Newly Developed Stepwise Electroless Deposition Enables a Remarkably Facile Synthesis of Highly Active and Stable Amorphous Pd Nanoparticle Electrocatalysts for Oxygen Reduction Reaction

This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode s...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 136; no. 14; pp. 5217 - 5220
Main Authors Poon, Kee Chun, Tan, Desmond C. L, Vo, Thang D.T, Khezri, Bahareh, Su, Haibin, Webster, Richard D, Sato, Hirotaka
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode substrate (glassy carbon, carbon cloth) was sequentially dipped for 10 s into two separate solutions of a reducing agent (sodium hypophosphite (NaH2PO2)) and Pd ions to deposit amorphous Pd nanoparticles containing phosphorus (Pd–P). By repeating the deposition cycles, the specific and mass activities of the Pd nanoparticles can be actively tuned. Owing to the nanoscale amorphous nature, the obtained Pd–P nanoparticle electrocatalysts exhibited superior specific and mass activities compared with crystalline Pd nanoparticles synthesized by another reducing agent (N2H4) and commercial Pt-loaded carbon (Pt/C) and Pd-loaded carbon (Pd/C). The specific and mass activities of the amorphous Pd–P nanoparticles were over 4.5 times and 2.6 times higher than previously reported values of Pd and Pt catalysts.
AbstractList This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode substrate (glassy carbon, carbon cloth) was sequentially dipped for 10 s into two separate solutions of a reducing agent (sodium hypophosphite (NaH2PO2)) and Pd ions to deposit amorphous Pd nanoparticles containing phosphorus (Pd–P). By repeating the deposition cycles, the specific and mass activities of the Pd nanoparticles can be actively tuned. Owing to the nanoscale amorphous nature, the obtained Pd–P nanoparticle electrocatalysts exhibited superior specific and mass activities compared with crystalline Pd nanoparticles synthesized by another reducing agent (N2H4) and commercial Pt-loaded carbon (Pt/C) and Pd-loaded carbon (Pd/C). The specific and mass activities of the amorphous Pd–P nanoparticles were over 4.5 times and 2.6 times higher than previously reported values of Pd and Pt catalysts.
This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode substrate (glassy carbon, carbon cloth) was sequentially dipped for 10 s into two separate solutions of a reducing agent (sodium hypophosphite (NaH2PO2)) and Pd ions to deposit amorphous Pd nanoparticles containing phosphorus (Pd-P). By repeating the deposition cycles, the specific and mass activities of the Pd nanoparticles can be actively tuned. Owing to the nanoscale amorphous nature, the obtained Pd-P nanoparticle electrocatalysts exhibited superior specific and mass activities compared with crystalline Pd nanoparticles synthesized by another reducing agent (N2H4) and commercial Pt-loaded carbon (Pt/C) and Pd-loaded carbon (Pd/C). The specific and mass activities of the amorphous Pd-P nanoparticles were over 4.5 times and 2.6 times higher than previously reported values of Pd and Pt catalysts.This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode substrate (glassy carbon, carbon cloth) was sequentially dipped for 10 s into two separate solutions of a reducing agent (sodium hypophosphite (NaH2PO2)) and Pd ions to deposit amorphous Pd nanoparticles containing phosphorus (Pd-P). By repeating the deposition cycles, the specific and mass activities of the Pd nanoparticles can be actively tuned. Owing to the nanoscale amorphous nature, the obtained Pd-P nanoparticle electrocatalysts exhibited superior specific and mass activities compared with crystalline Pd nanoparticles synthesized by another reducing agent (N2H4) and commercial Pt-loaded carbon (Pt/C) and Pd-loaded carbon (Pd/C). The specific and mass activities of the amorphous Pd-P nanoparticles were over 4.5 times and 2.6 times higher than previously reported values of Pd and Pt catalysts.
This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode substrate (glassy carbon, carbon cloth) was sequentially dipped for 10 s into two separate solutions of a reducing agent (sodium hypophosphite (NaH₂PO₂)) and Pd ions to deposit amorphous Pd nanoparticles containing phosphorus (Pd–P). By repeating the deposition cycles, the specific and mass activities of the Pd nanoparticles can be actively tuned. Owing to the nanoscale amorphous nature, the obtained Pd–P nanoparticle electrocatalysts exhibited superior specific and mass activities compared with crystalline Pd nanoparticles synthesized by another reducing agent (N₂H₄) and commercial Pt-loaded carbon (Pt/C) and Pd-loaded carbon (Pd/C). The specific and mass activities of the amorphous Pd–P nanoparticles were over 4.5 times and 2.6 times higher than previously reported values of Pd and Pt catalysts.
Author Vo, Thang D.T
Poon, Kee Chun
Khezri, Bahareh
Webster, Richard D
Tan, Desmond C. L
Su, Haibin
Sato, Hirotaka
AuthorAffiliation Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences
School of Materials Science & Engineering
School of Mechanical & Aerospace Engineering
Nanyang Technological University
AuthorAffiliation_xml – name: Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences
– name: School of Materials Science & Engineering
– name: School of Mechanical & Aerospace Engineering
– name: Nanyang Technological University
Author_xml – sequence: 1
  givenname: Kee Chun
  surname: Poon
  fullname: Poon, Kee Chun
– sequence: 2
  givenname: Desmond C. L
  surname: Tan
  fullname: Tan, Desmond C. L
– sequence: 3
  givenname: Thang D.T
  surname: Vo
  fullname: Vo, Thang D.T
– sequence: 4
  givenname: Bahareh
  surname: Khezri
  fullname: Khezri, Bahareh
– sequence: 5
  givenname: Haibin
  surname: Su
  fullname: Su, Haibin
– sequence: 6
  givenname: Richard D
  surname: Webster
  fullname: Webster, Richard D
– sequence: 7
  givenname: Hirotaka
  surname: Sato
  fullname: Sato, Hirotaka
  email: hirosato@ntu.edu.sg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24661048$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAQxy1EBQvlwAtUvlRqDym2EyfpcUWXUglBBe05mjgT1luvHWwHmlfr09XLAocKqSd7Zn7z9Z8DsmudRUKOOfvEmeAnK5CMiUr6HTLjUrBMclHukhlL3qyqy3yfHISwSmYhar5H9kVRlpwV9Yz8ucQHM9EveI_GDdjRm4jDgw5IFwZV9M5gCCk8uKCjdpYuLLTJR4Fe4xr8r2RN9AyUNkhvJhuXGHSgrqfn-naZQnMV9T1SsJvSm1Q6Xzs_LN0Y6PeOXoJ1A_iolXlpqSCCmUIMtHeeXv2ebtGmbt2oHie4Rnj8vCVvejABj57eQ_LzbPHj9Dy7uPr67XR-kUFe1DGDkreKyRqSJgLKnFcs7z4XqKoeVFv2UkDXVRwY8grbuitqFHkn275FBi32-SH5sK07eHc3YojNWgeFxoDFtEUjkq55lddF9V-US14UQta5TOi7J3Rs19g1g9dJzql5Pk0CTraA8i4Ej32jdITN4tGDNg1nzeb4zcvxU8bHfzKei77Gvt-yoEKzcqO3ScJXuL-6LL8k
CitedBy_id crossref_primary_10_1016_j_bios_2015_11_055
crossref_primary_10_20517_microstructures_2023_66
crossref_primary_10_1016_j_apsusc_2018_06_285
crossref_primary_10_1039_C5RA28168G
crossref_primary_10_1039_C8NR06257A
crossref_primary_10_1039_C5RA17151B
crossref_primary_10_1016_j_ijhydene_2021_07_045
crossref_primary_10_1021_acs_chemmater_5b00450
crossref_primary_10_1039_D4DT03577A
crossref_primary_10_1002_ange_201603022
crossref_primary_10_1002_smll_202106396
crossref_primary_10_1039_D0QM01113D
crossref_primary_10_1002_adma_201802120
crossref_primary_10_1016_j_jcis_2023_04_008
crossref_primary_10_1002_anie_201601727
crossref_primary_10_1007_s41365_016_0098_2
crossref_primary_10_1039_C5CC08669H
crossref_primary_10_1016_j_snb_2018_02_025
crossref_primary_10_1016_j_chempr_2018_01_002
crossref_primary_10_1007_s12598_022_02211_x
crossref_primary_10_1039_C5TA06644A
crossref_primary_10_1002_smll_201903057
crossref_primary_10_1021_acscatal_8b00640
crossref_primary_10_1021_acscatal_5b00524
crossref_primary_10_1039_C6TA07124D
crossref_primary_10_1039_C8CE01490F
crossref_primary_10_1016_j_jelechem_2017_11_031
crossref_primary_10_1038_s41427_022_00423_2
crossref_primary_10_1002_aesr_202400270
crossref_primary_10_1149_1945_7111_aceb92
crossref_primary_10_3390_ma17122879
crossref_primary_10_1002_anie_201410792
crossref_primary_10_1002_cjoc_201600829
crossref_primary_10_1007_s11051_018_4296_1
crossref_primary_10_1016_j_electacta_2017_02_044
crossref_primary_10_1039_C6RA09402C
crossref_primary_10_1021_acsami_9b19969
crossref_primary_10_1021_acs_chemmater_7b03732
crossref_primary_10_1002_adfm_202208057
crossref_primary_10_1002_cplu_201700245
crossref_primary_10_1002_sstr_202100188
crossref_primary_10_1016_j_nanoen_2016_02_044
crossref_primary_10_1002_aenm_202001537
crossref_primary_10_1016_j_ccr_2024_216418
crossref_primary_10_1016_j_electacta_2016_10_092
crossref_primary_10_1021_acsami_1c21419
crossref_primary_10_1038_s41570_020_0173_4
crossref_primary_10_1016_j_jechem_2023_10_014
crossref_primary_10_1016_j_joule_2019_03_014
crossref_primary_10_1002_ange_201703209
crossref_primary_10_1021_acs_nanolett_6b00121
crossref_primary_10_3389_fchem_2018_00596
crossref_primary_10_1002_anie_202300406
crossref_primary_10_1002_smtd_202201513
crossref_primary_10_1021_acs_nanolett_3c00535
crossref_primary_10_1039_C5CP07184D
crossref_primary_10_1002_ange_201410792
crossref_primary_10_1039_C7RA13677C
crossref_primary_10_1002_adma_201803234
crossref_primary_10_1016_j_jelechem_2016_09_034
crossref_primary_10_1002_adfm_202405867
crossref_primary_10_1016_j_apcatb_2020_119713
crossref_primary_10_1002_smll_201401598
crossref_primary_10_1039_D0TA02300K
crossref_primary_10_1039_C7TA02437A
crossref_primary_10_1039_D0CP05697A
crossref_primary_10_1016_j_ijhydene_2022_05_145
crossref_primary_10_1021_acs_chemmater_5b04343
crossref_primary_10_1002_smll_201604000
crossref_primary_10_1016_j_jelechem_2018_02_050
crossref_primary_10_1002_anie_201703209
crossref_primary_10_1021_jacsau_2c00495
crossref_primary_10_1016_j_nanoen_2022_107877
crossref_primary_10_1002_ange_202300406
crossref_primary_10_1007_s11434_016_1125_8
crossref_primary_10_1016_j_jallcom_2024_175630
crossref_primary_10_1021_acsami_1c08691
crossref_primary_10_1016_S1872_2067_23_64569_3
crossref_primary_10_1039_D1NR06570J
crossref_primary_10_1002_celc_201701304
crossref_primary_10_1021_acscatal_8b03447
crossref_primary_10_1021_acs_chemrev_3c00229
crossref_primary_10_1002_adfm_202100982
crossref_primary_10_1016_j_microc_2024_112637
crossref_primary_10_1021_acscatal_8b00455
crossref_primary_10_1002_asia_201701616
crossref_primary_10_1002_elan_201700818
crossref_primary_10_3390_molecules200814386
crossref_primary_10_1021_acsami_7b16359
crossref_primary_10_1007_s12274_021_3682_7
crossref_primary_10_1016_j_jpowsour_2014_10_115
crossref_primary_10_1021_acs_langmuir_7b03725
crossref_primary_10_1007_s10853_021_05935_w
crossref_primary_10_1016_j_apsusc_2014_09_056
crossref_primary_10_1002_celc_201700051
crossref_primary_10_1002_chem_201602078
crossref_primary_10_1016_j_electacta_2023_142082
crossref_primary_10_1149_2_1601712jes
crossref_primary_10_1002_ppsc_201500234
crossref_primary_10_1002_anie_201603022
crossref_primary_10_1039_D1SE00584G
crossref_primary_10_1016_j_apsusc_2016_06_117
crossref_primary_10_1016_j_apsusc_2019_02_071
crossref_primary_10_1039_D4CY00363B
crossref_primary_10_1021_acs_nanolett_1c00147
crossref_primary_10_1002_ange_201601727
crossref_primary_10_1039_C6RA22925E
crossref_primary_10_3390_catal7040119
crossref_primary_10_1016_j_apsusc_2016_11_035
crossref_primary_10_1039_C5DT03205A
crossref_primary_10_1016_j_jece_2024_112271
crossref_primary_10_1002_aenm_201700919
crossref_primary_10_1021_acs_chemrev_3c00364
crossref_primary_10_1039_C5SC00124B
crossref_primary_10_1002_celc_202100285
crossref_primary_10_1021_acsaem_1c01075
crossref_primary_10_1039_D0SC06496C
crossref_primary_10_1002_smsc_202100061
crossref_primary_10_1002_aenm_202203893
crossref_primary_10_1016_j_elecom_2017_08_003
crossref_primary_10_1016_j_ijhydene_2021_02_006
crossref_primary_10_1021_acsami_2c12163
crossref_primary_10_1021_acsami_0c03823
crossref_primary_10_1039_C6CY00789A
crossref_primary_10_1021_ja5041094
crossref_primary_10_1007_s40843_022_2069_8
crossref_primary_10_1016_j_ultsonch_2016_02_006
crossref_primary_10_1039_D1CC04141J
crossref_primary_10_1002_adfm_201707219
crossref_primary_10_1021_jacs_7b03101
crossref_primary_10_1039_D4NR00561A
crossref_primary_10_1016_j_jechem_2023_01_026
crossref_primary_10_1016_j_checat_2025_101324
crossref_primary_10_1016_S1872_2067_20_63652_X
crossref_primary_10_1007_s40843_020_1298_x
crossref_primary_10_1039_D3RA03139J
crossref_primary_10_1002_cplu_201900641
Cites_doi 10.1016/j.elecom.2010.12.008
10.1016/j.electacta.2008.12.054
10.1016/S0360-3199(96)00208-X
10.1021/nn302984x
10.1021/cm4027545
10.1016/j.elecom.2005.01.007
10.1149/1.3098478
10.1021/nn901850u
10.1021/ja0449729
10.1016/j.electacta.2012.02.106
10.1016/j.electacta.2011.10.074
10.1039/C3TA13585C
10.1016/0022-5088(66)90002-6
10.1016/0013-4686(89)87122-1
10.1016/j.jpowsour.2007.08.043
10.1149/2.002303jes
10.1016/S1388-2481(03)00053-5
10.1016/j.elecom.2012.10.021
10.1016/0022-0728(86)90088-4
10.1016/j.jelechem.2011.04.016
10.1016/j.jpowsour.2013.06.007
10.1002/anie.200604332
10.1016/j.jelechem.2003.09.035
10.1149/2.106204jes
10.1016/j.jelechem.2006.05.006
10.1039/b820837a
10.1039/c1cc11004g
10.1016/j.jcat.2006.01.022
10.1038/nmat3087
10.1016/j.jelechem.2006.02.029
10.1021/cm901698s
10.1002/anie.201206152
10.1038/nchem.931
10.1002/anie.200700894
10.1021/cs300219j
10.1021/ja108039j
10.1021/ja8063765
10.1039/c2cc17537a
10.1016/S1388-2481(02)00263-1
10.1016/j.apcatb.2011.03.007
10.1021/nl2029078
10.1016/j.jpowsour.2005.05.098
10.1021/cm9013046
10.1039/C3TA13757K
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/ja500275r
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 5220
ExternalDocumentID 24661048
10_1021_ja500275r
c275388949
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
ZCA
~02
NPM
7X8
7S9
AAYWT
L.6
ID FETCH-LOGICAL-a348t-a61bc058a1262a631703d94ec7facb6f52add71a0e17eb8d48e23d5bfbe0abef3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Jul 21 09:59:49 EDT 2025
Fri Jul 11 07:50:39 EDT 2025
Thu Apr 03 07:09:13 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 04:32:57 EDT 2025
Fri Dec 18 21:25:39 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-a61bc058a1262a631703d94ec7facb6f52add71a0e17eb8d48e23d5bfbe0abef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24661048
PQID 1514425835
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_2000373847
proquest_miscellaneous_1514425835
pubmed_primary_24661048
crossref_citationtrail_10_1021_ja500275r
crossref_primary_10_1021_ja500275r
acs_journals_10_1021_ja500275r
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140409
2014-04-09
2014-Apr-09
PublicationDateYYYYMMDD 2014-04-09
PublicationDate_xml – month: 04
  year: 2014
  text: 20140409
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Yang W. (ref32/cit32) 2010; 133
Mentus S. (ref17/cit17) 2012; 69
Suo Y. (ref10/cit10) 2007; 46
Tang Q. (ref15/cit15) 2011; 104
Papandrew A. B. (ref18/cit18) 2013; 160
Budniok A. (ref23/cit23) 1989; 34
Maciá M. D. (ref41/cit41) 2004; 564
Niu K. (ref31/cit31) 2013; 243
Cui Z. (ref33/cit33) 2013; 25
Li D. (ref30/cit30) 2012; 2
Kreysa G. (ref24/cit24) 1986; 201
Dong H.-Q. (ref34/cit34) 2014; 2
Park J.-S. (ref2/cit2) 2008; 178
Chen Z. (ref3/cit3) 2007; 46
Shao M. (ref9/cit9) 2011; 47
Oezaslan M. (ref14/cit14) 2012; 159
Erikson H. (ref20/cit20) 2012; 59
Yin H. (ref28/cit28) 2012; 6
Lee J.-S. (ref37/cit37) 2011; 11
Lin Y. (ref7/cit7) 2005; 7
Fernández J. L. (ref5/cit5) 2004; 127
Jiang L. (ref16/cit16) 2009; 156
Lima F. H. B. (ref39/cit39) 2006; 590
Neergat M. (ref22/cit22) 2011; 658
Kuzume A. (ref42/cit42) 2007; 599
Cheng F. (ref43/cit43) 2011; 3
Antolini E. (ref27/cit27) 2009; 2
Yan X.-Y. (ref12/cit12) 2012; 48
Maheswari S. (ref21/cit21) 2013; 26
Gullman L. O. (ref36/cit36) 1966; 11
Kim J. (ref6/cit6) 2009; 54
Wang B. (ref11/cit11) 2005; 152
Lee Y. (ref29/cit29) 2009; 22
Liang Y. (ref13/cit13) 2011; 10
Podestá J. J. (ref25/cit25) 1997; 22
El- Deab M. S. (ref4/cit4) 2002; 4
Matter P. H. (ref8/cit8) 2006; 239
Seo M. H. (ref19/cit19) 2011; 13
Qu L. (ref44/cit44) 2010; 4
Xiao L. (ref26/cit26) 2008; 131
Guo S. (ref1/cit1) 2012; 51
Yang J. (ref38/cit38) 2003; 5
Han C. (ref35/cit35) 2014; 2
Cheng F. (ref40/cit40) 2009; 22
References_xml – volume: 13
  start-page: 182
  year: 2011
  ident: ref19/cit19
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.12.008
– volume: 54
  start-page: 3412
  year: 2009
  ident: ref6/cit6
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.12.054
– volume: 22
  start-page: 753
  year: 1997
  ident: ref25/cit25
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(96)00208-X
– volume: 6
  start-page: 8288
  year: 2012
  ident: ref28/cit28
  publication-title: ACS Nano
  doi: 10.1021/nn302984x
– volume: 25
  start-page: 3782
  year: 2013
  ident: ref33/cit33
  publication-title: Chem. Mater.
  doi: 10.1021/cm4027545
– volume: 7
  start-page: 267
  year: 2005
  ident: ref7/cit7
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2005.01.007
– volume: 156
  start-page: B643
  year: 2009
  ident: ref16/cit16
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3098478
– volume: 4
  start-page: 1321
  year: 2010
  ident: ref44/cit44
  publication-title: ACS Nano
  doi: 10.1021/nn901850u
– volume: 127
  start-page: 357
  year: 2004
  ident: ref5/cit5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0449729
– volume: 69
  start-page: 174
  year: 2012
  ident: ref17/cit17
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.02.106
– volume: 59
  start-page: 329
  year: 2012
  ident: ref20/cit20
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.10.074
– volume: 2
  start-page: 1272
  year: 2014
  ident: ref34/cit34
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13585C
– volume: 11
  start-page: 157
  year: 1966
  ident: ref36/cit36
  publication-title: J. Less-Common Met.
  doi: 10.1016/0022-5088(66)90002-6
– volume: 34
  start-page: 871
  year: 1989
  ident: ref23/cit23
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(89)87122-1
– volume: 178
  start-page: 620
  year: 2008
  ident: ref2/cit2
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.08.043
– volume: 160
  start-page: F175
  year: 2013
  ident: ref18/cit18
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.002303jes
– volume: 5
  start-page: 306
  year: 2003
  ident: ref38/cit38
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(03)00053-5
– volume: 26
  start-page: 97
  year: 2013
  ident: ref21/cit21
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.10.021
– volume: 201
  start-page: 61
  year: 1986
  ident: ref24/cit24
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(86)90088-4
– volume: 658
  start-page: 25
  year: 2011
  ident: ref22/cit22
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2011.04.016
– volume: 243
  start-page: 65
  year: 2013
  ident: ref31/cit31
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.007
– volume: 46
  start-page: 2862
  year: 2007
  ident: ref10/cit10
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604332
– volume: 564
  start-page: 141
  year: 2004
  ident: ref41/cit41
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2003.09.035
– volume: 159
  start-page: B444
  year: 2012
  ident: ref14/cit14
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.106204jes
– volume: 599
  start-page: 333
  year: 2007
  ident: ref42/cit42
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.05.006
– volume: 2
  start-page: 915
  year: 2009
  ident: ref27/cit27
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b820837a
– volume: 47
  start-page: 6566
  year: 2011
  ident: ref9/cit9
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11004g
– volume: 239
  start-page: 83
  year: 2006
  ident: ref8/cit8
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2006.01.022
– volume: 10
  start-page: 780
  year: 2011
  ident: ref13/cit13
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3087
– volume: 590
  start-page: 152
  year: 2006
  ident: ref39/cit39
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.02.029
– volume: 22
  start-page: 898
  year: 2009
  ident: ref40/cit40
  publication-title: Chem. Mater.
  doi: 10.1021/cm901698s
– volume: 51
  start-page: 11770
  year: 2012
  ident: ref1/cit1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201206152
– volume: 3
  start-page: 79
  year: 2011
  ident: ref43/cit43
  publication-title: Nat Chem
  doi: 10.1038/nchem.931
– volume: 46
  start-page: 4060
  year: 2007
  ident: ref3/cit3
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200700894
– volume: 2
  start-page: 1358
  year: 2012
  ident: ref30/cit30
  publication-title: ACS Catalysis
  doi: 10.1021/cs300219j
– volume: 133
  start-page: 206
  year: 2010
  ident: ref32/cit32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108039j
– volume: 131
  start-page: 602
  year: 2008
  ident: ref26/cit26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8063765
– volume: 48
  start-page: 1892
  year: 2012
  ident: ref12/cit12
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17537a
– volume: 4
  start-page: 288
  year: 2002
  ident: ref4/cit4
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(02)00263-1
– volume: 104
  start-page: 337
  year: 2011
  ident: ref15/cit15
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2011.03.007
– volume: 11
  start-page: 5362
  year: 2011
  ident: ref37/cit37
  publication-title: Nano Lett.
  doi: 10.1021/nl2029078
– volume: 152
  start-page: 1
  year: 2005
  ident: ref11/cit11
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.05.098
– volume: 22
  start-page: 755
  year: 2009
  ident: ref29/cit29
  publication-title: Chem. Mater.
  doi: 10.1021/cm9013046
– volume: 2
  start-page: 605
  year: 2014
  ident: ref35/cit35
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13757K
SSID ssj0004281
Score 2.4854388
Snippet This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5217
SubjectTerms carbon
catalysts
electrodes
ions
nanoparticles
oxygen
palladium
phosphorus
platinum
reducing agents
sodium
Title Newly Developed Stepwise Electroless Deposition Enables a Remarkably Facile Synthesis of Highly Active and Stable Amorphous Pd Nanoparticle Electrocatalysts for Oxygen Reduction Reaction
URI http://dx.doi.org/10.1021/ja500275r
https://www.ncbi.nlm.nih.gov/pubmed/24661048
https://www.proquest.com/docview/1514425835
https://www.proquest.com/docview/2000373847
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3BbtQwELVKOcCFQoGyhVZT4MAlVeIkjve4WnZVVSqglkq9RXZsS1W3WbTOiqafxtcxjuPSqt1yS-RxbGfs5zf2eEzIZ61MxmSeRKLIh1GmUxEJFfOIm0pxw0ysujXdo2_s4DQ7PMvP1sinFTv41MUHyp3tlC-ekKeU8cJZWKPxyb_Dj5QngeMWnKUhfNDtrG7qqezdqWcFn-zmlekG-RpO53h3kov9ZSP3q-v7wRofq_JL8qLnlTDyHeEVWdP1Jnk2Dte5vSZ_EM5mLfROQlqB8-_6fW41TPxNODPEPEwOXlww6U5VWRBwrC_F4gLfWpiKCmEETtoaiaM9tzA34FxFMGnUISeI2n3aZYXR5Ry1OF9a-KEAYRztc1-9UGS3dtTaxgJSZ_h-1WJvxtKUj2iLT_7UxRtyOp38HB9E_cUNkUgz3kSCJbKKcy4SyqhgSFHiVA0zXRVGVJKZnCKqFomIdVJoyVXGNU1VLo3UsZDapG_Jej2v9TsCzDCJJNAkRtGMMUQTBAyqOR8K7fZEB2QXNVv2A8-W3Z46RZsmqGBAvgSll1Uf9tzdvjF7SPTjjegvH-vjIaG90HNK1KDbXhG1xl9ZInfKEAGR0q6WoV3AnxQpwYBs-W53U5RrHxrHfPt_TXpPniNt8_5Dww9kvVks9Q5So0budkPjL3ufDCI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOZQLlO-lHwyIA5dUiZM43uNqtaultAXRVuotsmNbqrrNonVWEH4av65jO2kpagW3RHFiJ-M8v7HHbwj5oJXJmMyTSBT5MMp0KiKhYh5xUylumImVn9M9PGKz02z_LD_rZHLcXhhshMUnWb-If6Mu4GSCcudC5csH5CGSEOocrdH4-GYPJOVJT3ULztJeRejPW90IVNnbI9A9tNIPL9MnIU-Rb5iPKrnYWzVyr_r1l2bj_7V8kzzuWCaMQrd4StZ0_YxsjPvkbs_JbwS3eQtdyJBW4KK9fpxbDZOQF2eOCIiX-5gumPg9VhYEfNOXYnmBZy1MRYWgAsdtjTTSnltYGHCBI3hp5HEURO0e7W6F0eUCbbpYWfiqAEEdvfXQvL5KP5PU2sYCEmn48rPFvo21qaBvi0dhD8YLcjqdnIxnUZfGIRJpxptIsERWcc5FQhkVDAlLnKphpqvCiEoyk1PE2CIRsU4KLbnKuKapyqWROhZSm_QlWa8XtX5NgBkmkRKaxCiaMYbYgvBBNedDod0K6YDsogXK7je0pV9hp-jh9CYYkI-97cuqE0F3uTjmdxV9f130e1D-uKvQu74DlWhBt9giao2fskQmlSEeIsG9vwz18j8pEoQBeRV633VV7v3QVeZv_vVKb8nG7OTwoDz4dPR5izxCQhcii4bbZL1ZrvQOkqZG7vq_5QqoBhSD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagSMAL97EcZUA88JIqcRLH-7hadlWutqJU6ltkx2Op6jZbrbOC8NP4dYydZDnUCt4SxWfG_vyNZzxm7DUamwmdJ5Eq8nGUYaoiZWIZSVsZaYWNTdjT_bQndo-y98f5ca8o-rMw1AhHJblgxPez-tzYPsKADxWUezUqX11l17y5zitbk-nhr3OQXCYD3S2kSIdIQr9n9atQ5f5chS6hlmGJmd9m-5vGBc-S0511o3eq73_Fbfz_1t9ht3q2CZNueNxlV7C-x25Mh0ve7rMfBHKLFnrXITTgvb6-njiEWXc_zoKQkD4Pvl0wC2etHCj4jGdqdUpvLcxVReACh21NdNKdOFha8A4k9GkS8BRU7Yv2WWFytiTZLtcODgwQuJPW3jVvqDLsKLWucUCEGva_tTTGqTbTxbmlp-4sxgN2NJ99me5G_XUOkUoz2URKJLqKc6kSLrgSRFzi1IwzrAqrKi1szglri0TFmBSopckk8tTk2mqMlUabPmRb9bLGxwyEFZqooU2s4ZkQhDEEIxylHCv0ltIR2yYplP10dGWwtHPSdAYRjNibQf5l1QdD93dyLC5K-mqT9LyLAHJRopfDICpJgt7oomqkX1kSo8oIF4noXp6GhzBAKRGFEXvUjcBNVb5_pDLLJ__q0gt2_eDtvPz4bu_DU3aTeF3nYDR-xraa1RqfE3dq9HaYMD8BfCYXBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Newly+Developed+Stepwise+Electroless+Deposition+Enables+a+Remarkably+Facile+Synthesis+of+Highly+Active+and+Stable+Amorphous+Pd+Nanoparticle+Electrocatalysts+for+Oxygen+Reduction+Reaction&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Poon%2C+Kee+Chun&rft.au=Tan%2C+Desmond+C.+L&rft.au=Vo%2C+Thang+D.T&rft.au=Khezri%2C+Bahareh&rft.date=2014-04-09&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=136&rft.issue=14&rft.spage=5217&rft.epage=5220&rft_id=info:doi/10.1021%2Fja500275r&rft.externalDocID=c275388949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon