Fabrication of Dual-Redox Responsive Supramolecular Copolymers Using a Reducible β‑Cyclodextran-Ferrocene Double-Head Unit

Self-assembly of amphiphilic block copolymers into well-defined nanostructures as drug delivery systems for the treatment of cancer has been a hot subject of research. However, sequential polymerizations synthesized amphiphilic block copolymers with covalent links suffered mainly from multistep synt...

Full description

Saved in:
Bibliographic Details
Published inACS macro letters Vol. 5; no. 7; pp. 873 - 878
Main Authors Zuo, Cai, Dai, Xianyin, Zhao, Sijie, Liu, Xiaoning, Ding, Shenglong, Ma, Liwei, Liu, Mingzhu, Wei, Hua
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.07.2016
Online AccessGet full text
ISSN2161-1653
2161-1653
DOI10.1021/acsmacrolett.6b00450

Cover

Loading…
Abstract Self-assembly of amphiphilic block copolymers into well-defined nanostructures as drug delivery systems for the treatment of cancer has been a hot subject of research. However, sequential polymerizations synthesized amphiphilic block copolymers with covalent links suffered mainly from multistep synthesis and purification procedures as well as repeated optimization of polymer composition to form aggregates with well-defined structures. To overcome these drawbacks, supramolecular amphiphilic block copolymers with noncovalent links were developed to provide simplicity as required. Herein, we designed and prepared a reducible β-cyclodextran (β-CD)-ferrocene (Fc) double-head unit from which a dual-redox responsive supramolecular amphiphilic copolymer was fabricated together with a traditional polymer block through supramolecular induced polymerization. Typically, well-defined supramolecular micelles and vesicles were fabricated, respectively. Due to the integration of oxidation-sensitive noncovalent β-CD/Fc connections and reduction-sensitive covalent disulfide bridges in the polymer backbone, the resulting supramolecular micelles and vesicles showed structural deformation and accelerated drug release in response to both intracellular reducing and oxidizing environments, thus, presenting a new platform for both reactive oxygen species (ROS) and glutathione (GSH)-triggered anticancer drug delivery.
AbstractList Self-assembly of amphiphilic block copolymers into well-defined nanostructures as drug delivery systems for the treatment of cancer has been a hot subject of research. However, sequential polymerizations synthesized amphiphilic block copolymers with covalent links suffered mainly from multistep synthesis and purification procedures as well as repeated optimization of polymer composition to form aggregates with well-defined structures. To overcome these drawbacks, supramolecular amphiphilic block copolymers with noncovalent links were developed to provide simplicity as required. Herein, we designed and prepared a reducible β-cyclodextran (β-CD)-ferrocene (Fc) double-head unit from which a dual-redox responsive supramolecular amphiphilic copolymer was fabricated together with a traditional polymer block through supramolecular induced polymerization. Typically, well-defined supramolecular micelles and vesicles were fabricated, respectively. Due to the integration of oxidation-sensitive noncovalent β-CD/Fc connections and reduction-sensitive covalent disulfide bridges in the polymer backbone, the resulting supramolecular micelles and vesicles showed structural deformation and accelerated drug release in response to both intracellular reducing and oxidizing environments, thus, presenting a new platform for both reactive oxygen species (ROS) and glutathione (GSH)-triggered anticancer drug delivery.
Self-assembly of amphiphilic block copolymers into well-defined nanostructures as drug delivery systems for the treatment of cancer has been a hot subject of research. However, sequential polymerizations synthesized amphiphilic block copolymers with covalent links suffered mainly from multistep synthesis and purification procedures as well as repeated optimization of polymer composition to form aggregates with well-defined structures. To overcome these drawbacks, supramolecular amphiphilic block copolymers with noncovalent links were developed to provide simplicity as required. Herein, we designed and prepared a reducible β-cyclodextran (β-CD)-ferrocene (Fc) double-head unit from which a dual-redox responsive supramolecular amphiphilic copolymer was fabricated together with a traditional polymer block through supramolecular induced polymerization. Typically, well-defined supramolecular micelles and vesicles were fabricated, respectively. Due to the integration of oxidation-sensitive noncovalent β-CD/Fc connections and reduction-sensitive covalent disulfide bridges in the polymer backbone, the resulting supramolecular micelles and vesicles showed structural deformation and accelerated drug release in response to both intracellular reducing and oxidizing environments, thus, presenting a new platform for both reactive oxygen species (ROS) and glutathione (GSH)-triggered anticancer drug delivery.Self-assembly of amphiphilic block copolymers into well-defined nanostructures as drug delivery systems for the treatment of cancer has been a hot subject of research. However, sequential polymerizations synthesized amphiphilic block copolymers with covalent links suffered mainly from multistep synthesis and purification procedures as well as repeated optimization of polymer composition to form aggregates with well-defined structures. To overcome these drawbacks, supramolecular amphiphilic block copolymers with noncovalent links were developed to provide simplicity as required. Herein, we designed and prepared a reducible β-cyclodextran (β-CD)-ferrocene (Fc) double-head unit from which a dual-redox responsive supramolecular amphiphilic copolymer was fabricated together with a traditional polymer block through supramolecular induced polymerization. Typically, well-defined supramolecular micelles and vesicles were fabricated, respectively. Due to the integration of oxidation-sensitive noncovalent β-CD/Fc connections and reduction-sensitive covalent disulfide bridges in the polymer backbone, the resulting supramolecular micelles and vesicles showed structural deformation and accelerated drug release in response to both intracellular reducing and oxidizing environments, thus, presenting a new platform for both reactive oxygen species (ROS) and glutathione (GSH)-triggered anticancer drug delivery.
Author Wei, Hua
Ma, Liwei
Ding, Shenglong
Liu, Mingzhu
Zuo, Cai
Dai, Xianyin
Zhao, Sijie
Liu, Xiaoning
AuthorAffiliation Lanzhou University
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering
– name: Lanzhou University
Author_xml – sequence: 1
  givenname: Cai
  surname: Zuo
  fullname: Zuo, Cai
– sequence: 2
  givenname: Xianyin
  surname: Dai
  fullname: Dai, Xianyin
– sequence: 3
  givenname: Sijie
  surname: Zhao
  fullname: Zhao, Sijie
– sequence: 4
  givenname: Xiaoning
  surname: Liu
  fullname: Liu, Xiaoning
– sequence: 5
  givenname: Shenglong
  surname: Ding
  fullname: Ding, Shenglong
– sequence: 6
  givenname: Liwei
  surname: Ma
  fullname: Ma, Liwei
– sequence: 7
  givenname: Mingzhu
  surname: Liu
  fullname: Liu, Mingzhu
– sequence: 8
  givenname: Hua
  surname: Wei
  fullname: Wei, Hua
  email: weih@lzu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35614757$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2KFDEYhoOMOOM4NxDJ0k2N-atUlTvpsR1hQBjtdZGfryVDKimTikwvBK_gVTyIh_AkRruVwYVmkw_yPPngfR-ioxADIPSYknNKGH2mTJ6USdHDspxLTYhoyT10wqikDZUtP7ozH6OznG9IPa2k_SAeoGNeJ9G13Qn6tFY6OaMWFwOOW3xRlG-uwcZbfA15jiG7j4DfljmpqW4zxauEV3GOfjdByniTXXiPVYVtMU57wN--fv_8ZbUzPlq4XZIKzRpSigYC4ItYKtJcgrJ4E9zyCN3fKp_h7HCfos365bvVZXP15tXr1YurRnHRL40WHdkyQ1phlbFacyb7TlMjBy7bjrSDHkQ7ECaBgOXWcNpy1kumpOiZGDg_RU_3_84pfiiQl3Fy2YD3KkAseWSyI0QKyVhFnxzQoiew45zcpNJu_B1ZBcQeqPHnnGD7B6Fk_FnOeLec8VBO1Z7_pRm3_Iq9ZuT8_2Syl-vreBNLCjWtfys_AFwVrHI
CitedBy_id crossref_primary_10_1021_acsbiomaterials_8b00678
crossref_primary_10_1002_macp_202100212
crossref_primary_10_1016_j_colsurfa_2018_12_054
crossref_primary_10_1016_j_colsurfa_2021_126642
crossref_primary_10_1016_j_colsurfa_2018_08_070
crossref_primary_10_1016_j_polymer_2018_11_014
crossref_primary_10_1021_acs_langmuir_8b00470
crossref_primary_10_1016_j_reactfunctpolym_2018_09_003
crossref_primary_10_1039_C6PY01849A
crossref_primary_10_1007_s11164_018_3500_3
crossref_primary_10_1002_adfm_202309727
crossref_primary_10_1016_j_jconrel_2021_04_027
crossref_primary_10_1021_acsbiomaterials_0c00261
crossref_primary_10_1002_mabi_201800022
crossref_primary_10_1016_j_ijleo_2019_164075
crossref_primary_10_1039_C7PY01601H
crossref_primary_10_1039_C9SC00450E
crossref_primary_10_1039_C9SM02049G
crossref_primary_10_1002_anie_201612150
crossref_primary_10_1016_j_colsurfa_2019_123683
crossref_primary_10_1039_C7RA02569F
crossref_primary_10_1021_acs_macromol_8b02641
crossref_primary_10_1039_D2SM01621D
crossref_primary_10_1039_C6PY02016J
crossref_primary_10_1039_D0CC02474K
crossref_primary_10_1039_C7SM00448F
crossref_primary_10_1002_macp_201800061
crossref_primary_10_1039_C9RA06678K
crossref_primary_10_1016_j_ccr_2018_03_013
crossref_primary_10_1016_j_nantod_2024_102414
crossref_primary_10_1016_j_polymer_2019_05_011
crossref_primary_10_1021_acs_molpharmaceut_7b00160
crossref_primary_10_1016_j_jcis_2017_12_022
crossref_primary_10_1080_00914037_2020_1765356
crossref_primary_10_1016_j_polymer_2019_04_021
crossref_primary_10_1080_10601325_2020_1814158
crossref_primary_10_3390_ijms25074077
crossref_primary_10_1039_C7TB01288H
crossref_primary_10_1016_j_mtchem_2022_100996
crossref_primary_10_1016_j_jiec_2023_03_016
crossref_primary_10_1016_j_jconrel_2022_08_029
crossref_primary_10_1021_acs_macromol_3c02068
crossref_primary_10_3390_pharmaceutics13060853
crossref_primary_10_1016_j_jinorgbio_2018_12_018
crossref_primary_10_1039_C6PY02051H
crossref_primary_10_1016_j_jcis_2019_04_048
crossref_primary_10_1080_15583724_2023_2209159
crossref_primary_10_1021_acsmacrolett_6b00871
crossref_primary_10_1039_C6RA21408H
crossref_primary_10_1021_acsmacrolett_8b00374
crossref_primary_10_1039_C9TB01702J
crossref_primary_10_1016_j_jorganchem_2023_122787
crossref_primary_10_1016_j_polymer_2020_122257
crossref_primary_10_1039_D1PY00135C
crossref_primary_10_1016_j_apmt_2019_100458
crossref_primary_10_1016_j_colsurfa_2020_124708
crossref_primary_10_1039_D3CC03659F
crossref_primary_10_1016_j_carres_2019_05_006
crossref_primary_10_1021_acsmacrolett_4c00590
crossref_primary_10_1021_acsapm_3c02784
crossref_primary_10_1039_D0TB01492C
crossref_primary_10_1002_ange_201612150
Cites_doi 10.1002/polb.23259
10.1021/ma301162s
10.1021/ja304615y
10.1038/ncomms1521
10.1039/C5PY00801H
10.1002/marc.201200172
10.1002/marc.200900863
10.1016/j.progpolymsci.2012.07.002
10.1021/ja507626y
10.1039/C4PY01072H
10.1039/C4BM00417E
10.1002/adma.200904334
10.1021/ma301232m
10.1021/nn305250p
10.1016/j.biomaterials.2009.07.051
10.1021/ma101437k
10.1021/ja1027502
10.1126/science.1074972
10.1021/acsmacrolett.5b00525
10.1021/acsmacrolett.5b00171
10.1039/c2cs35115c
10.1021/ma301642y
10.1039/c2py20334k
10.1021/la201843z
10.1021/ma0613739
10.1002/adma.201301202
10.1021/mz500225p
10.1021/bm2005164
10.1021/bm301747r
10.1002/adma.201301654
10.1021/ja3122608
10.1002/anie.201301896
10.1016/j.addr.2013.05.001
10.1039/c3py00141e
10.1021/mp800051m
10.1021/ja405014r
10.1039/b811553b
10.1039/C6SC01851C
10.1039/C3PY01204B
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsmacrolett.6b00450
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2161-1653
EndPage 878
ExternalDocumentID 35614757
10_1021_acsmacrolett_6b00450
b849994284
Genre Journal Article
GroupedDBID 55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
GNL
IH9
JG
JG~
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a348t-b470f2c054dacdbb32687b1c693657059b9459026e0ed3dc31532862a64824933
IEDL.DBID ACS
ISSN 2161-1653
IngestDate Fri Jul 11 03:16:01 EDT 2025
Wed Feb 19 02:26:12 EST 2025
Tue Jul 01 01:35:08 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Thu Aug 27 13:42:43 EDT 2020
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-b470f2c054dacdbb32687b1c693657059b9459026e0ed3dc31532862a64824933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35614757
PQID 2670064622
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2670064622
pubmed_primary_35614757
crossref_primary_10_1021_acsmacrolett_6b00450
crossref_citationtrail_10_1021_acsmacrolett_6b00450
acs_journals_10_1021_acsmacrolett_6b00450
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-19
PublicationDateYYYYMMDD 2016-07-19
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS macro letters
PublicationTitleAlternate ACS Macro Lett
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1002/polb.23259
– ident: ref10/cit10
  doi: 10.1021/ma301162s
– ident: ref11/cit11
  doi: 10.1021/ja304615y
– ident: ref39/cit39
  doi: 10.1038/ncomms1521
– ident: ref17/cit17
  doi: 10.1039/C5PY00801H
– ident: ref8/cit8
  doi: 10.1002/marc.201200172
– ident: ref14/cit14
  doi: 10.1002/marc.200900863
– ident: ref33/cit33
  doi: 10.1016/j.progpolymsci.2012.07.002
– ident: ref37/cit37
  doi: 10.1021/ja507626y
– ident: ref16/cit16
  doi: 10.1039/C4PY01072H
– ident: ref20/cit20
  doi: 10.1039/C4BM00417E
– ident: ref23/cit23
  doi: 10.1002/adma.200904334
– ident: ref9/cit9
  doi: 10.1021/ma301232m
– ident: ref32/cit32
  doi: 10.1021/nn305250p
– ident: ref34/cit34
  doi: 10.1016/j.biomaterials.2009.07.051
– ident: ref25/cit25
  doi: 10.1021/ma101437k
– ident: ref29/cit29
  doi: 10.1021/ja1027502
– ident: ref4/cit4
  doi: 10.1126/science.1074972
– ident: ref12/cit12
  doi: 10.1021/acsmacrolett.5b00525
– ident: ref31/cit31
  doi: 10.1021/acsmacrolett.5b00171
– ident: ref6/cit6
  doi: 10.1039/c2cs35115c
– ident: ref19/cit19
  doi: 10.1021/ma301642y
– ident: ref21/cit21
  doi: 10.1039/c2py20334k
– ident: ref30/cit30
  doi: 10.1021/la201843z
– ident: ref1/cit1
  doi: 10.1021/ma0613739
– ident: ref26/cit26
  doi: 10.1002/adma.201301202
– ident: ref3/cit3
  doi: 10.1021/mz500225p
– ident: ref35/cit35
  doi: 10.1021/bm2005164
– ident: ref38/cit38
  doi: 10.1021/bm301747r
– ident: ref15/cit15
  doi: 10.1002/adma.201301654
– ident: ref24/cit24
  doi: 10.1021/ja3122608
– ident: ref36/cit36
  doi: 10.1002/anie.201301896
– ident: ref27/cit27
  doi: 10.1016/j.addr.2013.05.001
– ident: ref22/cit22
  doi: 10.1039/c3py00141e
– ident: ref2/cit2
  doi: 10.1021/mp800051m
– ident: ref13/cit13
  doi: 10.1021/ja405014r
– ident: ref5/cit5
  doi: 10.1039/b811553b
– ident: ref18/cit18
  doi: 10.1039/C6SC01851C
– ident: ref28/cit28
  doi: 10.1039/C3PY01204B
SSID ssj0000561894
Score 2.37295
Snippet Self-assembly of amphiphilic block copolymers into well-defined nanostructures as drug delivery systems for the treatment of cancer has been a hot subject of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 873
Title Fabrication of Dual-Redox Responsive Supramolecular Copolymers Using a Reducible β‑Cyclodextran-Ferrocene Double-Head Unit
URI http://dx.doi.org/10.1021/acsmacrolett.6b00450
https://www.ncbi.nlm.nih.gov/pubmed/35614757
https://www.proquest.com/docview/2670064622
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSuQwFA6iF-6Nf7ur4x9Z2BsvMmuTNm0vpToMggr-gHclSVMQZzrDTCuOIPgKvooP4kP4JJ7TacdVEfU-CSTntN93_gn5K9GXkPKUGSz_Bbx2WWC1z7Tk2pFpkgYp-jsODmX7zN0_985fDMW3EXzu_FNm2FUGc-3yvClRy9BEn-Ey8LFX_k50MvGpIBsOytmHHIgMc6Qn6mq5Dw5CTDLD15j0AdEsAac1T47qsp1xnslls8h109y87-L4xbsskLmKe9KdsbIskimbLZHZqB759pPctpQeVE482kvpbqE67NgmvWt6XOXSXll6UvQHqluP1aURjlkYofublvkHVMHipDAXumPp48PT3X00Mh2snM8BF1nLDhAzM0uBu8MS1gYto0h9f5Gz1t5p1GbVfAamhBvkTLs-iNkA6UuUSbQWKBPtGBkKTKjxQh262B1G2m2biMQI-LtysKCUdAOw-oT4TaazXmZXCJXBdgio4WvPYITZBlx7cGLKpdEJsNAG2YK3i6vvaxiXoXPuxP8_aFw9aIOIWpqxqRqd47yNzie72GRXf9zo45P1f2pFiUFKGGZRme0Vw5hj5ZN0JecNsjzWoMmJAhuv-p6_-o37rJEfwNIkOpSdcJ1M54PCbgATyvVmqf7PAOAIjQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5V7aFcSqGlbMuPK3HpwUtjJ05yrAKrhf4c-oN6i2zHkRDb7GqTVF0kJF6BV-FBeAiehJlsskClquo1ske2Z5z5PL8AbxTZEnKRc0vpv6ivfR45E3KjhPFUnuVRTvaO4xM1vPA_XgaXSxB0uTC4iBIplY0T_291Ae8tfrvSlkLuqqqvSNjopb6CeERQyfyD5GxhWiFQHDUtEAXiGe6pQHZJc3cQItVky_9V0x14s9E7g8fwabHiJtzkS7-uTN9-vVXM8cFbWoe1Fomyg7noPIElVzyF1aRrALcB3wbaTFuTHhvn7F2tR_zUZeMbdtpG1l47dlZPpvqqa7LLEmq6MCNjOGuiEZjGwVltP5uRY79-_v7-I5nZEeXRV6gl-cBNSYMWjiGSxyF8iDLHCAhvwsXg_Xky5G23Bq6lH1Xc-CEy3SIEzLTNjEFcGIXGsyqWFF4TxCb2qVaMcvsuk5mV-K8V-J7Syo_wDSjlM1guxoV7DkxF-zHqkNAElvzNLhImQIq5UNZkiEl7sIdnl7a3rUwbR7rw0n8PNG0PtAeyY2pq27Ln1H1jdM8svpg1mZf9uGf8bicvKXKJnC66cOO6TAXlQSlfCdGDrbkgLShKKsMaBuH2A_bzGlaH58dH6dGHk8MdeIT4TZGp2YtfwHI1rd1LxEiVedXciD-YrxDu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dStxAFB6Kgu2NVfu31bZT8KYXszUzySS5lGjYtlZEK0hvwvwFStfssklEBcFX8FV8EB_CJ_GcbLLYgkh7G2YOM3PO5HxzfglZl2hLyHnODKb_gr72WeR0yLTk2pO5zaMc7R3fd-Xg0P96FBzda_UFiyiBUtk48fFWj23eVhjwPsP3Y2Uw7K6q-hIFDl_r8-i5w7L5m8nBzLyCwDhq2iBywDTMk4HoEuceIITqyZR_qqcHMGeje9Ln5Ods1U3Iye9-Xem-Of-roON_bWuJLLaIlG5ORWiZPHHFCnmadI3gXpCLVOlJa9qjo5xu1WrI9p0dndL9NsL2xNGDejxRx12zXZpg84UzNIrTJiqBKhhsa_NLDx29ub69vErOzBDz6SvQlix1E9SkhaOA6GEIG4DsUQTEL8lhuv0jGbC2awNTwo8qpv0QmG8AClplrNaAD6NQe0bGAsNsgljHPtaMkW7DWWGNgH8uh3eVkn4Eb0EhXpG5YlS4N4TKaCMGXRLqwKDf2UVcB0Ax59JoC9i0Rz7B2WXtrSuzxqHOvez-gWbtgfaI6Bibmbb8OXbhGD4yi81mjaflPx4Z_7GTmQy4hM4XVbhRXWYc86GkLznvkddTYZpRFFiONQzCt_-wnw9kYW8rzXa-7H5bJc8Axkm0OHvxGpmrJrV7B1Cp0u-bS3EHO7sTcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Dual-Redox+Responsive+Supramolecular+Copolymers+Using+a+Reducible+%CE%B2%E2%80%91Cyclodextran-Ferrocene+Double-Head+Unit&rft.jtitle=ACS+macro+letters&rft.au=Zuo%2C+Cai&rft.au=Dai%2C+Xianyin&rft.au=Zhao%2C+Sijie&rft.au=Liu%2C+Xiaoning&rft.date=2016-07-19&rft.pub=American+Chemical+Society&rft.issn=2161-1653&rft.eissn=2161-1653&rft.volume=5&rft.issue=7&rft.spage=873&rft.epage=878&rft_id=info:doi/10.1021%2Facsmacrolett.6b00450&rft.externalDocID=b849994284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-1653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-1653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-1653&client=summon