)Cl2, the designed nanosensors exhibit enhanced sensitivity for the detection of oxygen in hypoxic regions. More attractively, the nanosensors can image hypoxic regions with high penetration depth because the absorption and emission wavelength are within the NIR and far-red region, respectively. Most importantly, nanosensors display a high selectivity for detection of relevant oxygen changes in cells and zebrafish.
Author Shi, Jianlin
Bu, Wenbo
Bu, Jiwen
Sun, Yong
Liu, Jianan
Du, Jiulin
Liu, Yong
AuthorAffiliation State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics
Chinese Academy of Sciences
Cancer Research Institute
Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences
Fudan University Shanghai Cancer Hospital, Fudan University
AuthorAffiliation_xml – name: Cancer Research Institute
– name: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics
– name: Chinese Academy of Sciences
– name: Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences
– name: Fudan University Shanghai Cancer Hospital, Fudan University
Author_xml – sequence: 1
  givenname: Jianan
  surname: Liu
  fullname: Liu, Jianan
– sequence: 2
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
– sequence: 3
  givenname: Wenbo
  surname: Bu
  fullname: Bu, Wenbo
  email: wbbu@mail.sic.ac.cn
– sequence: 4
  givenname: Jiwen
  surname: Bu
  fullname: Bu, Jiwen
– sequence: 5
  givenname: Yong
  surname: Sun
  fullname: Sun, Yong
– sequence: 6
  givenname: Jiulin
  surname: Du
  fullname: Du, Jiulin
– sequence: 7
  givenname: Jianlin
  surname: Shi
  fullname: Shi, Jianlin
  email: jlshi@mail.sic.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24956326$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQha2qqN22HPgDyBckOITaTpzYR1oVulIFB7pcrYkzqbzK2sFOVu2VX46X7XJAlTiN3uh7T5o3Z-TYB4-EvOHsI2eCX65BskpopY_IgkvBCslFfUwWjDFRNKouT8lZSussK6H4CTkVlZZ1KeoF-bUapggJfXKT2yL9Cj7sVIiJXuV9R4Onq9EGv8WYXBY7YoQ4OTtgon2I9DsOaP-4b5_G8OiALjfw4PwDdZ7-cNtA53FnRIjF0vcRYo69ebRugiknXpBXPQwJXz_Pc7L6fHN_fVvcffuyvP50V0BZqamwWra876BtFba1kk3TIeq-kVl1DWtAA4Dilpcqc0xbtFgrJSTvsGGtKM_J-33uGMPPGdNkNi5ZHAbwGOZkRO6nZJXU_0e5rKpS8LLSGX37jM7tBjszRreB-GQOFWfgcg_YGFKK2JvD4bl4NxjOzO6J5u8Ts-PDP45D6Evsuz0LNpl1mKPPFb7A_QYPranq
CitedBy_id crossref_primary_10_1039_D0AN02400G
crossref_primary_10_1002_adom_202201354
crossref_primary_10_31083_j_fbl2705145
crossref_primary_10_1088_1361_6528_abc208
crossref_primary_10_1038_s41467_017_00916_7
crossref_primary_10_1088_2053_1591_ab6e81
crossref_primary_10_1002_smll_201502722
crossref_primary_10_1002_adma_201801159
crossref_primary_10_1002_adma_201802244
crossref_primary_10_1007_s12274_019_2327_6
crossref_primary_10_3390_molecules26102898
crossref_primary_10_1097_TP_0000000000001100
crossref_primary_10_1016_j_aca_2022_340554
crossref_primary_10_1021_acs_jpcc_8b04908
crossref_primary_10_1002_adma_201701683
crossref_primary_10_1016_j_msec_2016_08_056
crossref_primary_10_1002_adma_201704833
crossref_primary_10_1021_acsami_1c19681
crossref_primary_10_1021_acsami_3c18888
crossref_primary_10_1016_j_mser_2019_01_001
crossref_primary_10_1016_j_nantod_2020_100960
crossref_primary_10_1021_acs_chemrev_5b00321
crossref_primary_10_1016_j_biomaterials_2020_120537
crossref_primary_10_1016_j_talanta_2022_123471
crossref_primary_10_1002_adma_201802479
crossref_primary_10_1016_j_jlumin_2018_04_021
crossref_primary_10_1021_jacs_6b08973
crossref_primary_10_3390_chemosensors12030031
crossref_primary_10_1002_adma_202102271
crossref_primary_10_1007_s42417_024_01587_7
crossref_primary_10_1002_bies_201500002
crossref_primary_10_1002_smll_201703809
crossref_primary_10_1016_j_snb_2018_04_080
crossref_primary_10_1088_2050_6120_3_3_034001
crossref_primary_10_1016_j_dyepig_2022_110217
crossref_primary_10_1021_jacs_7b05559
crossref_primary_10_1021_acs_bioconjchem_8b00511
crossref_primary_10_1186_s12645_018_0038_4
crossref_primary_10_1021_acs_analchem_5b03573
crossref_primary_10_1002_asia_201501456
crossref_primary_10_1002_adfm_201906195
crossref_primary_10_1364_AOP_8_000001
crossref_primary_10_1016_j_progpolymsci_2023_101755
crossref_primary_10_1039_C4CS00170B
crossref_primary_10_1002_ange_201506157
crossref_primary_10_1021_acs_chemmater_7b04841
crossref_primary_10_1016_j_bios_2015_03_068
crossref_primary_10_1002_smll_201402320
crossref_primary_10_1039_C8TB00637G
crossref_primary_10_1002_adfm_201603524
crossref_primary_10_1007_s40843_015_0019_4
crossref_primary_10_3389_fonc_2022_1089446
crossref_primary_10_1016_j_addr_2016_05_023
crossref_primary_10_3390_nano10040675
crossref_primary_10_1002_adma_201702315
crossref_primary_10_1016_j_bios_2015_09_034
crossref_primary_10_1021_acsabm_0c01621
crossref_primary_10_1016_j_jconrel_2019_12_041
crossref_primary_10_1002_adma_202308033
crossref_primary_10_1039_C6TB01070A
crossref_primary_10_1007_s11705_020_2023_9
crossref_primary_10_1002_adhm_201800391
crossref_primary_10_1016_j_jlumin_2017_02_038
crossref_primary_10_1021_am509011y
crossref_primary_10_1002_adfm_201606821
crossref_primary_10_1016_j_ccr_2021_214016
crossref_primary_10_1016_j_saa_2020_118846
crossref_primary_10_1021_acssensors_6b00651
crossref_primary_10_1038_s41467_022_34481_5
crossref_primary_10_1002_smll_201601681
crossref_primary_10_1007_s00604_018_2965_5
crossref_primary_10_1021_acs_nanolett_6b00262
crossref_primary_10_1039_C5TB01129A
crossref_primary_10_1021_acs_langmuir_9b00238
crossref_primary_10_1021_acs_accounts_5b00078
crossref_primary_10_1021_jacs_9b03503
crossref_primary_10_1002_adhm_201701123
crossref_primary_10_1021_acsabm_1c00510
crossref_primary_10_1016_j_biomaterials_2015_02_126
crossref_primary_10_1002_adma_201606086
crossref_primary_10_1002_adhm_201800268
crossref_primary_10_1016_j_ccr_2022_214486
crossref_primary_10_1016_j_biomaterials_2020_120330
crossref_primary_10_1016_j_trac_2020_116010
crossref_primary_10_1002_adma_201704639
crossref_primary_10_1002_viw2_15
crossref_primary_10_1016_j_snb_2017_03_092
crossref_primary_10_1038_s41467_021_22855_0
crossref_primary_10_1038_s41566_018_0217_1
crossref_primary_10_1038_s41467_021_22282_1
crossref_primary_10_1016_j_saa_2020_119153
crossref_primary_10_1002_anie_201506157
crossref_primary_10_1002_smll_201905084
crossref_primary_10_1021_acs_analchem_9b05278
crossref_primary_10_1021_ja5115248
crossref_primary_10_1039_D0BM02013C
crossref_primary_10_1002_smll_201501130
crossref_primary_10_1002_adfm_201804160
crossref_primary_10_1038_s41467_022_28227_6
crossref_primary_10_1016_j_cej_2020_126606
crossref_primary_10_1039_C8OB00670A
crossref_primary_10_1002_adfm_201601831
crossref_primary_10_1002_adma_201700996
crossref_primary_10_1007_s00259_020_05107_z
crossref_primary_10_1039_C7AY02799K
crossref_primary_10_1007_s12274_018_2078_9
crossref_primary_10_1039_D3NR04055K
crossref_primary_10_1002_adma_201505678
crossref_primary_10_1016_j_snb_2023_133842
crossref_primary_10_1021_jacs_5b03872
crossref_primary_10_1039_D2DT03317H
crossref_primary_10_1002_smll_202307955
crossref_primary_10_3389_fnano_2025_1564188
crossref_primary_10_1007_s10495_019_01531_1
crossref_primary_10_1016_j_addr_2016_08_010
crossref_primary_10_1016_j_matlet_2018_05_003
crossref_primary_10_1111_jam_14726
crossref_primary_10_1007_s42247_020_00109_x
crossref_primary_10_1002_advs_201901724
crossref_primary_10_1016_j_ccr_2020_213575
crossref_primary_10_1021_acs_analchem_6b01963
crossref_primary_10_1007_s10439_016_1578_6
crossref_primary_10_1016_j_talanta_2016_12_048
crossref_primary_10_1016_j_biomaterials_2019_05_006
crossref_primary_10_1002_advs_201903341
crossref_primary_10_1039_D0BM01350A
crossref_primary_10_1007_s12209_020_00260_w
crossref_primary_10_1039_C7CS00612H
crossref_primary_10_1039_C8NH00233A
crossref_primary_10_1021_acsnano_5c01434
crossref_primary_10_1016_j_biomaterials_2015_10_049
crossref_primary_10_1002_advs_201902929
crossref_primary_10_1186_s40824_023_00412_8
crossref_primary_10_1039_C6CC02932A
crossref_primary_10_1016_j_cej_2023_144694
crossref_primary_10_1039_D0TB00859A
crossref_primary_10_1016_j_jhazmat_2021_126476
crossref_primary_10_1016_j_phrs_2022_106551
crossref_primary_10_1002_adma_201604377
crossref_primary_10_1039_D2AY01072K
crossref_primary_10_1007_s12274_021_4050_3
crossref_primary_10_1021_jacs_9b09360
crossref_primary_10_1021_acsbiomaterials_3c00508
crossref_primary_10_1186_s12645_016_0024_7
crossref_primary_10_1021_acs_chemmater_5b03846
crossref_primary_10_1002_adfm_202206802
crossref_primary_10_1016_j_trac_2022_116602
crossref_primary_10_1002_smll_201803712
crossref_primary_10_1021_acsami_9b16327
crossref_primary_10_1007_s40843_020_1431_5
crossref_primary_10_1039_C6TB03117J
crossref_primary_10_1039_C4CS00394B
crossref_primary_10_1016_j_jcis_2022_06_116
crossref_primary_10_1002_anie_201500008
crossref_primary_10_1016_j_optmat_2018_08_053
crossref_primary_10_1039_C9NR09071A
crossref_primary_10_1039_C8NR05552A
crossref_primary_10_1002_adfm_201800310
crossref_primary_10_1002_adfm_201804901
crossref_primary_10_1016_j_biomaterials_2017_11_025
crossref_primary_10_1039_C5NR06522D
crossref_primary_10_1021_jacs_5b10309
crossref_primary_10_1039_D4TC03302G
crossref_primary_10_1021_jacs_5b06972
crossref_primary_10_1016_j_ceramint_2018_03_151
crossref_primary_10_1021_acsami_6b05609
crossref_primary_10_1039_C5SC04599A
crossref_primary_10_1007_s11581_015_1605_x
crossref_primary_10_1002_adhm_201700607
crossref_primary_10_1186_s40580_023_00409_y
crossref_primary_10_1039_C4CS00511B
crossref_primary_10_1002_anie_201410646
crossref_primary_10_1021_acsami_8b16818
crossref_primary_10_3390_s150613503
crossref_primary_10_1021_acsami_6b16842
crossref_primary_10_1016_j_nano_2020_102326
crossref_primary_10_1039_C5NR06915G
crossref_primary_10_1002_advs_201500107
crossref_primary_10_1016_j_biomaterials_2018_05_018
crossref_primary_10_1007_s12274_017_1522_6
crossref_primary_10_1002_chem_201600310
crossref_primary_10_1021_cr400636x
crossref_primary_10_1039_D1BM00317H
crossref_primary_10_1039_D1BM00396H
crossref_primary_10_1007_s11426_020_9869_4
crossref_primary_10_1016_j_ccr_2020_213371
crossref_primary_10_1021_acsabm_9b00774
crossref_primary_10_1039_C6CC00774K
crossref_primary_10_1016_j_snb_2014_10_089
crossref_primary_10_1021_acs_inorgchem_2c02854
crossref_primary_10_3389_fchem_2020_596658
crossref_primary_10_1039_C8SC02984A
crossref_primary_10_1007_s00604_020_04455_9
crossref_primary_10_1016_j_ccr_2024_215672
crossref_primary_10_1016_j_cis_2021_102579
crossref_primary_10_3389_fchem_2019_00868
crossref_primary_10_1016_j_bioactmat_2022_03_009
crossref_primary_10_1021_acs_chemrev_1c00644
crossref_primary_10_1002_adfm_201503715
crossref_primary_10_1002_adhm_201701156
crossref_primary_10_1039_C6NR05889B
crossref_primary_10_1039_C5TB00025D
crossref_primary_10_1038_s41570_018_0057_z
crossref_primary_10_1039_C6TB02944B
crossref_primary_10_1039_D0QM00653J
crossref_primary_10_1016_j_snb_2016_04_182
crossref_primary_10_1021_acsnano_5b05622
crossref_primary_10_1021_acs_chemrev_3c00629
crossref_primary_10_1039_C7BM01020F
crossref_primary_10_1039_C5TC00881F
crossref_primary_10_1002_advs_201700609
crossref_primary_10_1016_j_snb_2019_03_025
crossref_primary_10_1088_1361_6528_ace633
crossref_primary_10_1021_am507591u
crossref_primary_10_1016_j_saa_2021_120003
crossref_primary_10_1016_j_jcis_2023_04_049
crossref_primary_10_1002_chem_201602514
crossref_primary_10_1149_2754_2726_ace202
crossref_primary_10_1021_acsami_6b14007
crossref_primary_10_3390_molecules24020357
crossref_primary_10_1002_adfm_202313384
crossref_primary_10_3390_gels9020153
crossref_primary_10_1021_acs_jmedchem_3c00587
crossref_primary_10_1039_C8QM00309B
crossref_primary_10_1016_j_ccr_2017_10_027
crossref_primary_10_1021_acs_chemrev_8b00401
crossref_primary_10_1039_C6RA10513K
crossref_primary_10_1021_acs_chemrev_5b00091
crossref_primary_10_1021_acs_analchem_5b04863
crossref_primary_10_1039_C8NR06507A
crossref_primary_10_1016_j_mtsust_2023_100458
crossref_primary_10_1002_adhm_202002036
crossref_primary_10_1002_adma_202312024
crossref_primary_10_1002_adom_201600154
crossref_primary_10_1016_j_jre_2021_05_015
crossref_primary_10_1021_acs_analchem_2c04764
crossref_primary_10_1021_acs_bioconjchem_9b00564
crossref_primary_10_1039_C6MD00432F
crossref_primary_10_1021_acsnano_5b00439
crossref_primary_10_1016_j_jre_2020_03_009
crossref_primary_10_1016_j_talo_2024_100302
crossref_primary_10_1039_C5CC02508G
crossref_primary_10_1002_adfm_201403885
crossref_primary_10_1002_ange_201410646
crossref_primary_10_1021_acs_chemrev_6b00073
crossref_primary_10_3390_life11040360
crossref_primary_10_1002_adma_202406378
crossref_primary_10_1021_jacs_6b09349
crossref_primary_10_1021_jacs_8b02492
crossref_primary_10_1039_C4SC03062A
crossref_primary_10_1039_C7CC00668C
crossref_primary_10_1002_ejic_201600755
crossref_primary_10_1039_C8TB00278A
crossref_primary_10_1007_s40843_016_5081_x
crossref_primary_10_1021_acs_analchem_7b01324
crossref_primary_10_1002_ange_201703012
crossref_primary_10_1016_j_jre_2019_02_001
crossref_primary_10_1016_j_talo_2022_100154
crossref_primary_10_1002_adfm_201604258
crossref_primary_10_1021_acs_chemrev_6b00525
crossref_primary_10_1039_C6AN00369A
crossref_primary_10_1002_advs_201700847
crossref_primary_10_1039_C7NR03682E
crossref_primary_10_1002_anie_201703012
crossref_primary_10_1186_s12951_021_01078_x
crossref_primary_10_1002_ange_201500008
crossref_primary_10_1021_jacs_5b01504
crossref_primary_10_1126_sciadv_aax9757
crossref_primary_10_1002_cbic_201800438
crossref_primary_10_1002_smll_202002494
crossref_primary_10_1038_srep14837
crossref_primary_10_1021_acsami_0c08389
crossref_primary_10_1002_adma_201907718
crossref_primary_10_1007_s12274_016_1015_z
crossref_primary_10_1021_jacs_0c10245
Cites_doi 10.1039/c0md00024h
10.1021/ac1007283
10.1002/adma.201004697
10.1002/adma.201202433
10.1002/anie.201100303
10.1007/s10555-007-9055-1
10.1021/ja902712b
10.1021/cr300358b
10.1039/C1CS15187H
10.1021/ja905793q
10.1158/0008-5472.CAN-09-3948
10.1039/C4CS00039K
10.1021/ja105937q
10.1038/86684
10.1021/ja3016582
10.1016/j.bmc.2009.08.037
10.1016/S0360-3016(03)00289-X
10.1002/adfm.201201469
10.1038/nrc3064
10.1002/anie.201308368
10.1016/S0006-2952(97)00672-2
10.1021/ja403798m
10.1021/ja310049d
10.1021/ar5000067
10.1002/anie.201305784
10.1038/nature10169
10.1016/j.bmcl.2012.02.071
10.1002/anie.201309503
10.1126/science.1104274
10.1002/adma.200901356
10.1039/c3cs60131e
10.1161/01.STR.0000080381.76409.B2
10.1021/ja2100774
10.1038/nmat2509
10.1021/la802343f
10.1039/c0nr00253d
10.1183/09031936.00111208
10.1021/ja312225b
10.1088/0957-4484/21/28/285701
10.1039/b503336e
10.1038/nrc1367
10.1021/ol102975t
10.1038/nrc704
10.1039/c3cc38980d
10.1021/cr0783840
10.1021/ja211035w
10.1039/c3cc45367g
10.1002/adma.201104741
10.1159/000303046
10.1002/anie.201208196
10.1002/anie.201004902
10.1021/bc2004704
10.2174/0929867043365387
10.1021/ja2102604
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/ja5042989
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 9709
ExternalDocumentID 24956326
10_1021_ja5042989
c239766410
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a348t-c95b1fdabb8eb68577dee9f75eb6d707a9aaa81c138b1f09cece688251de70b23
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 23:05:53 EDT 2025
Fri Jul 11 16:20:42 EDT 2025
Mon Jul 21 05:28:53 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
Tue Jul 01 04:33:01 EDT 2025
Thu Aug 27 13:42:36 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-c95b1fdabb8eb68577dee9f75eb6d707a9aaa81c138b1f09cece688251de70b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24956326
PQID 1544321349
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000304592
proquest_miscellaneous_1544321349
pubmed_primary_24956326
crossref_citationtrail_10_1021_ja5042989
crossref_primary_10_1021_ja5042989
acs_journals_10_1021_ja5042989
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140709
2014-07-09
2014-Jul-09
PublicationDateYYYYMMDD 2014-07-09
PublicationDate_xml – month: 07
  year: 2014
  text: 20140709
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Michalet X. (ref50/cit50) 2005; 307
Boyer J.-C. (ref49/cit49) 2010; 2
Vordermark D. (ref54/cit54) 2003; 56
Mader H. S. (ref36/cit36) 2010; 82
Wang X.-d. (ref37/cit37) 2014; 43
Qian H. S. (ref43/cit43) 2008; 24
Park Y. I. (ref31/cit31) 2009; 21
Perche F. (ref19/cit19) 2014; 53
Garvey J. F. (ref2/cit2) 2009; 33
Zhou J. (ref32/cit32) 2012; 41
Kiyose K. (ref17/cit17) 2010; 132
Wang F. (ref29/cit29) 2014; 47
Nakata E. (ref15/cit15) 2009; 17
Zhang H. (ref53/cit53) 2005; 15
Papkovsky D. B. (ref40/cit40) 2013; 42
Xu K. (ref24/cit24) 2013; 49
Smith A. R. (ref55/cit55) 2004; 11
Prass K. (ref3/cit3) 2003; 34
Fujibayashi Y. (ref10/cit10) 1997; 38
Fan W. (ref46/cit46) 2013; 135
Lee J. E. (ref51/cit51) 2010; 132
Vaupel P. (ref4/cit4) 1991; 51
Gorris H. H. (ref52/cit52) 2011; 23
Lee M. H. (ref22/cit22) 2013; 113
Takahashi S. (ref20/cit20) 2012; 134
Piao W. (ref18/cit18) 2013; 52
Huang P. (ref34/cit34) 2014; 53
Gonçalves M. S. T. (ref28/cit28) 2009; 109
Jou C. J. (ref56/cit56) 2010; 25
Chen F. (ref44/cit44) 2013; 23
Deng R. (ref23/cit23) 2011; 133
Tian G. (ref42/cit42) 2012; 24
Pan L. (ref45/cit45) 2012; 134
Guo T. (ref25/cit25) 2013; 49
McLaurin E. J. (ref27/cit27) 2009; 131
Liu Y. (ref35/cit35) 2013; 135
Iwaki S. (ref11/cit11) 2012; 22
Lee N. (ref9/cit9) 2012; 134
Wilson W. R. (ref1/cit1) 2011; 11
Okuda K. (ref26/cit26) 2012; 23
Komatsu H. (ref16/cit16) 2010; 1
Facciabene A. (ref7/cit7) 2011; 475
Gorris H. H. (ref30/cit30) 2013; 52
Park Y. I. (ref33/cit33) 2012; 24
Ju Q. (ref48/cit48) 2011; 134
Harris A. L. (ref5/cit5) 2002; 2
Cui L. (ref14/cit14) 2011; 13
Brown J. M. (ref6/cit6) 2004; 4
Zhang S. (ref13/cit13) 2010; 70
Tu D. (ref47/cit47) 2011; 50
Zhang G. (ref12/cit12) 2009; 8
Achatz D. E. (ref38/cit38) 2011; 50
Weissleder R. (ref41/cit41) 2001; 19
Sen C. K. (ref21/cit21) 1998; 55
Vaupel P. (ref8/cit8) 2007; 26
Liu L. (ref39/cit39) 2010; 21
References_xml – volume: 1
  start-page: 50
  year: 2010
  ident: ref16/cit16
  publication-title: Med. Chem. Comm.
  doi: 10.1039/c0md00024h
– volume: 82
  start-page: 5002
  year: 2010
  ident: ref36/cit36
  publication-title: Anal. Chem.
  doi: 10.1021/ac1007283
– volume: 23
  start-page: 1652
  year: 2011
  ident: ref52/cit52
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004697
– volume: 24
  start-page: 5755
  year: 2012
  ident: ref33/cit33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202433
– volume: 50
  start-page: 6306
  year: 2011
  ident: ref47/cit47
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201100303
– volume: 26
  start-page: 225
  year: 2007
  ident: ref8/cit8
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-007-9055-1
– volume: 131
  start-page: 12994
  year: 2009
  ident: ref27/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902712b
– volume: 113
  start-page: 5071
  year: 2013
  ident: ref22/cit22
  publication-title: Chem. Rev.
  doi: 10.1021/cr300358b
– volume: 41
  start-page: 1323
  year: 2012
  ident: ref32/cit32
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15187H
– volume: 132
  start-page: 552
  year: 2010
  ident: ref51/cit51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905793q
– volume: 70
  start-page: 4490
  year: 2010
  ident: ref13/cit13
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-3948
– volume: 43
  start-page: 3666
  year: 2014
  ident: ref37/cit37
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00039K
– volume: 132
  start-page: 15846
  year: 2010
  ident: ref17/cit17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105937q
– volume: 19
  start-page: 316
  year: 2001
  ident: ref41/cit41
  publication-title: Nat. Biotechnol.
  doi: 10.1038/86684
– volume: 134
  start-page: 10309
  year: 2012
  ident: ref9/cit9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3016582
– volume: 17
  start-page: 6952
  year: 2009
  ident: ref15/cit15
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2009.08.037
– volume: 56
  start-page: 1184
  year: 2003
  ident: ref54/cit54
  publication-title: J. Radiat. Oncol.
  doi: 10.1016/S0360-3016(03)00289-X
– volume: 38
  start-page: 1155
  year: 1997
  ident: ref10/cit10
  publication-title: J. Nucl. Med.
– volume: 23
  start-page: 298
  year: 2013
  ident: ref44/cit44
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201469
– volume: 11
  start-page: 393
  year: 2011
  ident: ref1/cit1
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3064
– volume: 51
  start-page: 3316
  year: 1991
  ident: ref4/cit4
  publication-title: Cancer Res.
– volume: 53
  start-page: 3362
  year: 2014
  ident: ref19/cit19
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201308368
– volume: 55
  start-page: 1747
  year: 1998
  ident: ref21/cit21
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/S0006-2952(97)00672-2
– volume: 135
  start-page: 9869
  year: 2013
  ident: ref35/cit35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403798m
– volume: 134
  start-page: 19588
  year: 2012
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310049d
– volume: 47
  start-page: 1378
  year: 2014
  ident: ref29/cit29
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5000067
– volume: 52
  start-page: 13028
  year: 2013
  ident: ref18/cit18
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201305784
– volume: 475
  start-page: 226
  year: 2011
  ident: ref7/cit7
  publication-title: Nature
  doi: 10.1038/nature10169
– volume: 22
  start-page: 2798
  year: 2012
  ident: ref11/cit11
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2012.02.071
– volume: 53
  start-page: 1252
  year: 2014
  ident: ref34/cit34
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201309503
– volume: 307
  start-page: 538
  year: 2005
  ident: ref50/cit50
  publication-title: Science
  doi: 10.1126/science.1104274
– volume: 21
  start-page: 4467
  year: 2009
  ident: ref31/cit31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901356
– volume: 42
  start-page: 8700
  year: 2013
  ident: ref40/cit40
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60131e
– volume: 34
  start-page: 1981
  year: 2003
  ident: ref3/cit3
  publication-title: Stroke
  doi: 10.1161/01.STR.0000080381.76409.B2
– volume: 133
  start-page: 20168
  year: 2011
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2100774
– volume: 8
  start-page: 747
  year: 2009
  ident: ref12/cit12
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2509
– volume: 24
  start-page: 12123
  year: 2008
  ident: ref43/cit43
  publication-title: Langmuir
  doi: 10.1021/la802343f
– volume: 2
  start-page: 1417
  year: 2010
  ident: ref49/cit49
  publication-title: Nanoscale
  doi: 10.1039/c0nr00253d
– volume: 33
  start-page: 1195
  year: 2009
  ident: ref2/cit2
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00111208
– volume: 135
  start-page: 6494
  year: 2013
  ident: ref46/cit46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312225b
– volume: 21
  start-page: 285701
  year: 2010
  ident: ref39/cit39
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/28/285701
– volume: 15
  start-page: 3181
  year: 2005
  ident: ref53/cit53
  publication-title: J. Mater. Chem.
  doi: 10.1039/b503336e
– volume: 4
  start-page: 437
  year: 2004
  ident: ref6/cit6
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1367
– volume: 13
  start-page: 928
  year: 2011
  ident: ref14/cit14
  publication-title: Org. Lett.
  doi: 10.1021/ol102975t
– volume: 2
  start-page: 38
  year: 2002
  ident: ref5/cit5
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc704
– volume: 49
  start-page: 2554
  year: 2013
  ident: ref24/cit24
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc38980d
– volume: 109
  start-page: 190
  year: 2009
  ident: ref28/cit28
  publication-title: Chem. Rev.
  doi: 10.1021/cr0783840
– volume: 134
  start-page: 5722
  year: 2012
  ident: ref45/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211035w
– volume: 49
  start-page: 10820
  year: 2013
  ident: ref25/cit25
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45367g
– volume: 24
  start-page: 1226
  year: 2012
  ident: ref42/cit42
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104741
– volume: 25
  start-page: 419
  year: 2010
  ident: ref56/cit56
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000303046
– volume: 52
  start-page: 3584
  year: 2013
  ident: ref30/cit30
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201208196
– volume: 50
  start-page: 260
  year: 2011
  ident: ref38/cit38
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201004902
– volume: 23
  start-page: 324
  year: 2012
  ident: ref26/cit26
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc2004704
– volume: 11
  start-page: 1135
  year: 2004
  ident: ref55/cit55
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867043365387
– volume: 134
  start-page: 1323
  year: 2011
  ident: ref48/cit48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2102604
SSID ssj0004281
Score 2.5744562
Snippet Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9701
SubjectTerms absorption
Adsorption
anaerobic conditions
Animals
Cell Line, Tumor
Danio rerio
Humans
Hypoxia
image analysis
luminescence
metastasis
Microscopy, Confocal
Molecular Structure
nanoparticles
Nanoparticles - chemistry
Nanotechnology - instrumentation
neoplasms
Organometallic Compounds - chemical synthesis
Organometallic Compounds - chemistry
oxygen
Oxygen - analysis
Particle Size
radiotherapy
Ruthenium - chemistry
Surface Properties
wavelengths
Zebrafish
Title Ultrasensitive Nanosensors Based on Upconversion Nanoparticles for Selective Hypoxia Imaging in Vivo upon Near-Infrared Excitation
URI http://dx.doi.org/10.1021/ja5042989
https://www.ncbi.nlm.nih.gov/pubmed/24956326
https://www.proquest.com/docview/1544321349
https://www.proquest.com/docview/2000304592
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7xOJRLS9_bAjKFA5egPJzYPi7LooUDF7oVt5VfkVbQJNrNIuixv7xjZ02pePToaCw78djzTWb8DcA-LZk0MimiVFAaUTz-IsW4iTRDT1sxR9Llsy3Oi9GYnl3mlyuw90wEP3X8QLk7NLlYhfW04Mx5WP3Bxd_LjylPAsZlvMgCfdDDrs706Pm_pucZPOntyskbOA63c7p0kqvDRasO9a_HZI0vTXkTXi9xJel3ivAWVmz1Dl4NQjm39_B7fN3O0GRVc58tRPBYrV2rns3JET43pK7IuPFZ6P4XmpdoQuIcQXBLLnzRHNd7dNfUt1NJTn_6KkdkWpEf05uaLBrXEXdPdFqVM5fcToa3eskD_gHGJ8Pvg1G0LMAQyYzyNtIiV0lppFLcqoLnjBlrRclybBkWMymklDzRScZRLhbaaltwdxnWWBarNPsIa1Vd2c9AslJJdPcUL21JY264SCTV0qD7KAqu4h7s4ApNlhtoPvGx8RR9k_Ape3AQFm8Spu2qaFw_JfrtXrTpODueEtoNGjDBlXBhElnZeoFDO0pAR3T3gkwadzFmkfbgU6c-90O5at4FouIv_3ulr7CB8Iv65F-xBWvtbGG3EeK0aser-B-hJPW7
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoPdALpUDLUh4GceASlIcT20e6Au3yusAibpFfkVaFJNpkEfTYX96xk_ASjx4djeOJPfbMZMbfILRDMiq0CBIv5IR4BI4_T1KmPUXB05bUgnS5bIuzZDAiR1fxVQuTY-_CABMVvKlyQfxHdAELExTbs5PxT-gzGCGhdbT2--ePdyBDFnSmLmVJ1KEIPe1qNZCqnmugN8xKp14OvzZ1ihxjLqvk9960lnvqzwvMxv_jfAHNt1Ym3m_E4huaMfkimut3xd2W0N_RdT0BBZZXLncIwyFb2FYxqfAveK5xkeNR6XLS3Q81R1F2aXQYTF187kro2N6D-7K4Gws8vHE1j_A4x5fj2wJPS9sR9pI3zLOJTXXHB3eqRQVfRqPDg4v-wGvLMXgiIqz2FI9lkGkhJTMyYTGl2hie0RhamvpUcCEEC1QQMaDzuTLKJMxejdWG-jKMvqPZvMjNCsJRJgU4f5JlJiM-04wHgiihwZnkCZN-D23ATKbtdqpSFykPwVPpprKHdrs1TDu2bU2N69dItx9IywbB4zWirU4QUlgJGzQRuSmmMLQFCLSwd-_QhH4TceZhD_1opOhhKFvbOwEbefWjT9pEc4OL05P0ZHh2_BN9AcOMuLRgvoZm68nUrIPxU8sNJ_X_AHj7_hw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7BIgEX3gvlsRjEgUtWebixfVzKVi2gBWkp2lvkV6SKJYmaFC0c-eXMuEl5aHkcHY3jiT32zGTG3wA846XQTid5lCrOI47HX2SEdJEV6GkbQSBdIdviKJ8t-KuT8UnvKNJdGGSixTe1IYhPu7pxZY8wQFBBYzo_pboIlyhcR87WweT4xz3IVCaDuStkng1IQj93JS1k21-10B9My6Biptfh7Za5kFnycX_dmX379Tfcxv_n_gZc661NdrARj5twwVe34MpkKPJ2G74tTrsVKrKqDTlEDA_bmlr1qmUv8LljdcUWTchNDz_WAkUzpNMxNHnZcSilQ71nX5r6bKnZ_FOofcSWFfuw_FyzdUMdcU9F86pcUco7OzyzPTr4HVhMD99PZlFfliHSGZddZNXYJKXTxkhvconL4LxXpRhjy4lYaKW1lolNMol0sbLe-lzSFVnnRWzSbBd2qrry94BlpdHoBBpZ-pLH0kmVaG61Q6dS5dLEI9jD2Sz6bdUWIWKeoscyTOUIng_rWAxsU22N0_NIn25Jmw2Sx3lETwZhKHAlKHiiK1-vcWgCCiT4u7_QpPEm8qzSEdzdSNJ2KKrxnaOtfP9fn_QYLr97OS3ezI9eP4CraJ_xkB2sHsJOt1r7R2gDdWYvCP53tfcArg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasensitive+Nanosensors+Based+on+Upconversion+Nanoparticles+for+Selective+Hypoxia+Imaging+in+Vivo+upon+Near-Infrared+Excitation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Liu%2C+Jianan&rft.au=Liu%2C+Yong&rft.au=Bu%2C+Wenbo&rft.au=Bu%2C+Jiwen&rft.date=2014-07-09&rft.issn=1520-5126&rft.volume=136&rft.issue=27+p.9701-9709&rft.spage=9701&rft.epage=9709&rft_id=info:doi/10.1021%2Fja5042989&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon