Ultrasensitive Nanosensors Based on Upconversion Nanoparticles for Selective Hypoxia Imaging in Vivo upon Near-Infrared Excitation
Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be...
Saved in:
Published in | Journal of the American Chemical Society Vol. 136; no. 27; pp. 9701 - 9709 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be helpful to estimate the malignant degree of tumor and subsequently implement more effective personalized treatment. Here, we report the design and synthesis of nanosensors that can selectively and reversibly detect the level of hypoxia both in vitro and in vivo. The designed nanosensor is composed of two main moieties: oxygen indicator [Ru(dpp)3]2+Cl2 for detection of hypoxia and upconversion nanoparticles for offering the excitation light of [Ru(dpp)3]2+Cl2 by upconversion process under 980 nm exposure. The results show that the nanosensors can reversibly become quenched or luminescent under hyperoxic or hypoxic conditions, respectively. Compared with free [Ru(dpp)3]2+Cl2, the designed nanosensors exhibit enhanced sensitivity for the detection of oxygen in hypoxic regions. More attractively, the nanosensors can image hypoxic regions with high penetration depth because the absorption and emission wavelength are within the NIR and far-red region, respectively. Most importantly, nanosensors display a high selectivity for detection of relevant oxygen changes in cells and zebrafish. |
---|---|
AbstractList | Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be helpful to estimate the malignant degree of tumor and subsequently implement more effective personalized treatment. Here, we report the design and synthesis of nanosensors that can selectively and reversibly detect the level of hypoxia both in vitro and in vivo. The designed nanosensor is composed of two main moieties: oxygen indicator [Ru(dpp)3](2+)Cl2 for detection of hypoxia and upconversion nanoparticles for offering the excitation light of [Ru(dpp)3](2+)Cl2 by upconversion process under 980 nm exposure. The results show that the nanosensors can reversibly become quenched or luminescent under hyperoxic or hypoxic conditions, respectively. Compared with free [Ru(dpp)3](2+)Cl2, the designed nanosensors exhibit enhanced sensitivity for the detection of oxygen in hypoxic regions. More attractively, the nanosensors can image hypoxic regions with high penetration depth because the absorption and emission wavelength are within the NIR and far-red region, respectively. Most importantly, nanosensors display a high selectivity for detection of relevant oxygen changes in cells and zebrafish.Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be helpful to estimate the malignant degree of tumor and subsequently implement more effective personalized treatment. Here, we report the design and synthesis of nanosensors that can selectively and reversibly detect the level of hypoxia both in vitro and in vivo. The designed nanosensor is composed of two main moieties: oxygen indicator [Ru(dpp)3](2+)Cl2 for detection of hypoxia and upconversion nanoparticles for offering the excitation light of [Ru(dpp)3](2+)Cl2 by upconversion process under 980 nm exposure. The results show that the nanosensors can reversibly become quenched or luminescent under hyperoxic or hypoxic conditions, respectively. Compared with free [Ru(dpp)3](2+)Cl2, the designed nanosensors exhibit enhanced sensitivity for the detection of oxygen in hypoxic regions. More attractively, the nanosensors can image hypoxic regions with high penetration depth because the absorption and emission wavelength are within the NIR and far-red region, respectively. Most importantly, nanosensors display a high selectivity for detection of relevant oxygen changes in cells and zebrafish. Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be helpful to estimate the malignant degree of tumor and subsequently implement more effective personalized treatment. Here, we report the design and synthesis of nanosensors that can selectively and reversibly detect the level of hypoxia both in vitro and in vivo. The designed nanosensor is composed of two main moieties: oxygen indicator [Ru(dpp)₃]²⁺Cl₂ for detection of hypoxia and upconversion nanoparticles for offering the excitation light of [Ru(dpp)₃]²⁺Cl₂ by upconversion process under 980 nm exposure. The results show that the nanosensors can reversibly become quenched or luminescent under hyperoxic or hypoxic conditions, respectively. Compared with free [Ru(dpp)₃]²⁺Cl₂, the designed nanosensors exhibit enhanced sensitivity for the detection of oxygen in hypoxic regions. More attractively, the nanosensors can image hypoxic regions with high penetration depth because the absorption and emission wavelength are within the NIR and far-red region, respectively. Most importantly, nanosensors display a high selectivity for detection of relevant oxygen changes in cells and zebrafish. Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the development of invasion and metastasis. The exploration of nanosensors with the capabilities like the accurate diagnosis of hypoxic level will be helpful to estimate the malignant degree of tumor and subsequently implement more effective personalized treatment. Here, we report the design and synthesis of nanosensors that can selectively and reversibly detect the level of hypoxia both in vitro and in vivo. The designed nanosensor is composed of two main moieties: oxygen indicator [Ru(dpp)3](2+)Cl2 for detection of hypoxia and upconversion nanoparticles for offering the excitation light of [Ru(dpp)3](2+)Cl2 by upconversion process under 980 nm exposure. The results show that the nanosensors can reversibly become quenched or luminescent under hyperoxic or hypoxic conditions, respectively. Compared with free [Ru(dpp)3](2+)Cl2, the designed nanosensors exhibit enhanced sensitivity for the detection of oxygen in hypoxic regions. More attractively, the nanosensors can image hypoxic regions with high penetration depth because the absorption and emission wavelength are within the NIR and far-red region, respectively. Most importantly, nanosensors display a high selectivity for detection of relevant oxygen changes in cells and zebrafish. |
Author | Shi, Jianlin Bu, Wenbo Bu, Jiwen Sun, Yong Liu, Jianan Du, Jiulin Liu, Yong |
AuthorAffiliation | State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Cancer Research Institute Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences Fudan University Shanghai Cancer Hospital, Fudan University |
AuthorAffiliation_xml | – name: Cancer Research Institute – name: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics – name: Chinese Academy of Sciences – name: Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences – name: Fudan University Shanghai Cancer Hospital, Fudan University |
Author_xml | – sequence: 1 givenname: Jianan surname: Liu fullname: Liu, Jianan – sequence: 2 givenname: Yong surname: Liu fullname: Liu, Yong – sequence: 3 givenname: Wenbo surname: Bu fullname: Bu, Wenbo email: wbbu@mail.sic.ac.cn – sequence: 4 givenname: Jiwen surname: Bu fullname: Bu, Jiwen – sequence: 5 givenname: Yong surname: Sun fullname: Sun, Yong – sequence: 6 givenname: Jiulin surname: Du fullname: Du, Jiulin – sequence: 7 givenname: Jianlin surname: Shi fullname: Shi, Jianlin email: jlshi@mail.sic.ac.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24956326$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQha2qqN22HPgDyBckOITaTpzYR1oVulIFB7pcrYkzqbzK2sFOVu2VX46X7XJAlTiN3uh7T5o3Z-TYB4-EvOHsI2eCX65BskpopY_IgkvBCslFfUwWjDFRNKouT8lZSussK6H4CTkVlZZ1KeoF-bUapggJfXKT2yL9Cj7sVIiJXuV9R4Onq9EGv8WYXBY7YoQ4OTtgon2I9DsOaP-4b5_G8OiALjfw4PwDdZ7-cNtA53FnRIjF0vcRYo69ebRugiknXpBXPQwJXz_Pc7L6fHN_fVvcffuyvP50V0BZqamwWra876BtFba1kk3TIeq-kVl1DWtAA4Dilpcqc0xbtFgrJSTvsGGtKM_J-33uGMPPGdNkNi5ZHAbwGOZkRO6nZJXU_0e5rKpS8LLSGX37jM7tBjszRreB-GQOFWfgcg_YGFKK2JvD4bl4NxjOzO6J5u8Ts-PDP45D6Evsuz0LNpl1mKPPFb7A_QYPranq |
CitedBy_id | crossref_primary_10_1039_D0AN02400G crossref_primary_10_1002_adom_202201354 crossref_primary_10_31083_j_fbl2705145 crossref_primary_10_1088_1361_6528_abc208 crossref_primary_10_1038_s41467_017_00916_7 crossref_primary_10_1088_2053_1591_ab6e81 crossref_primary_10_1002_smll_201502722 crossref_primary_10_1002_adma_201801159 crossref_primary_10_1002_adma_201802244 crossref_primary_10_1007_s12274_019_2327_6 crossref_primary_10_3390_molecules26102898 crossref_primary_10_1097_TP_0000000000001100 crossref_primary_10_1016_j_aca_2022_340554 crossref_primary_10_1021_acs_jpcc_8b04908 crossref_primary_10_1002_adma_201701683 crossref_primary_10_1016_j_msec_2016_08_056 crossref_primary_10_1002_adma_201704833 crossref_primary_10_1021_acsami_1c19681 crossref_primary_10_1021_acsami_3c18888 crossref_primary_10_1016_j_mser_2019_01_001 crossref_primary_10_1016_j_nantod_2020_100960 crossref_primary_10_1021_acs_chemrev_5b00321 crossref_primary_10_1016_j_biomaterials_2020_120537 crossref_primary_10_1016_j_talanta_2022_123471 crossref_primary_10_1002_adma_201802479 crossref_primary_10_1016_j_jlumin_2018_04_021 crossref_primary_10_1021_jacs_6b08973 crossref_primary_10_3390_chemosensors12030031 crossref_primary_10_1002_adma_202102271 crossref_primary_10_1007_s42417_024_01587_7 crossref_primary_10_1002_bies_201500002 crossref_primary_10_1002_smll_201703809 crossref_primary_10_1016_j_snb_2018_04_080 crossref_primary_10_1088_2050_6120_3_3_034001 crossref_primary_10_1016_j_dyepig_2022_110217 crossref_primary_10_1021_jacs_7b05559 crossref_primary_10_1021_acs_bioconjchem_8b00511 crossref_primary_10_1186_s12645_018_0038_4 crossref_primary_10_1021_acs_analchem_5b03573 crossref_primary_10_1002_asia_201501456 crossref_primary_10_1002_adfm_201906195 crossref_primary_10_1364_AOP_8_000001 crossref_primary_10_1016_j_progpolymsci_2023_101755 crossref_primary_10_1039_C4CS00170B crossref_primary_10_1002_ange_201506157 crossref_primary_10_1021_acs_chemmater_7b04841 crossref_primary_10_1016_j_bios_2015_03_068 crossref_primary_10_1002_smll_201402320 crossref_primary_10_1039_C8TB00637G crossref_primary_10_1002_adfm_201603524 crossref_primary_10_1007_s40843_015_0019_4 crossref_primary_10_3389_fonc_2022_1089446 crossref_primary_10_1016_j_addr_2016_05_023 crossref_primary_10_3390_nano10040675 crossref_primary_10_1002_adma_201702315 crossref_primary_10_1016_j_bios_2015_09_034 crossref_primary_10_1021_acsabm_0c01621 crossref_primary_10_1016_j_jconrel_2019_12_041 crossref_primary_10_1002_adma_202308033 crossref_primary_10_1039_C6TB01070A crossref_primary_10_1007_s11705_020_2023_9 crossref_primary_10_1002_adhm_201800391 crossref_primary_10_1016_j_jlumin_2017_02_038 crossref_primary_10_1021_am509011y crossref_primary_10_1002_adfm_201606821 crossref_primary_10_1016_j_ccr_2021_214016 crossref_primary_10_1016_j_saa_2020_118846 crossref_primary_10_1021_acssensors_6b00651 crossref_primary_10_1038_s41467_022_34481_5 crossref_primary_10_1002_smll_201601681 crossref_primary_10_1007_s00604_018_2965_5 crossref_primary_10_1021_acs_nanolett_6b00262 crossref_primary_10_1039_C5TB01129A crossref_primary_10_1021_acs_langmuir_9b00238 crossref_primary_10_1021_acs_accounts_5b00078 crossref_primary_10_1021_jacs_9b03503 crossref_primary_10_1002_adhm_201701123 crossref_primary_10_1021_acsabm_1c00510 crossref_primary_10_1016_j_biomaterials_2015_02_126 crossref_primary_10_1002_adma_201606086 crossref_primary_10_1002_adhm_201800268 crossref_primary_10_1016_j_ccr_2022_214486 crossref_primary_10_1016_j_biomaterials_2020_120330 crossref_primary_10_1016_j_trac_2020_116010 crossref_primary_10_1002_adma_201704639 crossref_primary_10_1002_viw2_15 crossref_primary_10_1016_j_snb_2017_03_092 crossref_primary_10_1038_s41467_021_22855_0 crossref_primary_10_1038_s41566_018_0217_1 crossref_primary_10_1038_s41467_021_22282_1 crossref_primary_10_1016_j_saa_2020_119153 crossref_primary_10_1002_anie_201506157 crossref_primary_10_1002_smll_201905084 crossref_primary_10_1021_acs_analchem_9b05278 crossref_primary_10_1021_ja5115248 crossref_primary_10_1039_D0BM02013C crossref_primary_10_1002_smll_201501130 crossref_primary_10_1002_adfm_201804160 crossref_primary_10_1038_s41467_022_28227_6 crossref_primary_10_1016_j_cej_2020_126606 crossref_primary_10_1039_C8OB00670A crossref_primary_10_1002_adfm_201601831 crossref_primary_10_1002_adma_201700996 crossref_primary_10_1007_s00259_020_05107_z crossref_primary_10_1039_C7AY02799K crossref_primary_10_1007_s12274_018_2078_9 crossref_primary_10_1039_D3NR04055K crossref_primary_10_1002_adma_201505678 crossref_primary_10_1016_j_snb_2023_133842 crossref_primary_10_1021_jacs_5b03872 crossref_primary_10_1039_D2DT03317H crossref_primary_10_1002_smll_202307955 crossref_primary_10_3389_fnano_2025_1564188 crossref_primary_10_1007_s10495_019_01531_1 crossref_primary_10_1016_j_addr_2016_08_010 crossref_primary_10_1016_j_matlet_2018_05_003 crossref_primary_10_1111_jam_14726 crossref_primary_10_1007_s42247_020_00109_x crossref_primary_10_1002_advs_201901724 crossref_primary_10_1016_j_ccr_2020_213575 crossref_primary_10_1021_acs_analchem_6b01963 crossref_primary_10_1007_s10439_016_1578_6 crossref_primary_10_1016_j_talanta_2016_12_048 crossref_primary_10_1016_j_biomaterials_2019_05_006 crossref_primary_10_1002_advs_201903341 crossref_primary_10_1039_D0BM01350A crossref_primary_10_1007_s12209_020_00260_w crossref_primary_10_1039_C7CS00612H crossref_primary_10_1039_C8NH00233A crossref_primary_10_1021_acsnano_5c01434 crossref_primary_10_1016_j_biomaterials_2015_10_049 crossref_primary_10_1002_advs_201902929 crossref_primary_10_1186_s40824_023_00412_8 crossref_primary_10_1039_C6CC02932A crossref_primary_10_1016_j_cej_2023_144694 crossref_primary_10_1039_D0TB00859A crossref_primary_10_1016_j_jhazmat_2021_126476 crossref_primary_10_1016_j_phrs_2022_106551 crossref_primary_10_1002_adma_201604377 crossref_primary_10_1039_D2AY01072K crossref_primary_10_1007_s12274_021_4050_3 crossref_primary_10_1021_jacs_9b09360 crossref_primary_10_1021_acsbiomaterials_3c00508 crossref_primary_10_1186_s12645_016_0024_7 crossref_primary_10_1021_acs_chemmater_5b03846 crossref_primary_10_1002_adfm_202206802 crossref_primary_10_1016_j_trac_2022_116602 crossref_primary_10_1002_smll_201803712 crossref_primary_10_1021_acsami_9b16327 crossref_primary_10_1007_s40843_020_1431_5 crossref_primary_10_1039_C6TB03117J crossref_primary_10_1039_C4CS00394B crossref_primary_10_1016_j_jcis_2022_06_116 crossref_primary_10_1002_anie_201500008 crossref_primary_10_1016_j_optmat_2018_08_053 crossref_primary_10_1039_C9NR09071A crossref_primary_10_1039_C8NR05552A crossref_primary_10_1002_adfm_201800310 crossref_primary_10_1002_adfm_201804901 crossref_primary_10_1016_j_biomaterials_2017_11_025 crossref_primary_10_1039_C5NR06522D crossref_primary_10_1021_jacs_5b10309 crossref_primary_10_1039_D4TC03302G crossref_primary_10_1021_jacs_5b06972 crossref_primary_10_1016_j_ceramint_2018_03_151 crossref_primary_10_1021_acsami_6b05609 crossref_primary_10_1039_C5SC04599A crossref_primary_10_1007_s11581_015_1605_x crossref_primary_10_1002_adhm_201700607 crossref_primary_10_1186_s40580_023_00409_y crossref_primary_10_1039_C4CS00511B crossref_primary_10_1002_anie_201410646 crossref_primary_10_1021_acsami_8b16818 crossref_primary_10_3390_s150613503 crossref_primary_10_1021_acsami_6b16842 crossref_primary_10_1016_j_nano_2020_102326 crossref_primary_10_1039_C5NR06915G crossref_primary_10_1002_advs_201500107 crossref_primary_10_1016_j_biomaterials_2018_05_018 crossref_primary_10_1007_s12274_017_1522_6 crossref_primary_10_1002_chem_201600310 crossref_primary_10_1021_cr400636x crossref_primary_10_1039_D1BM00317H crossref_primary_10_1039_D1BM00396H crossref_primary_10_1007_s11426_020_9869_4 crossref_primary_10_1016_j_ccr_2020_213371 crossref_primary_10_1021_acsabm_9b00774 crossref_primary_10_1039_C6CC00774K crossref_primary_10_1016_j_snb_2014_10_089 crossref_primary_10_1021_acs_inorgchem_2c02854 crossref_primary_10_3389_fchem_2020_596658 crossref_primary_10_1039_C8SC02984A crossref_primary_10_1007_s00604_020_04455_9 crossref_primary_10_1016_j_ccr_2024_215672 crossref_primary_10_1016_j_cis_2021_102579 crossref_primary_10_3389_fchem_2019_00868 crossref_primary_10_1016_j_bioactmat_2022_03_009 crossref_primary_10_1021_acs_chemrev_1c00644 crossref_primary_10_1002_adfm_201503715 crossref_primary_10_1002_adhm_201701156 crossref_primary_10_1039_C6NR05889B crossref_primary_10_1039_C5TB00025D crossref_primary_10_1038_s41570_018_0057_z crossref_primary_10_1039_C6TB02944B crossref_primary_10_1039_D0QM00653J crossref_primary_10_1016_j_snb_2016_04_182 crossref_primary_10_1021_acsnano_5b05622 crossref_primary_10_1021_acs_chemrev_3c00629 crossref_primary_10_1039_C7BM01020F crossref_primary_10_1039_C5TC00881F crossref_primary_10_1002_advs_201700609 crossref_primary_10_1016_j_snb_2019_03_025 crossref_primary_10_1088_1361_6528_ace633 crossref_primary_10_1021_am507591u crossref_primary_10_1016_j_saa_2021_120003 crossref_primary_10_1016_j_jcis_2023_04_049 crossref_primary_10_1002_chem_201602514 crossref_primary_10_1149_2754_2726_ace202 crossref_primary_10_1021_acsami_6b14007 crossref_primary_10_3390_molecules24020357 crossref_primary_10_1002_adfm_202313384 crossref_primary_10_3390_gels9020153 crossref_primary_10_1021_acs_jmedchem_3c00587 crossref_primary_10_1039_C8QM00309B crossref_primary_10_1016_j_ccr_2017_10_027 crossref_primary_10_1021_acs_chemrev_8b00401 crossref_primary_10_1039_C6RA10513K crossref_primary_10_1021_acs_chemrev_5b00091 crossref_primary_10_1021_acs_analchem_5b04863 crossref_primary_10_1039_C8NR06507A crossref_primary_10_1016_j_mtsust_2023_100458 crossref_primary_10_1002_adhm_202002036 crossref_primary_10_1002_adma_202312024 crossref_primary_10_1002_adom_201600154 crossref_primary_10_1016_j_jre_2021_05_015 crossref_primary_10_1021_acs_analchem_2c04764 crossref_primary_10_1021_acs_bioconjchem_9b00564 crossref_primary_10_1039_C6MD00432F crossref_primary_10_1021_acsnano_5b00439 crossref_primary_10_1016_j_jre_2020_03_009 crossref_primary_10_1016_j_talo_2024_100302 crossref_primary_10_1039_C5CC02508G crossref_primary_10_1002_adfm_201403885 crossref_primary_10_1002_ange_201410646 crossref_primary_10_1021_acs_chemrev_6b00073 crossref_primary_10_3390_life11040360 crossref_primary_10_1002_adma_202406378 crossref_primary_10_1021_jacs_6b09349 crossref_primary_10_1021_jacs_8b02492 crossref_primary_10_1039_C4SC03062A crossref_primary_10_1039_C7CC00668C crossref_primary_10_1002_ejic_201600755 crossref_primary_10_1039_C8TB00278A crossref_primary_10_1007_s40843_016_5081_x crossref_primary_10_1021_acs_analchem_7b01324 crossref_primary_10_1002_ange_201703012 crossref_primary_10_1016_j_jre_2019_02_001 crossref_primary_10_1016_j_talo_2022_100154 crossref_primary_10_1002_adfm_201604258 crossref_primary_10_1021_acs_chemrev_6b00525 crossref_primary_10_1039_C6AN00369A crossref_primary_10_1002_advs_201700847 crossref_primary_10_1039_C7NR03682E crossref_primary_10_1002_anie_201703012 crossref_primary_10_1186_s12951_021_01078_x crossref_primary_10_1002_ange_201500008 crossref_primary_10_1021_jacs_5b01504 crossref_primary_10_1126_sciadv_aax9757 crossref_primary_10_1002_cbic_201800438 crossref_primary_10_1002_smll_202002494 crossref_primary_10_1038_srep14837 crossref_primary_10_1021_acsami_0c08389 crossref_primary_10_1002_adma_201907718 crossref_primary_10_1007_s12274_016_1015_z crossref_primary_10_1021_jacs_0c10245 |
Cites_doi | 10.1039/c0md00024h 10.1021/ac1007283 10.1002/adma.201004697 10.1002/adma.201202433 10.1002/anie.201100303 10.1007/s10555-007-9055-1 10.1021/ja902712b 10.1021/cr300358b 10.1039/C1CS15187H 10.1021/ja905793q 10.1158/0008-5472.CAN-09-3948 10.1039/C4CS00039K 10.1021/ja105937q 10.1038/86684 10.1021/ja3016582 10.1016/j.bmc.2009.08.037 10.1016/S0360-3016(03)00289-X 10.1002/adfm.201201469 10.1038/nrc3064 10.1002/anie.201308368 10.1016/S0006-2952(97)00672-2 10.1021/ja403798m 10.1021/ja310049d 10.1021/ar5000067 10.1002/anie.201305784 10.1038/nature10169 10.1016/j.bmcl.2012.02.071 10.1002/anie.201309503 10.1126/science.1104274 10.1002/adma.200901356 10.1039/c3cs60131e 10.1161/01.STR.0000080381.76409.B2 10.1021/ja2100774 10.1038/nmat2509 10.1021/la802343f 10.1039/c0nr00253d 10.1183/09031936.00111208 10.1021/ja312225b 10.1088/0957-4484/21/28/285701 10.1039/b503336e 10.1038/nrc1367 10.1021/ol102975t 10.1038/nrc704 10.1039/c3cc38980d 10.1021/cr0783840 10.1021/ja211035w 10.1039/c3cc45367g 10.1002/adma.201104741 10.1159/000303046 10.1002/anie.201208196 10.1002/anie.201004902 10.1021/bc2004704 10.2174/0929867043365387 10.1021/ja2102604 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/ja5042989 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 9709 |
ExternalDocumentID | 24956326 10_1021_ja5042989 c239766410 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a348t-c95b1fdabb8eb68577dee9f75eb6d707a9aaa81c138b1f09cece688251de70b23 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 23:05:53 EDT 2025 Fri Jul 11 16:20:42 EDT 2025 Mon Jul 21 05:28:53 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Tue Jul 01 04:33:01 EDT 2025 Thu Aug 27 13:42:36 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-c95b1fdabb8eb68577dee9f75eb6d707a9aaa81c138b1f09cece688251de70b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24956326 |
PQID | 1544321349 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000304592 proquest_miscellaneous_1544321349 pubmed_primary_24956326 crossref_citationtrail_10_1021_ja5042989 crossref_primary_10_1021_ja5042989 acs_journals_10_1021_ja5042989 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140709 2014-07-09 2014-Jul-09 |
PublicationDateYYYYMMDD | 2014-07-09 |
PublicationDate_xml | – month: 07 year: 2014 text: 20140709 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Michalet X. (ref50/cit50) 2005; 307 Boyer J.-C. (ref49/cit49) 2010; 2 Vordermark D. (ref54/cit54) 2003; 56 Mader H. S. (ref36/cit36) 2010; 82 Wang X.-d. (ref37/cit37) 2014; 43 Qian H. S. (ref43/cit43) 2008; 24 Park Y. I. (ref31/cit31) 2009; 21 Perche F. (ref19/cit19) 2014; 53 Garvey J. F. (ref2/cit2) 2009; 33 Zhou J. (ref32/cit32) 2012; 41 Kiyose K. (ref17/cit17) 2010; 132 Wang F. (ref29/cit29) 2014; 47 Nakata E. (ref15/cit15) 2009; 17 Zhang H. (ref53/cit53) 2005; 15 Papkovsky D. B. (ref40/cit40) 2013; 42 Xu K. (ref24/cit24) 2013; 49 Smith A. R. (ref55/cit55) 2004; 11 Prass K. (ref3/cit3) 2003; 34 Fujibayashi Y. (ref10/cit10) 1997; 38 Fan W. (ref46/cit46) 2013; 135 Lee J. E. (ref51/cit51) 2010; 132 Vaupel P. (ref4/cit4) 1991; 51 Gorris H. H. (ref52/cit52) 2011; 23 Lee M. H. (ref22/cit22) 2013; 113 Takahashi S. (ref20/cit20) 2012; 134 Piao W. (ref18/cit18) 2013; 52 Huang P. (ref34/cit34) 2014; 53 Gonçalves M. S. T. (ref28/cit28) 2009; 109 Jou C. J. (ref56/cit56) 2010; 25 Chen F. (ref44/cit44) 2013; 23 Deng R. (ref23/cit23) 2011; 133 Tian G. (ref42/cit42) 2012; 24 Pan L. (ref45/cit45) 2012; 134 Guo T. (ref25/cit25) 2013; 49 McLaurin E. J. (ref27/cit27) 2009; 131 Liu Y. (ref35/cit35) 2013; 135 Iwaki S. (ref11/cit11) 2012; 22 Lee N. (ref9/cit9) 2012; 134 Wilson W. R. (ref1/cit1) 2011; 11 Okuda K. (ref26/cit26) 2012; 23 Komatsu H. (ref16/cit16) 2010; 1 Facciabene A. (ref7/cit7) 2011; 475 Gorris H. H. (ref30/cit30) 2013; 52 Park Y. I. (ref33/cit33) 2012; 24 Ju Q. (ref48/cit48) 2011; 134 Harris A. L. (ref5/cit5) 2002; 2 Cui L. (ref14/cit14) 2011; 13 Brown J. M. (ref6/cit6) 2004; 4 Zhang S. (ref13/cit13) 2010; 70 Tu D. (ref47/cit47) 2011; 50 Zhang G. (ref12/cit12) 2009; 8 Achatz D. E. (ref38/cit38) 2011; 50 Weissleder R. (ref41/cit41) 2001; 19 Sen C. K. (ref21/cit21) 1998; 55 Vaupel P. (ref8/cit8) 2007; 26 Liu L. (ref39/cit39) 2010; 21 |
References_xml | – volume: 1 start-page: 50 year: 2010 ident: ref16/cit16 publication-title: Med. Chem. Comm. doi: 10.1039/c0md00024h – volume: 82 start-page: 5002 year: 2010 ident: ref36/cit36 publication-title: Anal. Chem. doi: 10.1021/ac1007283 – volume: 23 start-page: 1652 year: 2011 ident: ref52/cit52 publication-title: Adv. Mater. doi: 10.1002/adma.201004697 – volume: 24 start-page: 5755 year: 2012 ident: ref33/cit33 publication-title: Adv. Mater. doi: 10.1002/adma.201202433 – volume: 50 start-page: 6306 year: 2011 ident: ref47/cit47 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201100303 – volume: 26 start-page: 225 year: 2007 ident: ref8/cit8 publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-007-9055-1 – volume: 131 start-page: 12994 year: 2009 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902712b – volume: 113 start-page: 5071 year: 2013 ident: ref22/cit22 publication-title: Chem. Rev. doi: 10.1021/cr300358b – volume: 41 start-page: 1323 year: 2012 ident: ref32/cit32 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15187H – volume: 132 start-page: 552 year: 2010 ident: ref51/cit51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905793q – volume: 70 start-page: 4490 year: 2010 ident: ref13/cit13 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-3948 – volume: 43 start-page: 3666 year: 2014 ident: ref37/cit37 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00039K – volume: 132 start-page: 15846 year: 2010 ident: ref17/cit17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105937q – volume: 19 start-page: 316 year: 2001 ident: ref41/cit41 publication-title: Nat. Biotechnol. doi: 10.1038/86684 – volume: 134 start-page: 10309 year: 2012 ident: ref9/cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3016582 – volume: 17 start-page: 6952 year: 2009 ident: ref15/cit15 publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2009.08.037 – volume: 56 start-page: 1184 year: 2003 ident: ref54/cit54 publication-title: J. Radiat. Oncol. doi: 10.1016/S0360-3016(03)00289-X – volume: 38 start-page: 1155 year: 1997 ident: ref10/cit10 publication-title: J. Nucl. Med. – volume: 23 start-page: 298 year: 2013 ident: ref44/cit44 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201469 – volume: 11 start-page: 393 year: 2011 ident: ref1/cit1 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3064 – volume: 51 start-page: 3316 year: 1991 ident: ref4/cit4 publication-title: Cancer Res. – volume: 53 start-page: 3362 year: 2014 ident: ref19/cit19 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201308368 – volume: 55 start-page: 1747 year: 1998 ident: ref21/cit21 publication-title: Biochem. Pharmacol. doi: 10.1016/S0006-2952(97)00672-2 – volume: 135 start-page: 9869 year: 2013 ident: ref35/cit35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403798m – volume: 134 start-page: 19588 year: 2012 ident: ref20/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310049d – volume: 47 start-page: 1378 year: 2014 ident: ref29/cit29 publication-title: Acc. Chem. Res. doi: 10.1021/ar5000067 – volume: 52 start-page: 13028 year: 2013 ident: ref18/cit18 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201305784 – volume: 475 start-page: 226 year: 2011 ident: ref7/cit7 publication-title: Nature doi: 10.1038/nature10169 – volume: 22 start-page: 2798 year: 2012 ident: ref11/cit11 publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2012.02.071 – volume: 53 start-page: 1252 year: 2014 ident: ref34/cit34 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201309503 – volume: 307 start-page: 538 year: 2005 ident: ref50/cit50 publication-title: Science doi: 10.1126/science.1104274 – volume: 21 start-page: 4467 year: 2009 ident: ref31/cit31 publication-title: Adv. Mater. doi: 10.1002/adma.200901356 – volume: 42 start-page: 8700 year: 2013 ident: ref40/cit40 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60131e – volume: 34 start-page: 1981 year: 2003 ident: ref3/cit3 publication-title: Stroke doi: 10.1161/01.STR.0000080381.76409.B2 – volume: 133 start-page: 20168 year: 2011 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2100774 – volume: 8 start-page: 747 year: 2009 ident: ref12/cit12 publication-title: Nat. Mater. doi: 10.1038/nmat2509 – volume: 24 start-page: 12123 year: 2008 ident: ref43/cit43 publication-title: Langmuir doi: 10.1021/la802343f – volume: 2 start-page: 1417 year: 2010 ident: ref49/cit49 publication-title: Nanoscale doi: 10.1039/c0nr00253d – volume: 33 start-page: 1195 year: 2009 ident: ref2/cit2 publication-title: Eur. Respir. J. doi: 10.1183/09031936.00111208 – volume: 135 start-page: 6494 year: 2013 ident: ref46/cit46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312225b – volume: 21 start-page: 285701 year: 2010 ident: ref39/cit39 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/28/285701 – volume: 15 start-page: 3181 year: 2005 ident: ref53/cit53 publication-title: J. Mater. Chem. doi: 10.1039/b503336e – volume: 4 start-page: 437 year: 2004 ident: ref6/cit6 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1367 – volume: 13 start-page: 928 year: 2011 ident: ref14/cit14 publication-title: Org. Lett. doi: 10.1021/ol102975t – volume: 2 start-page: 38 year: 2002 ident: ref5/cit5 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc704 – volume: 49 start-page: 2554 year: 2013 ident: ref24/cit24 publication-title: Chem. Commun. doi: 10.1039/c3cc38980d – volume: 109 start-page: 190 year: 2009 ident: ref28/cit28 publication-title: Chem. Rev. doi: 10.1021/cr0783840 – volume: 134 start-page: 5722 year: 2012 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211035w – volume: 49 start-page: 10820 year: 2013 ident: ref25/cit25 publication-title: Chem. Commun. doi: 10.1039/c3cc45367g – volume: 24 start-page: 1226 year: 2012 ident: ref42/cit42 publication-title: Adv. Mater. doi: 10.1002/adma.201104741 – volume: 25 start-page: 419 year: 2010 ident: ref56/cit56 publication-title: Cell. Physiol. Biochem. doi: 10.1159/000303046 – volume: 52 start-page: 3584 year: 2013 ident: ref30/cit30 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201208196 – volume: 50 start-page: 260 year: 2011 ident: ref38/cit38 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201004902 – volume: 23 start-page: 324 year: 2012 ident: ref26/cit26 publication-title: Bioconjugate Chem. doi: 10.1021/bc2004704 – volume: 11 start-page: 1135 year: 2004 ident: ref55/cit55 publication-title: Curr. Med. Chem. doi: 10.2174/0929867043365387 – volume: 134 start-page: 1323 year: 2011 ident: ref48/cit48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2102604 |
SSID | ssj0004281 |
Score | 2.5744562 |
Snippet | Hypoxia is a distinct feature of malignant solid tumors, which is a possible causative factor for the serious resistance to chemo- and radiotherapy or the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9701 |
SubjectTerms | absorption Adsorption anaerobic conditions Animals Cell Line, Tumor Danio rerio Humans Hypoxia image analysis luminescence metastasis Microscopy, Confocal Molecular Structure nanoparticles Nanoparticles - chemistry Nanotechnology - instrumentation neoplasms Organometallic Compounds - chemical synthesis Organometallic Compounds - chemistry oxygen Oxygen - analysis Particle Size radiotherapy Ruthenium - chemistry Surface Properties wavelengths Zebrafish |
Title | Ultrasensitive Nanosensors Based on Upconversion Nanoparticles for Selective Hypoxia Imaging in Vivo upon Near-Infrared Excitation |
URI | http://dx.doi.org/10.1021/ja5042989 https://www.ncbi.nlm.nih.gov/pubmed/24956326 https://www.proquest.com/docview/1544321349 https://www.proquest.com/docview/2000304592 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7xOJRLS9_bAjKFA5egPJzYPi7LooUDF7oVt5VfkVbQJNrNIuixv7xjZ02pePToaCw78djzTWb8DcA-LZk0MimiVFAaUTz-IsW4iTRDT1sxR9Llsy3Oi9GYnl3mlyuw90wEP3X8QLk7NLlYhfW04Mx5WP3Bxd_LjylPAsZlvMgCfdDDrs706Pm_pucZPOntyskbOA63c7p0kqvDRasO9a_HZI0vTXkTXi9xJel3ivAWVmz1Dl4NQjm39_B7fN3O0GRVc58tRPBYrV2rns3JET43pK7IuPFZ6P4XmpdoQuIcQXBLLnzRHNd7dNfUt1NJTn_6KkdkWpEf05uaLBrXEXdPdFqVM5fcToa3eskD_gHGJ8Pvg1G0LMAQyYzyNtIiV0lppFLcqoLnjBlrRclybBkWMymklDzRScZRLhbaaltwdxnWWBarNPsIa1Vd2c9AslJJdPcUL21JY264SCTV0qD7KAqu4h7s4ApNlhtoPvGx8RR9k_Ape3AQFm8Spu2qaFw_JfrtXrTpODueEtoNGjDBlXBhElnZeoFDO0pAR3T3gkwadzFmkfbgU6c-90O5at4FouIv_3ulr7CB8Iv65F-xBWvtbGG3EeK0aser-B-hJPW7 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoPdALpUDLUh4GceASlIcT20e6Au3yusAibpFfkVaFJNpkEfTYX96xk_ASjx4djeOJPfbMZMbfILRDMiq0CBIv5IR4BI4_T1KmPUXB05bUgnS5bIuzZDAiR1fxVQuTY-_CABMVvKlyQfxHdAELExTbs5PxT-gzGCGhdbT2--ePdyBDFnSmLmVJ1KEIPe1qNZCqnmugN8xKp14OvzZ1ihxjLqvk9960lnvqzwvMxv_jfAHNt1Ym3m_E4huaMfkimut3xd2W0N_RdT0BBZZXLncIwyFb2FYxqfAveK5xkeNR6XLS3Q81R1F2aXQYTF187kro2N6D-7K4Gws8vHE1j_A4x5fj2wJPS9sR9pI3zLOJTXXHB3eqRQVfRqPDg4v-wGvLMXgiIqz2FI9lkGkhJTMyYTGl2hie0RhamvpUcCEEC1QQMaDzuTLKJMxejdWG-jKMvqPZvMjNCsJRJgU4f5JlJiM-04wHgiihwZnkCZN-D23ATKbtdqpSFykPwVPpprKHdrs1TDu2bU2N69dItx9IywbB4zWirU4QUlgJGzQRuSmmMLQFCLSwd-_QhH4TceZhD_1opOhhKFvbOwEbefWjT9pEc4OL05P0ZHh2_BN9AcOMuLRgvoZm68nUrIPxU8sNJ_X_AHj7_hw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7BIgEX3gvlsRjEgUtWebixfVzKVi2gBWkp2lvkV6SKJYmaFC0c-eXMuEl5aHkcHY3jiT32zGTG3wA846XQTid5lCrOI47HX2SEdJEV6GkbQSBdIdviKJ8t-KuT8UnvKNJdGGSixTe1IYhPu7pxZY8wQFBBYzo_pboIlyhcR87WweT4xz3IVCaDuStkng1IQj93JS1k21-10B9My6Biptfh7Za5kFnycX_dmX379Tfcxv_n_gZc661NdrARj5twwVe34MpkKPJ2G74tTrsVKrKqDTlEDA_bmlr1qmUv8LljdcUWTchNDz_WAkUzpNMxNHnZcSilQ71nX5r6bKnZ_FOofcSWFfuw_FyzdUMdcU9F86pcUco7OzyzPTr4HVhMD99PZlFfliHSGZddZNXYJKXTxkhvconL4LxXpRhjy4lYaKW1lolNMol0sbLe-lzSFVnnRWzSbBd2qrry94BlpdHoBBpZ-pLH0kmVaG61Q6dS5dLEI9jD2Sz6bdUWIWKeoscyTOUIng_rWAxsU22N0_NIn25Jmw2Sx3lETwZhKHAlKHiiK1-vcWgCCiT4u7_QpPEm8qzSEdzdSNJ2KKrxnaOtfP9fn_QYLr97OS3ezI9eP4CraJ_xkB2sHsJOt1r7R2gDdWYvCP53tfcArg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasensitive+Nanosensors+Based+on+Upconversion+Nanoparticles+for+Selective+Hypoxia+Imaging+in+Vivo+upon+Near-Infrared+Excitation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Liu%2C+Jianan&rft.au=Liu%2C+Yong&rft.au=Bu%2C+Wenbo&rft.au=Bu%2C+Jiwen&rft.date=2014-07-09&rft.issn=1520-5126&rft.volume=136&rft.issue=27+p.9701-9709&rft.spage=9701&rft.epage=9709&rft_id=info:doi/10.1021%2Fja5042989&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |