iTRAQ-Based Proteomic Analysis of the Metabolism Mechanism Associated with Silicon Response in the Marine Diatom Thalassiosira pseudonana
Silicon is a critical element for diatom growth; however our understanding of the molecular mechanisms involved in intracellular silicon responses are limited. In this study, an iTRAQ-LC–MS/MS quantitative proteomic approach was coupled with an established synchrony technique to reveal the global me...
Saved in:
Published in | Journal of proteome research Vol. 13; no. 2; pp. 720 - 734 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon is a critical element for diatom growth; however our understanding of the molecular mechanisms involved in intracellular silicon responses are limited. In this study, an iTRAQ-LC–MS/MS quantitative proteomic approach was coupled with an established synchrony technique to reveal the global metabolic silicon-response in the model diatom Thalassiosira pseudonana subject to silicon starvation and readdition. Four samples, which corresponded to the time of silicon starvation, girdle band synthesis, valve formation, and right after daughter cell separation (0, 1, 5, 7 h), were collected for the proteomic analysis. The results indicated that a total of 1,831 proteins, representing 16% of the predicted proteins encoded by the T. pseudonana genome, could be identified. Of the identified proteins, 165 were defined as being differentially expressed proteins, and these proteins could be linked to multiple biochemical pathways. In particular, a number of proteins related to silicon transport, cell wall synthesis, and cell-cycle progress could be identified. In addition, other proteins that are potentially involved in amino acid synthesis, protein metabolism, and energy generation may have roles in the cellular response to silicon. Our findings provide a range of valuable information that will be of use for further studies of this important physiological response that is unique to diatoms. |
---|---|
AbstractList | Silicon is a critical element for diatom growth; however our understanding of the molecular mechanisms involved in intracellular silicon responses are limited. In this study, an iTRAQ-LC-MS/MS quantitative proteomic approach was coupled with an established synchrony technique to reveal the global metabolic silicon-response in the model diatom Thalassiosira pseudonana subject to silicon starvation and readdition. Four samples, which corresponded to the time of silicon starvation, girdle band synthesis, valve formation, and right after daughter cell separation (0, 1, 5, 7 h), were collected for the proteomic analysis. The results indicated that a total of 1,831 proteins, representing 16% of the predicted proteins encoded by the T. pseudonana genome, could be identified. Of the identified proteins, 165 were defined as being differentially expressed proteins, and these proteins could be linked to multiple biochemical pathways. In particular, a number of proteins related to silicon transport, cell wall synthesis, and cell-cycle progress could be identified. In addition, other proteins that are potentially involved in amino acid synthesis, protein metabolism, and energy generation may have roles in the cellular response to silicon. Our findings provide a range of valuable information that will be of use for further studies of this important physiological response that is unique to diatoms.Silicon is a critical element for diatom growth; however our understanding of the molecular mechanisms involved in intracellular silicon responses are limited. In this study, an iTRAQ-LC-MS/MS quantitative proteomic approach was coupled with an established synchrony technique to reveal the global metabolic silicon-response in the model diatom Thalassiosira pseudonana subject to silicon starvation and readdition. Four samples, which corresponded to the time of silicon starvation, girdle band synthesis, valve formation, and right after daughter cell separation (0, 1, 5, 7 h), were collected for the proteomic analysis. The results indicated that a total of 1,831 proteins, representing 16% of the predicted proteins encoded by the T. pseudonana genome, could be identified. Of the identified proteins, 165 were defined as being differentially expressed proteins, and these proteins could be linked to multiple biochemical pathways. In particular, a number of proteins related to silicon transport, cell wall synthesis, and cell-cycle progress could be identified. In addition, other proteins that are potentially involved in amino acid synthesis, protein metabolism, and energy generation may have roles in the cellular response to silicon. Our findings provide a range of valuable information that will be of use for further studies of this important physiological response that is unique to diatoms. Silicon is a critical element for diatom growth; however our understanding of the molecular mechanisms involved in intracellular silicon responses are limited. In this study, an iTRAQ-LC-MS/MS quantitative proteomic approach was coupled with an established synchrony technique to reveal the global metabolic silicon-response in the model diatom Thalassiosira pseudonana subject to silicon starvation and readdition. Four samples, which corresponded to the time of silicon starvation, girdle band synthesis, valve formation, and right after daughter cell separation (0, 1, 5, 7 h), were collected for the proteomic analysis. The results indicated that a total of 1,831 proteins, representing 16% of the predicted proteins encoded by the T. pseudonana genome, could be identified. Of the identified proteins, 165 were defined as being differentially expressed proteins, and these proteins could be linked to multiple biochemical pathways. In particular, a number of proteins related to silicon transport, cell wall synthesis, and cell-cycle progress could be identified. In addition, other proteins that are potentially involved in amino acid synthesis, protein metabolism, and energy generation may have roles in the cellular response to silicon. Our findings provide a range of valuable information that will be of use for further studies of this important physiological response that is unique to diatoms. |
Author | Xu, Bin Zhuo, Wen-Hao Gao, Ya-Hui Chen, Chang-Ping Du, Chao Bowler, Chris Chen, Dan-Dan Liang, Jun-Rong Zhang, Wen |
AuthorAffiliation | Xiamen University Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems School of Life Sciences Ecole Normale Supérieure |
AuthorAffiliation_xml | – name: Ecole Normale Supérieure – name: Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems – name: School of Life Sciences – name: Xiamen University |
Author_xml | – sequence: 1 givenname: Chao surname: Du fullname: Du, Chao – sequence: 2 givenname: Jun-Rong surname: Liang fullname: Liang, Jun-Rong email: sunljr@xmu.edu.cn – sequence: 3 givenname: Dan-Dan surname: Chen fullname: Chen, Dan-Dan – sequence: 4 givenname: Bin surname: Xu fullname: Xu, Bin – sequence: 5 givenname: Wen-Hao surname: Zhuo fullname: Zhuo, Wen-Hao – sequence: 6 givenname: Ya-Hui surname: Gao fullname: Gao, Ya-Hui – sequence: 7 givenname: Chang-Ping surname: Chen fullname: Chen, Chang-Ping – sequence: 8 givenname: Chris surname: Bowler fullname: Bowler, Chris – sequence: 9 givenname: Wen surname: Zhang fullname: Zhang, Wen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24372006$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URNuBBS-AvEGii9DrOJ4ky2kpP1IRUGZv3Ti2xlViB19HVR-BtybVdFigSqzuWXzfXZxzyo5CDJax1wLeCyjF-ZQqgAbk3TN2IpRUhWyhPjrkppXH7JToFkCoGuQLdlxWsi4B1ifst9_ebH4UF0i2599TzDaO3vBNwOGePPHoeN5Z_tVm7OLgaVyi2WF4SBuiaDzmxbzzecd_-sGbGPiNpSkGstyHvYzJB8s_LGgc-XaHAxL5SD4hn8jOfQwY8CV77nAg--rxrtj249X28nNx_e3Tl8vNdYGyanKBrpOusQpdvzZdVfWAdSWcc70w0CIY0bWtbJ01slJri6ZWtjNlBx1Ufa3kir3bv51S_DVbynr0ZOwwYLBxJl2CWhqDpmz-iwolJChQS5sr9uYRnbvR9npKfsR0rw9FL8D5HjApEiXrtPEZs48hJ_SDFqAfptR_p1yMs3-Mw9On2Ld7Fg3p2zinZT56gvsD2ZaspA |
CitedBy_id | crossref_primary_10_3389_fbioe_2020_00914 crossref_primary_10_1371_journal_pone_0159238 crossref_primary_10_3389_fmars_2023_1291294 crossref_primary_10_3389_fmicb_2024_1476738 crossref_primary_10_1016_j_biortech_2022_127577 crossref_primary_10_1016_j_dib_2021_107050 crossref_primary_10_1016_j_marpolbul_2021_112336 crossref_primary_10_1016_j_algal_2021_102567 crossref_primary_10_1016_j_bbrc_2017_04_136 crossref_primary_10_1021_pr5004664 crossref_primary_10_1007_s00284_018_1451_y crossref_primary_10_1038_s41598_017_04921_0 crossref_primary_10_3390_ijms19030667 crossref_primary_10_3389_fpls_2023_1098125 crossref_primary_10_1186_s42833_020_00016_9 crossref_primary_10_1371_journal_pone_0178986 crossref_primary_10_3389_fpls_2020_578915 crossref_primary_10_1021_acs_est_5b03272 crossref_primary_10_1038_srep42333 crossref_primary_10_1016_j_envpol_2020_114331 crossref_primary_10_1002_pmic_201500165 crossref_primary_10_3389_fmicb_2018_02761 crossref_primary_10_1007_s11240_017_1196_5 crossref_primary_10_1134_S1607672915020064 crossref_primary_10_1016_j_eti_2024_103809 crossref_primary_10_1002_pmic_201400309 crossref_primary_10_1371_journal_pone_0184849 crossref_primary_10_1016_j_algal_2021_102554 crossref_primary_10_3390_ijms20102540 crossref_primary_10_1111_tpj_14309 crossref_primary_10_1002_smll_201600587 crossref_primary_10_3389_fmicb_2020_554832 crossref_primary_10_1016_j_ecoenv_2020_110687 crossref_primary_10_1021_acs_jproteome_6b00357 crossref_primary_10_1111_1750_3841_15575 crossref_primary_10_1146_annurev_marine_010814_015639 crossref_primary_10_1002_pmic_201500156 crossref_primary_10_1016_j_jprot_2014_03_007 |
Cites_doi | 10.1016/S1074-5521(01)00072-2 10.1128/EC.00235-06 10.1016/j.semcdb.2005.02.010 10.1007/s004380050920 10.1046/j.1529-8817.1999.3530548.x 10.1186/gb-2010-11-2-r17 10.3354/ame01284 10.1074/mcp.M500174-MCP200 10.1093/bioinformatics/bts169 10.1038/nature08057 10.1126/science.1076221 10.1104/pp.108.122176 10.1016/S0022-2836(02)00024-4 10.1007/s11008-005-0038-4 10.1073/pnas.0711370105 10.1111/j.1432-1033.1996.0259u.x 10.1078/1434461000168 10.1002/j.1460-2075.1994.tb06791.x 10.1186/1471-2164-13-499 10.1007/BF01279316 10.1126/science.1101156 10.1016/j.gene.2012.10.004 10.1074/jbc.M102093200 10.1016/S0092-8674(03)01079-1 10.1073/pnas.260496497 10.1002/anie.200704994 10.1186/1471-2164-12-159 10.1186/1754-6834-5-68 10.1046/j.1529-8817.1998.340995.x 10.1126/science.281.5374.200 10.1126/science.286.5442.1129 10.1073/pnas.1012842108 10.1111/j.1529-8817.2007.00361.x 10.1371/journal.pone.0007458 10.1038/nature07410 10.1038/nature07659 10.1038/nature07539 10.4319/lo.2004.49.1.0245 10.1096/fasebj.4.5.2407589 10.1078/1434-4610-00024 10.1074/jbc.M407734200 10.1104/pp.107.107094 10.1146/annurev.genet.41.110306.130109 10.1104/pp.010709 10.1038/385688b0 10.1016/j.tibtech.2008.11.003 10.1111/j.1529-8817.2005.00076.x 10.1111/j.1469-185X.1983.tb00385.x 10.1073/pnas.0707946105 10.1104/pp.107.102616 10.1046/j.1529-8817.2000.00019.x 10.1006/meth.2000.0957 10.1111/j.1529-8817.2007.00342.x 10.1097/CAD.0b013e32830317f2 10.1016/S1389-0344(03)00044-3 10.1038/nature01416 10.1007/978-3-642-55486-5_4 10.1073/pnas.0711994105 10.1074/jbc.272.12.7883 10.1016/j.jsb.2009.08.013 10.1111/j.1432-1033.1997.00099.x 10.1016/j.cell.2010.05.030 10.1078/1434-4610-00003 10.1111/j.1529-8817.2006.00233.x 10.1186/1471-2105-13-134 10.1007/s00253-009-2140-3 10.1002/cbic.200700764 10.1002/elps.1150191103 10.1046/j.1529-8817.2001.01052.x |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/pr400803w |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1535-3907 |
EndPage | 734 |
ExternalDocumentID | 24372006 10_1021_pr400803w b524915865 |
Genre | Validation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F ZA5 --- 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a348t-afb3f8e5afd6cb44d0a741fffd1c09a0c1b9939fec3456eac75ebc2b0b04d753 |
IEDL.DBID | ACS |
ISSN | 1535-3893 1535-3907 |
IngestDate | Fri Jul 11 00:39:40 EDT 2025 Fri Jul 11 09:21:50 EDT 2025 Thu Jan 02 22:18:37 EST 2025 Tue Jul 01 01:36:29 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Thu Aug 27 13:42:19 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Thalassiosira pseudonana biosilicification proteomics diatoms intracellular silicon response |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-afb3f8e5afd6cb44d0a741fffd1c09a0c1b9939fec3456eac75ebc2b0b04d753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 24372006 |
PQID | 1513050524 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2053890828 proquest_miscellaneous_1513050524 pubmed_primary_24372006 crossref_citationtrail_10_1021_pr400803w crossref_primary_10_1021_pr400803w acs_journals_10_1021_pr400803w |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-07 |
PublicationDateYYYYMMDD | 2014-02-07 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of proteome research |
PublicationTitleAlternate | J. Proteome Res |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kroger N. (ref40/cit40) 1996; 239 Van Mooy B. A. (ref5/cit5) 2009; 458 Shrestha R. P. (ref13/cit13) 2012; 13 Tang C. (ref72/cit72) 2008; 19 Roberts K. (ref75/cit75) 2007; 145 Brzezinski M. A. (ref43/cit43) 2008; 105 Qiao J. (ref49/cit49) 2012; 512 Wenzl S. (ref35/cit35) 2008; 47 Thamatrakoln K. (ref58/cit58) 2006; 42 Poulsen N. (ref68/cit68) 2004; 279 Rocha C. L. D. L. (ref7/cit7) 2004; 49 Chaudhuri J. (ref70/cit70) 1997; 272 Nakayama K. I. (ref56/cit56) 2005 Addinall S. G. (ref77/cit77) 2002; 318 Hildebrand M. (ref57/cit57) 1998; 260 Garrett R. H. (ref74/cit74) 2008 Sapriel G. (ref22/cit22) 2009; 4 Theriot E. (ref3/cit3) 1992; 41 Frigeri L. G. (ref31/cit31) 2006; 5 Scheffel A. (ref38/cit38) 2011; 108 Lee C. (ref64/cit64) 2010; 142 Kröger N. (ref34/cit34) 2001; 276 Brunner E. (ref19/cit19) 2009; 84 Gillard J. (ref76/cit76) 2008; 148 Mock T. (ref12/cit12) 2008; 105 Vrieling E. G. (ref66/cit66) 1999; 35 Kroger N. (ref36/cit36) 1997; 250 Montsant A. (ref55/cit55) 2007; 43 Hazelaar S. (ref73/cit73) 2003; 20 Gordon R. (ref62/cit62) 2009; 27 Davis A. K. (ref69/cit69) 2005; 41 Kroger N. (ref67/cit67) 1999; 286 Kroger N. (ref32/cit32) 2002; 298 Thamatrakoln K. (ref21/cit21) 2007; 6 Kroger N. (ref39/cit39) 1994; 13 Armbrust E. V. (ref2/cit2) 2009; 459 Marchetti A. (ref6/cit6) 2009; 457 Pickett-Heaps J. (ref8/cit8) 1990; 7 Armbrust E. V. (ref41/cit41) 2004; 306 Tesson B. (ref29/cit29) 2010; 169 Brzezinski M. A. (ref15/cit15) 1990; 67 Kroger N. (ref25/cit25) 2008; 42 Davis A. K. (ref30/cit30) 2008 Nunn B. L. (ref47/cit47) 2009; 55 Lee M. (ref61/cit61) 1992; 33 Banerjee R. V. (ref71/cit71) 1990; 4 Schmid M. (ref24/cit24) 1979; 100 Raven J. A. (ref9/cit9) 1983; 58 Ye J. (ref54/cit54) 2012; 13 Zurzolo C. (ref27/cit27) 2001; 127 Liu J. (ref48/cit48) 2012; 5 Chen J. (ref45/cit45) 2008; 2 Pan J.-B. (ref60/cit60) 2012; 28 Beech P. L. (ref78/cit78) 2000; 151 Allen A. E. (ref4/cit4) 2008; 105 Bonifacino J. S. (ref65/cit65) 2004; 116 Kroger N. (ref33/cit33) 2000; 97 Hildebrand M. (ref52/cit52) 2007; 43 Ryu S. (ref46/cit46) 2008; 6 Carvalho R. (ref50/cit50) 2011; 12 Sherbakova T. A. (ref59/cit59) 2005; 39 Berges J. A. (ref51/cit51) 2001; 37 Shimizu K. (ref53/cit53) 2001; 8 Pickett-Heaps J. D. (ref28/cit28) 1998; 34 Kroger N. (ref37/cit37) 2000; 151 Bowler C. (ref42/cit42) 2008; 456 Martin-Jezequel V. (ref23/cit23) 2003; 33 Thamatrakoln K. (ref18/cit18) 2008; 146 Simon J.-P. (ref63/cit63) 2000; 20 Hildebrand M. (ref20/cit20) 2000 Falkowski P. G. (ref1/cit1) 1998; 281 Hamm C. E. (ref11/cit11) 2003; 421 Morgan D. O. (ref14/cit14) 2007 Hildebrand M. (ref17/cit17) 1997; 385 Sumper M. (ref26/cit26) 2008; 9 Kiefel B. R. (ref79/cit79) 2004; 155 Anderson N. L. (ref44/cit44) 1998; 19 Martin-Jézéquel V. (ref10/cit10) 2000; 36 Huysman M. J. (ref16/cit16) 2010; 11 |
References_xml | – volume: 8 start-page: 1051 year: 2001 ident: ref53/cit53 publication-title: Chem. Biol. doi: 10.1016/S1074-5521(01)00072-2 – volume: 6 start-page: 271 year: 2007 ident: ref21/cit21 publication-title: Eukaryotic Cell doi: 10.1128/EC.00235-06 – volume: 33 start-page: 317 year: 1992 ident: ref61/cit61 publication-title: Bot. Bull. Acad. Sin. – start-page: 323 year: 2005 ident: ref56/cit56 publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2005.02.010 – volume: 260 start-page: 480 year: 1998 ident: ref57/cit57 publication-title: Mol. Gen. Genet. doi: 10.1007/s004380050920 – volume: 35 start-page: 548 year: 1999 ident: ref66/cit66 publication-title: J. Phycol. doi: 10.1046/j.1529-8817.1999.3530548.x – volume: 11 start-page: R17 year: 2010 ident: ref16/cit16 publication-title: Genome Biol. doi: 10.1186/gb-2010-11-2-r17 – volume: 55 start-page: 241 year: 2009 ident: ref47/cit47 publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame01284 – volume: 5 start-page: 182 year: 2006 ident: ref31/cit31 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M500174-MCP200 – volume: 28 start-page: 1544 year: 2012 ident: ref60/cit60 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts169 – volume: 459 start-page: 185 year: 2009 ident: ref2/cit2 publication-title: Nature doi: 10.1038/nature08057 – volume: 298 start-page: 584 year: 2002 ident: ref32/cit32 publication-title: Science doi: 10.1126/science.1076221 – volume: 148 start-page: 1394 year: 2008 ident: ref76/cit76 publication-title: Plant Physiol. doi: 10.1104/pp.108.122176 – volume: 318 start-page: 219 year: 2002 ident: ref77/cit77 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00024-4 – volume: 39 start-page: 269 year: 2005 ident: ref59/cit59 publication-title: Mol. Biol. doi: 10.1007/s11008-005-0038-4 – volume: 105 start-page: 10438 year: 2008 ident: ref4/cit4 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0711370105 – volume: 239 start-page: 259 year: 1996 ident: ref40/cit40 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.0259u.x – volume: 155 start-page: 105 year: 2004 ident: ref79/cit79 publication-title: Protist doi: 10.1078/1434461000168 – volume-title: Metal Ions in Life Sciences; Vol. 4, Biomineralization: From Nature to Application year: 2008 ident: ref30/cit30 – volume: 13 start-page: 4676 year: 1994 ident: ref39/cit39 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06791.x – volume: 13 start-page: 499 year: 2012 ident: ref13/cit13 publication-title: BMC Genomics doi: 10.1186/1471-2164-13-499 – volume: 100 start-page: 22 year: 1979 ident: ref24/cit24 publication-title: Protoplasma doi: 10.1007/BF01279316 – volume: 306 start-page: 79 year: 2004 ident: ref41/cit41 publication-title: Science doi: 10.1126/science.1101156 – volume: 512 start-page: 6 year: 2012 ident: ref49/cit49 publication-title: Gene doi: 10.1016/j.gene.2012.10.004 – volume: 276 start-page: 26066 year: 2001 ident: ref34/cit34 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M102093200 – volume: 116 start-page: 153 year: 2004 ident: ref65/cit65 publication-title: Cell doi: 10.1016/S0092-8674(03)01079-1 – volume: 97 start-page: 14133 year: 2000 ident: ref33/cit33 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.260496497 – volume: 47 start-page: 1729 year: 2008 ident: ref35/cit35 publication-title: Angew. Chem. doi: 10.1002/anie.200704994 – volume: 12 start-page: 159 year: 2011 ident: ref50/cit50 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-159 – volume: 5 start-page: 68 year: 2012 ident: ref48/cit48 publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-5-68 – volume: 6 start-page: 243 year: 2008 ident: ref46/cit46 publication-title: Cancer Inf. – volume: 34 start-page: 995 year: 1998 ident: ref28/cit28 publication-title: J. Phycol. doi: 10.1046/j.1529-8817.1998.340995.x – volume: 281 start-page: 200 year: 1998 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.281.5374.200 – volume: 286 start-page: 5 year: 1999 ident: ref67/cit67 publication-title: Science doi: 10.1126/science.286.5442.1129 – volume: 108 start-page: 3175 year: 2011 ident: ref38/cit38 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1012842108 – volume: 43 start-page: 730 year: 2007 ident: ref52/cit52 publication-title: J. Phycol. doi: 10.1111/j.1529-8817.2007.00361.x – volume: 4 year: 2009 ident: ref22/cit22 publication-title: PLoS One doi: 10.1371/journal.pone.0007458 – volume: 456 start-page: 239 year: 2008 ident: ref42/cit42 publication-title: Nature doi: 10.1038/nature07410 – volume: 458 start-page: 69 year: 2009 ident: ref5/cit5 publication-title: Nature doi: 10.1038/nature07659 – volume: 457 start-page: 467 year: 2009 ident: ref6/cit6 publication-title: Nature doi: 10.1038/nature07539 – volume: 49 start-page: 245 year: 2004 ident: ref7/cit7 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2004.49.1.0245 – volume: 4 start-page: 1450 year: 1990 ident: ref71/cit71 publication-title: FASEB J. doi: 10.1096/fasebj.4.5.2407589 – volume: 151 start-page: 263 year: 2000 ident: ref37/cit37 publication-title: Protist doi: 10.1078/1434-4610-00024 – volume: 279 start-page: 42993 year: 2004 ident: ref68/cit68 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M407734200 – volume: 146 start-page: 1397 year: 2008 ident: ref18/cit18 publication-title: Plant Physiol. doi: 10.1104/pp.107.107094 – volume: 42 start-page: 83 year: 2008 ident: ref25/cit25 publication-title: Ann. Rev. Genet. doi: 10.1146/annurev.genet.41.110306.130109 – volume: 127 start-page: 1339 year: 2001 ident: ref27/cit27 publication-title: Plant Physiology doi: 10.1104/pp.010709 – volume: 385 start-page: 688 year: 1997 ident: ref17/cit17 publication-title: Nature doi: 10.1038/385688b0 – volume: 2 start-page: 585 year: 2008 ident: ref45/cit45 publication-title: Proteomics: Clin. Appl. – volume: 27 start-page: 116 year: 2009 ident: ref62/cit62 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2008.11.003 – volume: 41 start-page: 577 year: 2005 ident: ref69/cit69 publication-title: J. Phycol. doi: 10.1111/j.1529-8817.2005.00076.x – volume: 58 start-page: 179 year: 1983 ident: ref9/cit9 publication-title: Biol. Rev. doi: 10.1111/j.1469-185X.1983.tb00385.x – volume: 105 start-page: 1579 year: 2008 ident: ref12/cit12 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0707946105 – volume: 145 start-page: 230 year: 2007 ident: ref75/cit75 publication-title: Plant Physiol. doi: 10.1104/pp.107.102616 – volume: 36 start-page: 20 year: 2000 ident: ref10/cit10 publication-title: J. Phycol doi: 10.1046/j.1529-8817.2000.00019.x – volume: 20 start-page: 437 year: 2000 ident: ref63/cit63 publication-title: Methods doi: 10.1006/meth.2000.0957 – volume: 43 start-page: 585 year: 2007 ident: ref55/cit55 publication-title: J. Phycol. doi: 10.1111/j.1529-8817.2007.00342.x – volume: 41 year: 1992 ident: ref3/cit3 publication-title: Syst. Biol. – volume: 19 start-page: 697 year: 2008 ident: ref72/cit72 publication-title: Anti-Cancer Drugs doi: 10.1097/CAD.0b013e32830317f2 – volume: 20 start-page: 163 year: 2003 ident: ref73/cit73 publication-title: Biomol. Eng. doi: 10.1016/S1389-0344(03)00044-3 – volume-title: The Cell Cycle: Principles of Control year: 2007 ident: ref14/cit14 – volume: 421 start-page: 841 year: 2003 ident: ref11/cit11 publication-title: Nature doi: 10.1038/nature01416 – volume: 33 start-page: 99 year: 2003 ident: ref23/cit23 publication-title: Prog. Mol. Subcell. Biol. doi: 10.1007/978-3-642-55486-5_4 – volume: 7 start-page: 1 year: 1990 ident: ref8/cit8 publication-title: Prog. Phycol. Res. – volume: 105 start-page: 2 year: 2008 ident: ref43/cit43 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0711994105 – volume-title: Biomineralization: From Biology to Biotechnology and Medical Application year: 2000 ident: ref20/cit20 – volume: 272 start-page: 7883 year: 1997 ident: ref70/cit70 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.12.7883 – volume: 67 start-page: 13 year: 1990 ident: ref15/cit15 publication-title: Mar. Ecol.: Prog. Ser. – volume: 169 start-page: 62 year: 2010 ident: ref29/cit29 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2009.08.013 – volume: 250 start-page: 99 year: 1997 ident: ref36/cit36 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1997.00099.x – volume: 142 start-page: 123 year: 2010 ident: ref64/cit64 publication-title: Cell doi: 10.1016/j.cell.2010.05.030 – volume-title: Biochemistry year: 2008 ident: ref74/cit74 – volume: 151 start-page: 11 year: 2000 ident: ref78/cit78 publication-title: Protist doi: 10.1078/1434-4610-00003 – volume: 42 start-page: 822 year: 2006 ident: ref58/cit58 publication-title: J. Phycol. doi: 10.1111/j.1529-8817.2006.00233.x – volume: 13 start-page: 134 year: 2012 ident: ref54/cit54 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-13-134 – volume: 84 start-page: 607 year: 2009 ident: ref19/cit19 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2140-3 – volume: 9 start-page: 1187 year: 2008 ident: ref26/cit26 publication-title: ChemBioChem doi: 10.1002/cbic.200700764 – volume: 19 start-page: 1853 year: 1998 ident: ref44/cit44 publication-title: Electrophoresis doi: 10.1002/elps.1150191103 – volume: 37 start-page: 1138 year: 2001 ident: ref51/cit51 publication-title: J. Phycol. doi: 10.1046/j.1529-8817.2001.01052.x |
SSID | ssj0015703 |
Score | 2.2873175 |
Snippet | Silicon is a critical element for diatom growth; however our understanding of the molecular mechanisms involved in intracellular silicon responses are limited.... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 720 |
SubjectTerms | amino acids Bacillariophyceae Base Sequence biochemical pathways cell cycle cell walls Chromatography, High Pressure Liquid DNA Primers energy genome Marine Biology Microscopy, Fluorescence physiological response Polymerase Chain Reaction protein synthesis proteins proteome Proteomics silicon Silicon - chemistry Spectrometry, Mass, Electrospray Ionization starvation Stramenopiles - chemistry Stramenopiles - metabolism Thalassiosira pseudonana |
Title | iTRAQ-Based Proteomic Analysis of the Metabolism Mechanism Associated with Silicon Response in the Marine Diatom Thalassiosira pseudonana |
URI | http://dx.doi.org/10.1021/pr400803w https://www.ncbi.nlm.nih.gov/pubmed/24372006 https://www.proquest.com/docview/1513050524 https://www.proquest.com/docview/2053890828 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELVYDnBh3xeZ5cAlkCbOdoRCVSGBoBSJW-RVRLRJ1aRC4g_4a2aapgLRws2Hcexkxp4Xj-cNIacAUXUoTWQBmHct5jvMEkpx2Ax9qVzmK2XwHPLu3m8-s9sX72WGnEyJ4Du1i16fIaxx32fJvOPD4kX8U38ahwqQQqokRfUs9L4VfdD3ruh6ZP7T9UzBk0O_0lgm11V2Tnmd5O18UIhz-fGbrPGvKa-QpRGupJelIaySGZ2ukYV6Vc5tnXwm7dblo3UFXkvRB2RnwHxkWpGS0MxQwIL0ThdgFp0k70ITs4KxVekQeuK5LX1KOmBAKW2VF2w1TdKyM8dcQnoNolmXtl8xRzNPsjzpc9rL9UAB7E_5Bmk3btr1pjWqw2Bxl4WFxY1wTag9bpQvBWPK5oBDjDGqJu2I27ImAOVERksX4Bjs5IGnhXSELWym4Hdok8ylWaq3CQX8qABjRdINNIPHchEGYBqO8iITaBHukEPQUzxaRnk8jJA7tXj8QXfIWaXCWI5IzLGWRmeS6PFYtFcyd0wSOqrsIAZ9YLCEpzobwNAeeHes8semyziwg4VYMx4mvlUa0XgoJHrE45rd_15pjywCCGPDm-DBPpkr-gN9AECnEIdDQ_8Cqtv6kg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKPcCl5VHoAqUGceASyCbO67hdQFvKIh6pxC3yU0QsyWqTVSX-Qf91Z_LYAgLBzYexPbEnns-P-YaQPYCoOpQmsgDMuxbzHWYJpTgshr5ULvOVMngOOTz3B7_Z6Y1309DkYCwMKFFAS0V1if-fXaB7OJ4wRDfunznyEUCIg9bc61_PbgyQSarmRvUsdMIti9DjquiBZPHUA70CKyv3cvK5zlNUKVa9Krk7mJbiQD4842x8n-ZL5FODMmmvNotl8kFnK2Sh3yZ3WyV_0_iqd2n9AB-m6AVyNWB0Mm0pSmhuKCBDOtQlGMkoLe6hiDHCWGpnFGriKS69TkdgThm9qp_bappmdWWOkYX0CETzexrfYsRmkeZFOuF0XOipgk1Axr-Q-OQ47g-sJiuDxV0WlhY3wjWh9rhRvhSMKZsDKjHGqK60I27LrgDMExktXQBnsK4HnhbSEbawmYLN0RqZz_JMfyUU0KQCxBVJN9AMmuUiDMBQHOVFJtAi7JBtGM-k-amKpLovd7rJbEA7ZL-dyUQ2lOaYWWP0kujuTHRc83i8JLTTmkMC84FXJzzT-RS69sDXY84_9rqMA-tZiBnkQfH12pZmXSHtIx7ebLz1Sd_JwiAeniVnP89_bZJFgGeseiMebJH5cjLV3wAClWK7sv1_7mEDAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZbxMxELZokCgv5Wih5Sgu6kNfNuzhvR5DSlR6EZJU6tvKp7pquhtlN0LiH_CvmdlLgFKVt30YH2uPPZ89nm8IOQSIqiNpYgvAvGexwGWWUIrDZhhI5bFAKYP3kBeXwckVO732r5uDIsbCQCcKqKmonPi4qhfKNAwDzqfFkiHC8X5skMforkONHgynndcA2aRqflTfQkPcMgn9WRStkCz-tkL3QMvKxIyekW9d56qXJbf9VSn68uc_vI3_3_vnZKtBm3RQq8cL8khnL8nmsE3ytk1-pbPJ4Lv1GWyZomPkbMAoZdpSldDcUECI9EKXoCzztLiDT4wVxq92ZqEk3ubSaToHtcropH52q2ma1YU5RhjSYxDN7-jsBiM3izQv0iWni0KvFBwGMr5DZqMvs-GJ1WRnsLjHotLiRngm0j43KpCCMWVzQCfGGOVIO-a2dARgn9ho6QFIg_099LWQrrCFzRQckl6RXpZnepdQQJUKkFcsvVAzqJaLKASFcZUfm1CLaI_sw5gmzeIqkspv7jpJN6B75KidzUQ21OaYYWO-TvRjJ7qo-TzWCR20KpHAfKALhWc6X0HTPth8zP3H7pdxYV-LMJM8dPx1rU9dU0j_iJc4bx76pQ_kyfh4lJx_vTx7S54CSmPVU_HwHemVy5V-D0ioFPuV-v8GQTQFhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iTRAQ-based+proteomic+analysis+of+the+metabolism+mechanism+associated+with+silicon+response+in+the+marine+diatom+Thalassiosira+pseudonana&rft.jtitle=Journal+of+proteome+research&rft.au=Du%2C+Chao&rft.au=Liang%2C+Jun-Rong&rft.au=Chen%2C+Dan-Dan&rft.au=Xu%2C+Bin&rft.date=2014-02-07&rft.eissn=1535-3907&rft.volume=13&rft.issue=2&rft.spage=720&rft_id=info:doi/10.1021%2Fpr400803w&rft_id=info%3Apmid%2F24372006&rft.externalDocID=24372006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon |