Self-Assembly Mechanism of 1,3:2,4-Di(3,4-dichlorobenzylidene)‑d‑sorbitol and Control of the Supramolecular Chirality

Dibenzylidene-d-sorbitol (DBS) and its derivatives are known to form gels in organic solvents; however, the mechanism of the gel formation has been a subject of much debate. The present work is undertaken to elucidate the organization mechanism of a DBS derivative, 1,3:2,4-di­(3,4-dichlorobenzyliden...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 30; no. 44; pp. 13422 - 13429
Main Authors Li, Jingjing, Fan, Kaiqi, Guan, Xidong, Yu, Yingzhe, Song, Jian
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.11.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dibenzylidene-d-sorbitol (DBS) and its derivatives are known to form gels in organic solvents; however, the mechanism of the gel formation has been a subject of much debate. The present work is undertaken to elucidate the organization mechanism of a DBS derivative, 1,3:2,4-di­(3,4-dichlorobenzylidene)-d-sorbitol (DCDBS), by taking into account the solvent effects and comparing the experiment data with theoretical calculation. These molecules form smooth nonhelical fibers with a rest circular dichroism (CD) signal in polar solvents, in contrast to rope-liked left-helical fibers with a strong negative CD signal observed in nonpolar solvents. The molecular complexes thus formed were characterized by means of Fourier transform infrared spectra, ultraviolet–visible spectra, X-ray diffraction patterns, static contact angles, and theoretical calculations. It was proposed that the interactions between the gelator and the solvents could subtly change the stacking of the molecules and hence their self-assembled nanostructures. In nonpolar solvents, the gelator molecules appear as a distorted T-shaped structure with the 6-OH forming intermolecular hydrogen bonds with the acetal oxygens of adjacent gelator molecule. In addition, because of differential stacking interactions on both sides of the 10-member ring skeleton of the gelator, the oligomers may assemble in a helix fashion to minimize the energy, leading to helical fibers. In polar solvents, however, the gelator molecules show a rigid planelike structure and thus stack on top of each other because of strong parallel-displaced π interactions. The balanced driving force on both sides of the 10-member ring skeleton made it difficult for the dimers to bend, thus resulting in nonhelical nanostructure. As expected from the mechanisms proposed here, twisted ribbon fibers with a medium strength CD signal were obtained when solvents of different polarities were mixed. Thus, solvent effects revealed in this work represent an effective means of realizing in situ tuning of nanostructures and control of the expression of chirality at supramolecular levels.
AbstractList Dibenzylidene-d-sorbitol (DBS) and its derivatives are known to form gels in organic solvents; however, the mechanism of the gel formation has been a subject of much debate. The present work is undertaken to elucidate the organization mechanism of a DBS derivative, 1,3:2,4-di(3,4-dichlorobenzylidene)-d-sorbitol (DCDBS), by taking into account the solvent effects and comparing the experiment data with theoretical calculation. These molecules form smooth nonhelical fibers with a rest circular dichroism (CD) signal in polar solvents, in contrast to rope-liked left-helical fibers with a strong negative CD signal observed in nonpolar solvents. The molecular complexes thus formed were characterized by means of Fourier transform infrared spectra, ultraviolet–visible spectra, X-ray diffraction patterns, static contact angles, and theoretical calculations. It was proposed that the interactions between the gelator and the solvents could subtly change the stacking of the molecules and hence their self-assembled nanostructures. In nonpolar solvents, the gelator molecules appear as a distorted T-shaped structure with the 6-OH forming intermolecular hydrogen bonds with the acetal oxygens of adjacent gelator molecule. In addition, because of differential stacking interactions on both sides of the 10-member ring skeleton of the gelator, the oligomers may assemble in a helix fashion to minimize the energy, leading to helical fibers. In polar solvents, however, the gelator molecules show a rigid planelike structure and thus stack on top of each other because of strong parallel-displaced π interactions. The balanced driving force on both sides of the 10-member ring skeleton made it difficult for the dimers to bend, thus resulting in nonhelical nanostructure. As expected from the mechanisms proposed here, twisted ribbon fibers with a medium strength CD signal were obtained when solvents of different polarities were mixed. Thus, solvent effects revealed in this work represent an effective means of realizing in situ tuning of nanostructures and control of the expression of chirality at supramolecular levels.
Dibenzylidene-D-sorbitol (DBS) and its derivatives are known to form gels in organic solvents; however, the mechanism of the gel formation has been a subject of much debate. The present work is undertaken to elucidate the organization mechanism of a DBS derivative, 1,3:2,4-di(3,4-dichlorobenzylidene)-D-sorbitol (DCDBS), by taking into account the solvent effects and comparing the experiment data with theoretical calculation. These molecules form smooth nonhelical fibers with a rest circular dichroism (CD) signal in polar solvents, in contrast to rope-liked left-helical fibers with a strong negative CD signal observed in nonpolar solvents. The molecular complexes thus formed were characterized by means of Fourier transform infrared spectra, ultraviolet-visible spectra, X-ray diffraction patterns, static contact angles, and theoretical calculations. It was proposed that the interactions between the gelator and the solvents could subtly change the stacking of the molecules and hence their self-assembled nanostructures. In nonpolar solvents, the gelator molecules appear as a distorted T-shaped structure with the 6-OH forming intermolecular hydrogen bonds with the acetal oxygens of adjacent gelator molecule. In addition, because of differential stacking interactions on both sides of the 10-member ring skeleton of the gelator, the oligomers may assemble in a helix fashion to minimize the energy, leading to helical fibers. In polar solvents, however, the gelator molecules show a rigid planelike structure and thus stack on top of each other because of strong parallel-displaced π interactions. The balanced driving force on both sides of the 10-member ring skeleton made it difficult for the dimers to bend, thus resulting in nonhelical nanostructure. As expected from the mechanisms proposed here, twisted ribbon fibers with a medium strength CD signal were obtained when solvents of different polarities were mixed. Thus, solvent effects revealed in this work represent an effective means of realizing in situ tuning of nanostructures and control of the expression of chirality at supramolecular levels.Dibenzylidene-D-sorbitol (DBS) and its derivatives are known to form gels in organic solvents; however, the mechanism of the gel formation has been a subject of much debate. The present work is undertaken to elucidate the organization mechanism of a DBS derivative, 1,3:2,4-di(3,4-dichlorobenzylidene)-D-sorbitol (DCDBS), by taking into account the solvent effects and comparing the experiment data with theoretical calculation. These molecules form smooth nonhelical fibers with a rest circular dichroism (CD) signal in polar solvents, in contrast to rope-liked left-helical fibers with a strong negative CD signal observed in nonpolar solvents. The molecular complexes thus formed were characterized by means of Fourier transform infrared spectra, ultraviolet-visible spectra, X-ray diffraction patterns, static contact angles, and theoretical calculations. It was proposed that the interactions between the gelator and the solvents could subtly change the stacking of the molecules and hence their self-assembled nanostructures. In nonpolar solvents, the gelator molecules appear as a distorted T-shaped structure with the 6-OH forming intermolecular hydrogen bonds with the acetal oxygens of adjacent gelator molecule. In addition, because of differential stacking interactions on both sides of the 10-member ring skeleton of the gelator, the oligomers may assemble in a helix fashion to minimize the energy, leading to helical fibers. In polar solvents, however, the gelator molecules show a rigid planelike structure and thus stack on top of each other because of strong parallel-displaced π interactions. The balanced driving force on both sides of the 10-member ring skeleton made it difficult for the dimers to bend, thus resulting in nonhelical nanostructure. As expected from the mechanisms proposed here, twisted ribbon fibers with a medium strength CD signal were obtained when solvents of different polarities were mixed. Thus, solvent effects revealed in this work represent an effective means of realizing in situ tuning of nanostructures and control of the expression of chirality at supramolecular levels.
Dibenzylidene-d-sorbitol (DBS) and its derivatives are known to form gels in organic solvents; however, the mechanism of the gel formation has been a subject of much debate. The present work is undertaken to elucidate the organization mechanism of a DBS derivative, 1,3:2,4-di­(3,4-dichlorobenzylidene)-d-sorbitol (DCDBS), by taking into account the solvent effects and comparing the experiment data with theoretical calculation. These molecules form smooth nonhelical fibers with a rest circular dichroism (CD) signal in polar solvents, in contrast to rope-liked left-helical fibers with a strong negative CD signal observed in nonpolar solvents. The molecular complexes thus formed were characterized by means of Fourier transform infrared spectra, ultraviolet–visible spectra, X-ray diffraction patterns, static contact angles, and theoretical calculations. It was proposed that the interactions between the gelator and the solvents could subtly change the stacking of the molecules and hence their self-assembled nanostructures. In nonpolar solvents, the gelator molecules appear as a distorted T-shaped structure with the 6-OH forming intermolecular hydrogen bonds with the acetal oxygens of adjacent gelator molecule. In addition, because of differential stacking interactions on both sides of the 10-member ring skeleton of the gelator, the oligomers may assemble in a helix fashion to minimize the energy, leading to helical fibers. In polar solvents, however, the gelator molecules show a rigid planelike structure and thus stack on top of each other because of strong parallel-displaced π interactions. The balanced driving force on both sides of the 10-member ring skeleton made it difficult for the dimers to bend, thus resulting in nonhelical nanostructure. As expected from the mechanisms proposed here, twisted ribbon fibers with a medium strength CD signal were obtained when solvents of different polarities were mixed. Thus, solvent effects revealed in this work represent an effective means of realizing in situ tuning of nanostructures and control of the expression of chirality at supramolecular levels.
Author Fan, Kaiqi
Guan, Xidong
Li, Jingjing
Yu, Yingzhe
Song, Jian
AuthorAffiliation Tianjin University
R&D Center for Petrochemical Technology
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin
School of Chemical Engineering and Technology
AuthorAffiliation_xml – name: Tianjin University
– name: The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin
– name: R&D Center for Petrochemical Technology
– name: School of Chemical Engineering and Technology
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Li
  fullname: Li, Jingjing
  organization: Tianjin University
– sequence: 2
  givenname: Kaiqi
  surname: Fan
  fullname: Fan, Kaiqi
  organization: Tianjin University
– sequence: 3
  givenname: Xidong
  surname: Guan
  fullname: Guan, Xidong
  organization: Tianjin University
– sequence: 4
  givenname: Yingzhe
  surname: Yu
  fullname: Yu, Yingzhe
  organization: Tianjin University
– sequence: 5
  givenname: Jian
  surname: Song
  fullname: Song, Jian
  email: songjian@tju.edu.cn
  organization: The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25318070$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO3TAQhq2KqhxoF32BKptKIBHwJU4cdui0pUhUXdCuo_FNx8ixT-1kka76CrwiT1KjQ1kgpC5G_0jzzSy-OUB7IQaD0HuCTwmm5MwDx6whnXiFVoRTXHNBuz20wl3D6q5p2T46yPkWY9yzpn-D9ilnROAOr9ByY7ytL3I2o_RL9c2oDQSXxyraipywc3rS1J_cESuhndr4mKI04ffinTbBHN__udOlckzSTdFXEHS1jmFKpS8Xpo2pbuZtgjF6o2YPqVpvXALvpuUtem3BZ_PuMQ_Rzy-ff6y_1tffL6_WF9c1sEZMtQRlW8o1t31vgBDZ9FR0fduCVlaXgZDU2pZYYlstFdBOMsmxKEIwBaPYITra3d2m-Gs2eRpGl5XxHoKJcx5o0cLbXnD-X5S0lFEhOKYF_fCIznI0etgmN0Jahn9mC3C8A1SKOSdjnxCCh4evDU9fK-zZM1a5CSb3IBKcf3Hj424DVB5u45xCUfgC9xcuqKWS
CitedBy_id crossref_primary_10_1002_chem_201500097
crossref_primary_10_1002_pen_25535
crossref_primary_10_1007_s00723_015_0690_3
crossref_primary_10_1039_D0SM01473G
crossref_primary_10_1021_acs_jpcc_9b02205
crossref_primary_10_1021_acs_langmuir_7b01942
crossref_primary_10_1016_j_polymertesting_2023_108322
crossref_primary_10_1039_D0SM00343C
crossref_primary_10_1002_anie_202009332
crossref_primary_10_1039_C5NR03699B
crossref_primary_10_1039_C8QM00498F
crossref_primary_10_1007_s10965_022_02920_y
crossref_primary_10_1021_acs_jchemed_4c00202
crossref_primary_10_1039_C5SM00845J
crossref_primary_10_1016_j_cej_2022_136026
crossref_primary_10_1007_s00396_019_04471_z
crossref_primary_10_1016_j_mtchem_2018_07_003
crossref_primary_10_1021_acs_macromol_6b00612
crossref_primary_10_1016_j_arabjc_2024_106048
crossref_primary_10_1021_acs_cgd_9b01058
crossref_primary_10_1039_D1RA05605K
crossref_primary_10_1016_j_cclet_2017_06_005
crossref_primary_10_1039_C6CC10122D
crossref_primary_10_1002_ange_202009332
crossref_primary_10_1080_1539445X_2017_1367307
Cites_doi 10.1074/jbc.273.25.15458
10.1039/c4cc00311j
10.1021/la401987y
10.1021/jp110636b
10.1080/1539445X.2012.756016
10.1039/C2SM27030G
10.1002/anie.200453874
10.1039/c2sm26991k
10.1002/anie.200503142
10.1021/ja020752o
10.1021/la903064n
10.1007/s00397-011-0591-9
10.1021/ja01259a001
10.1080/00268970310001597327
10.1122/1.1289275
10.1122/1.1619379
10.1039/C1CC10220F
10.1002/chem.201300612
10.1039/c3sm50929j
10.1021/la101262b
10.1021/ja403345p
10.1002/anie.201205332
10.1007/s11434-012-5451-1
10.1021/jp984018w
10.1039/c3sm51967h
10.1039/C3SM52430B
10.1002/ange.201308554
10.1246/bcsj.68.123
10.1039/c3cc45969a
10.1246/bcsj.68.146
10.1021/ja401214t
10.1021/la402174w
10.1016/j.molstruc.2012.12.037
10.1021/ie402358h
10.1039/c0cc00891e
10.1039/c3sm52297k
10.1039/c3cc47359g
10.1021/cr400195e
10.1246/bcsj.81.1196
10.1039/b911125e
10.1021/la304957n
10.1039/b800409a
10.1039/c0cc02423f
10.1039/C2CS35332F
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/la5034178
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 13429
ExternalDocumentID 25318070
10_1021_la5034178
b53476695
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a348t-bacf625d5f99ea11b49287966adcfd25d8b2ff61f1f6dbca27b3b50803402aec3
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Thu Jul 10 19:19:03 EDT 2025
Fri Jul 11 15:09:17 EDT 2025
Thu Jan 02 22:21:13 EST 2025
Tue Jul 01 02:30:31 EDT 2025
Thu Apr 24 23:13:11 EDT 2025
Thu Aug 27 13:42:22 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-bacf625d5f99ea11b49287966adcfd25d8b2ff61f1f6dbca27b3b50803402aec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25318070
PQID 1623288502
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000569855
proquest_miscellaneous_1623288502
pubmed_primary_25318070
crossref_primary_10_1021_la5034178
crossref_citationtrail_10_1021_la5034178
acs_journals_10_1021_la5034178
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20141111
2014-11-11
2014-Nov-11
PublicationDateYYYYMMDD 2014-11-11
PublicationDate_xml – month: 11
  year: 2014
  text: 20141111
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Gopal A. (ref32/cit32) 2012; 51
Jung J. H. (ref47/cit47) 2002; 124
Yamasaki S. (ref14/cit14) 1995; 68
Thierry A. (ref35/cit35) 1990; 31
Smith D. K. (ref37/cit37) 2009; 38
Lai W.-C. (ref2/cit2) 2014; 10
Mukai M. (ref26/cit26) 2012; 8
Liu C. (ref21/cit21) 2014; 50
Sagiri S. (ref6/cit6) 2014; 12
Jiang J. (ref29/cit29) 2010; 46
Wang Y. (ref33/cit33) 2013; 42
Yan N. (ref43/cit43) 2013; 29
Cui J. (ref30/cit30) 2010; 26
Santos P. S. (ref10/cit10) 2012; 51
Watase M. (ref15/cit15) 1999; 103
Qing G. (ref20/cit20) 2014; 126
Fräßdorf W. (ref11/cit11) 2003; 47
Duan P. (ref27/cit27) 2011; 115
Wang H. (ref3/cit3) 2012; 57
Sun Z. (ref22/cit22) 2013; 135
Bi S. (ref4/cit4) 2013; 9
VanderHart D. L. (ref17/cit17) 2011; 27
Cornwell D. J. (ref13/cit13) 2013; 9
Li Y. (ref24/cit24) 2013; 29
Diehn K. K. (ref7/cit7) 2014; 10
Caran K. L. (ref18/cit18) 2013
Praveen V. K. (ref23/cit23) 2008; 81
Jin Q. (ref25/cit25) 2013; 19
Zhao C. (ref41/cit41) 2013; 1037
McGaughey G. B. (ref45/cit45) 1998; 273
Barclay T. G. (ref46/cit46) 2013; 29
Huang Y. (ref42/cit42) 2011; 47
Babu S. S. (ref19/cit19) 2014; 114
Kurouski D. (ref28/cit28) 2010; 46
Liu S. (ref9/cit9) 2013; 9
Okesola B. O. (ref5/cit5) 2013; 49
Ajayaghosh A. (ref31/cit31) 2006; 45
Chen C.-T. (ref34/cit34) 2013; 135
Fahrländer M. (ref12/cit12) 2000; 44
Wilder E. A. (ref16/cit16) 2003; 101
Dubey M. (ref36/cit36) 2014; 50
Wolfe J. K. (ref8/cit8) 1942; 64
You J. (ref1/cit1) 2014; 53
George S. J. (ref38/cit38) 2004; 43
Yamasaki S. (ref40/cit40) 1995; 68
ref44/cit44
Zhang Y. M. (ref39/cit39) 2009; 40
References_xml – volume: 273
  start-page: 15458
  issue: 25
  year: 1998
  ident: ref45/cit45
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.25.15458
– volume: 50
  start-page: 3702
  issue: 28
  year: 2014
  ident: ref21/cit21
  publication-title: Chem. Commun. (Cambridge, U.K.)
  doi: 10.1039/c4cc00311j
– volume: 29
  start-page: 10001
  issue: 32
  year: 2013
  ident: ref46/cit46
  publication-title: Langmuir
  doi: 10.1021/la401987y
– volume: 115
  start-page: 3322
  issue: 13
  year: 2011
  ident: ref27/cit27
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp110636b
– volume: 12
  start-page: 47
  issue: 1
  year: 2014
  ident: ref6/cit6
  publication-title: Soft Mater.
  doi: 10.1080/1539445X.2012.756016
– volume: 9
  start-page: 864
  year: 2013
  ident: ref9/cit9
  publication-title: Soft Matter
  doi: 10.1039/C2SM27030G
– volume: 43
  start-page: 3422
  issue: 26
  year: 2004
  ident: ref38/cit38
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200453874
– volume: 8
  start-page: 11979
  issue: 48
  year: 2012
  ident: ref26/cit26
  publication-title: Soft Matter
  doi: 10.1039/c2sm26991k
– volume: 45
  start-page: 1141
  issue: 7
  year: 2006
  ident: ref31/cit31
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200503142
– volume: 124
  start-page: 10674
  issue: 36
  year: 2002
  ident: ref47/cit47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja020752o
– volume: 26
  start-page: 3615
  issue: 5
  year: 2010
  ident: ref30/cit30
  publication-title: Langmuir
  doi: 10.1021/la903064n
– start-page: 1
  volume-title: Soft Fibrillar Materials: Fabrication and Applications
  year: 2013
  ident: ref18/cit18
– volume: 51
  start-page: 3
  issue: 1
  year: 2012
  ident: ref10/cit10
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-011-0591-9
– volume: 64
  start-page: 1493
  issue: 7
  year: 1942
  ident: ref8/cit8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01259a001
– ident: ref44/cit44
– volume: 101
  start-page: 3017
  issue: 19
  year: 2003
  ident: ref16/cit16
  publication-title: Mol. Phys.
  doi: 10.1080/00268970310001597327
– volume: 31
  start-page: 299
  issue: 8
  year: 1990
  ident: ref35/cit35
  publication-title: Polymer
– volume: 44
  start-page: 1103
  year: 2000
  ident: ref12/cit12
  publication-title: J. Rheol. (Melville, NY, U.S.)
  doi: 10.1122/1.1289275
– volume: 47
  start-page: 1445
  year: 2003
  ident: ref11/cit11
  publication-title: J. Rheol. (Melville, NY, U.S.)
  doi: 10.1122/1.1619379
– volume: 47
  start-page: 5554
  issue: 19
  year: 2011
  ident: ref42/cit42
  publication-title: Chem. Commun. (Cambridge, U.K.)
  doi: 10.1039/C1CC10220F
– volume: 19
  start-page: 9234
  issue: 28
  year: 2013
  ident: ref25/cit25
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201300612
– volume: 9
  start-page: 7718
  year: 2013
  ident: ref4/cit4
  publication-title: Soft Matter
  doi: 10.1039/c3sm50929j
– volume: 27
  start-page: 1745
  issue: 5
  year: 2011
  ident: ref17/cit17
  publication-title: Langmuir
  doi: 10.1021/la101262b
– volume: 135
  start-page: 13379
  issue: 36
  year: 2013
  ident: ref22/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403345p
– volume: 51
  start-page: 10505
  issue: 42
  year: 2012
  ident: ref32/cit32
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205332
– volume: 57
  start-page: 4257
  year: 2012
  ident: ref3/cit3
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-012-5451-1
– volume: 103
  start-page: 2366
  issue: 13
  year: 1999
  ident: ref15/cit15
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp984018w
– volume: 9
  start-page: 8730
  issue: 36
  year: 2013
  ident: ref13/cit13
  publication-title: Soft Matter
  doi: 10.1039/c3sm51967h
– volume: 10
  start-page: 312
  year: 2014
  ident: ref2/cit2
  publication-title: Soft Matter
  doi: 10.1039/C3SM52430B
– volume: 126
  start-page: 2156
  issue: 8
  year: 2014
  ident: ref20/cit20
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201308554
– volume: 68
  start-page: 123
  issue: 1
  year: 1995
  ident: ref40/cit40
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.68.123
– volume: 49
  start-page: 11164
  issue: 95
  year: 2013
  ident: ref5/cit5
  publication-title: Chem. Commun. (Cambridge, U.K.)
  doi: 10.1039/c3cc45969a
– volume: 68
  start-page: 146
  issue: 1
  year: 1995
  ident: ref14/cit14
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.68.146
– volume: 135
  start-page: 5294
  issue: 14
  year: 2013
  ident: ref34/cit34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401214t
– volume: 29
  start-page: 9721
  issue: 31
  year: 2013
  ident: ref24/cit24
  publication-title: Langmuir
  doi: 10.1021/la402174w
– volume: 1037
  start-page: 130
  year: 2013
  ident: ref41/cit41
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2012.12.037
– volume: 53
  start-page: 1097
  year: 2014
  ident: ref1/cit1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie402358h
– volume: 46
  start-page: 7178
  issue: 38
  year: 2010
  ident: ref29/cit29
  publication-title: Chem. Commun. (Cambridge, U.K.)
  doi: 10.1039/c0cc00891e
– volume: 10
  start-page: 2631
  year: 2014
  ident: ref7/cit7
  publication-title: Soft Matter
  doi: 10.1039/c3sm52297k
– volume: 50
  start-page: 1675
  issue: 14
  year: 2014
  ident: ref36/cit36
  publication-title: Chem. Commun. (Cambridge, U.K.)
  doi: 10.1039/c3cc47359g
– volume: 114
  start-page: 1973
  issue: 4
  year: 2014
  ident: ref19/cit19
  publication-title: Chem. Rev. (Washington, DC, U.S.)
  doi: 10.1021/cr400195e
– volume: 81
  start-page: 1196
  issue: 10
  year: 2008
  ident: ref23/cit23
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.81.1196
– volume: 40
  start-page: 6074
  year: 2009
  ident: ref39/cit39
  publication-title: Chem. Commun. (Cambridge, U.K.)
  doi: 10.1039/b911125e
– volume: 29
  start-page: 793
  year: 2013
  ident: ref43/cit43
  publication-title: Langmuir
  doi: 10.1021/la304957n
– volume: 38
  start-page: 684
  issue: 3
  year: 2009
  ident: ref37/cit37
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b800409a
– volume: 46
  start-page: 7154
  issue: 38
  year: 2010
  ident: ref28/cit28
  publication-title: Chem. Commun. (Cambridge, U.K.)
  doi: 10.1039/c0cc02423f
– volume: 42
  start-page: 2930
  issue: 7
  year: 2013
  ident: ref33/cit33
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35332F
SSID ssj0009349
Score 2.2875922
Snippet Dibenzylidene-d-sorbitol (DBS) and its derivatives are known to form gels in organic solvents; however, the mechanism of the gel formation has been a subject...
Dibenzylidene-D-sorbitol (DBS) and its derivatives are known to form gels in organic solvents; however, the mechanism of the gel formation has been a subject...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13422
SubjectTerms circular dichroism spectroscopy
contact angle
energy
Fourier transform infrared spectroscopy
gels
hydrogen bonding
Macromolecular Substances - chemical synthesis
Macromolecular Substances - chemistry
nanomaterials
optical isomerism
Particle Size
solvents
Sorbitol - analogs & derivatives
Sorbitol - chemical synthesis
Sorbitol - chemistry
Surface Properties
X-ray diffraction
Title Self-Assembly Mechanism of 1,3:2,4-Di(3,4-dichlorobenzylidene)‑d‑sorbitol and Control of the Supramolecular Chirality
URI http://dx.doi.org/10.1021/la5034178
https://www.ncbi.nlm.nih.gov/pubmed/25318070
https://www.proquest.com/docview/1623288502
https://www.proquest.com/docview/2000569855
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JbtRAEC2FcIBLCFsyQKJmOQQpDu7NS27IIYqQwmWIlJvVqzLCY0ezHCYnfoFf5EuotscDERk4WD647Ha72lWvVF2vAN6lSSxSkfDIKssjIUJ-V0oeOXTNsdYqZy2l0PmX5OxCfL6Ulxvwdk0Gn9EPlZIxmto0uwf3WYI_b8A_xfA3sy7vMG7g2gyj9vRBf94aXI-Z3nY9a_Bk61dOH8FJX53TbSf5djSf6SNz8zdZ479eeRu2lriSfOwWwmPYcPUTeFD07dyewmLoKh-FHO9YVwty7kLJ72g6Jo0n9JAfs0MRnYwOOJ7syFxhGN9oV98sqtB11L3_-f2HxWPaTDTagIqo2pKi2-YenoAwkgzn1xM17tvtkuJqNGlB_jO4OP30tTiLln0XIsVFNou0Mh7DIit9njtFqRY5xlUYFylrvMULmWbeJ9RTn1htFEs11wj0cM4xU87w57BZN7XbBcJloD1CpRvpBXNK6UQ5H9KR2rJUsQHso2LK5X8zLduUOKPl6gsO4KDXWWmWrOWheUZ1l-ibleh1R9Vxl9DrXvElKiBkR1TtmjkOjUCQZZmM2XqZUNckkzyTcgA73apZDcXQmmVoQF_8b0ov4SGiLhEKGil9BZuzydztIbKZ6f12Zf8CtMfxnw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtRAEG1BOIRLCGsmhNAgDkGKg3vzwi0yRANkcplEys3qVRnFY0fjmcPkxC_wi3wJ1V4mgBLBwfLBZfdWrnqt6nqF0Ls4CnnMIxYYaVjAuY_vCsECC645VEqmtKEUGp1EwzP-9VycdzQ5PhcGOlHDl-omiH_DLkA-FFKEYHHj5D56ACCEem0-zMY3BLushbqectM33rMI_f6q90C6_tMD3QErG_dy9KitU9R0rDlVcnmwmKsDff0XZ-P_9XwTbXQoEx-2avEY3bPlE7Se9cXdnqLl2BYu8BHfqSqWeGR9AvCknuLKYbLPPtJ9Hnya7DG4mYm-gE19pWx5vSx8DVL7_uf3HwauupopsAgFlqXBWXvo3X8BQCUeL65mctoX38XZxWTWQP5n6Ozo82k2DLoqDIFkPJkHSmoHmyQjXJpaSYjiKeyyYJckjXYGHiSKOhcRR1xklJY0VkwB7IMxh1RazZ6jtbIq7RbCTHgSJFABLRynVkoVSet8cFIZGks6QLswgXn3F9V5EyCnJF_N4ADt9UuX647D3JfSKG4TfbsSvWqJO24TetOvfw4L4GMlsrTVApoGWEiTRIT0bhmf5SSiNBFigF60yrNqioJtS8Ccbv9rSK_R-vB0dJwffzn59hI9BDzGfaojITtobT5b2FeAeeZqt1H2Xyj2-gA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtRAEG1BkCAXdpJhCQ3iEKQ4uDcv3CKHUVgSkIZIuVm9KqN47NF45jA58Qv8Yr4k1V6GRYngYPngcq_V1a9U3a8QehNHIY95xAIjDQs49_FdIVhgYWsOlZIpbSiFDo-ig2P-6UScdI6ivwsDjaihpLoJ4vtVPTWuYxgg7wopQrC6cXIT3fLhOq_Re9noF8kua-Gup930DeiZhH7_1e9Cuv5zF7oGWjZbzPAe-rpqXHOy5Gx3MVe7-vwv3sb_b_19dLdDm3ivVY8H6IYtH6I7WZ_k7RFajmzhAh_5nahiiQ-tvwg8rie4cpjssPd0hwf7420GLzPWp-DcV8qW58vC5yK1by9-_DTw1NVMgWUosCwNztrD774EAJd4tJjO5KRPwouz0_Gsgf6P0fHww_fsIOiyMQSS8WQeKKkdOEtGuDS1khDFU_C2wFuSRjsDHxJFnYuIIy4ySksaK6YA_kGfQyqtZk_QWlmVdhNhJjwZEqiCFo5TK6WKpHU-SKkMjSUdoC0YxLxbTXXeBMopyVcjOEDb_fTluuMy9yk1iqtEX69Epy2Bx1VCr3odyGECfMxElrZaQNUAD2mSiJBeL-NvO4koTYQYoI1WgVZVUbBxCZjVp__q0kt0-9v-MP_y8ejzM7QOsIz7G4-EPEdr89nCvgDoM1dbjb5fAk8v_IM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembly+mechanism+of+1%2C3%3A2%2C4-di%283%2C4-dichlorobenzylidene%29-D-sorbitol+and+control+of+the+supramolecular+chirality&rft.jtitle=Langmuir&rft.au=Li%2C+Jingjing&rft.au=Fan%2C+Kaiqi&rft.au=Guan%2C+Xidong&rft.au=Yu%2C+Yingzhe&rft.date=2014-11-11&rft.eissn=1520-5827&rft.volume=30&rft.issue=44&rft.spage=13422&rft_id=info:doi/10.1021%2Fla5034178&rft_id=info%3Apmid%2F25318070&rft.externalDocID=25318070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon