Newly Developed Stepwise Electroless Deposition Enables a Remarkably Facile Synthesis of Highly Active and Stable Amorphous Pd Nanoparticle Electrocatalysts for Oxygen Reduction Reaction
This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode s...
Saved in:
Published in | Journal of the American Chemical Society Vol. 136; no. 14; pp. 5217 - 5220 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode substrate (glassy carbon, carbon cloth) was sequentially dipped for 10 s into two separate solutions of a reducing agent (sodium hypophosphite (NaH2PO2)) and Pd ions to deposit amorphous Pd nanoparticles containing phosphorus (Pd–P). By repeating the deposition cycles, the specific and mass activities of the Pd nanoparticles can be actively tuned. Owing to the nanoscale amorphous nature, the obtained Pd–P nanoparticle electrocatalysts exhibited superior specific and mass activities compared with crystalline Pd nanoparticles synthesized by another reducing agent (N2H4) and commercial Pt-loaded carbon (Pt/C) and Pd-loaded carbon (Pd/C). The specific and mass activities of the amorphous Pd–P nanoparticles were over 4.5 times and 2.6 times higher than previously reported values of Pd and Pt catalysts. |
---|---|
AbstractList | This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode substrate (glassy carbon, carbon cloth) was sequentially dipped for 10 s into two separate solutions of a reducing agent (sodium hypophosphite (NaH2PO2)) and Pd ions to deposit amorphous Pd nanoparticles containing phosphorus (Pd–P). By repeating the deposition cycles, the specific and mass activities of the Pd nanoparticles can be actively tuned. Owing to the nanoscale amorphous nature, the obtained Pd–P nanoparticle electrocatalysts exhibited superior specific and mass activities compared with crystalline Pd nanoparticles synthesized by another reducing agent (N2H4) and commercial Pt-loaded carbon (Pt/C) and Pd-loaded carbon (Pd/C). The specific and mass activities of the amorphous Pd–P nanoparticles were over 4.5 times and 2.6 times higher than previously reported values of Pd and Pt catalysts. This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode substrate (glassy carbon, carbon cloth) was sequentially dipped for 10 s into two separate solutions of a reducing agent (sodium hypophosphite (NaH2PO2)) and Pd ions to deposit amorphous Pd nanoparticles containing phosphorus (Pd-P). By repeating the deposition cycles, the specific and mass activities of the Pd nanoparticles can be actively tuned. Owing to the nanoscale amorphous nature, the obtained Pd-P nanoparticle electrocatalysts exhibited superior specific and mass activities compared with crystalline Pd nanoparticles synthesized by another reducing agent (N2H4) and commercial Pt-loaded carbon (Pt/C) and Pd-loaded carbon (Pd/C). The specific and mass activities of the amorphous Pd-P nanoparticles were over 4.5 times and 2.6 times higher than previously reported values of Pd and Pt catalysts.This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode substrate (glassy carbon, carbon cloth) was sequentially dipped for 10 s into two separate solutions of a reducing agent (sodium hypophosphite (NaH2PO2)) and Pd ions to deposit amorphous Pd nanoparticles containing phosphorus (Pd-P). By repeating the deposition cycles, the specific and mass activities of the Pd nanoparticles can be actively tuned. Owing to the nanoscale amorphous nature, the obtained Pd-P nanoparticle electrocatalysts exhibited superior specific and mass activities compared with crystalline Pd nanoparticles synthesized by another reducing agent (N2H4) and commercial Pt-loaded carbon (Pt/C) and Pd-loaded carbon (Pd/C). The specific and mass activities of the amorphous Pd-P nanoparticles were over 4.5 times and 2.6 times higher than previously reported values of Pd and Pt catalysts. This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were synthesized by a remarkably facile and quick electroless deposition process newly developed in this study (process time <5 min). An electrode substrate (glassy carbon, carbon cloth) was sequentially dipped for 10 s into two separate solutions of a reducing agent (sodium hypophosphite (NaH₂PO₂)) and Pd ions to deposit amorphous Pd nanoparticles containing phosphorus (Pd–P). By repeating the deposition cycles, the specific and mass activities of the Pd nanoparticles can be actively tuned. Owing to the nanoscale amorphous nature, the obtained Pd–P nanoparticle electrocatalysts exhibited superior specific and mass activities compared with crystalline Pd nanoparticles synthesized by another reducing agent (N₂H₄) and commercial Pt-loaded carbon (Pt/C) and Pd-loaded carbon (Pd/C). The specific and mass activities of the amorphous Pd–P nanoparticles were over 4.5 times and 2.6 times higher than previously reported values of Pd and Pt catalysts. |
Author | Vo, Thang D.T Poon, Kee Chun Khezri, Bahareh Webster, Richard D Tan, Desmond C. L Su, Haibin Sato, Hirotaka |
AuthorAffiliation | Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences School of Materials Science & Engineering School of Mechanical & Aerospace Engineering Nanyang Technological University |
AuthorAffiliation_xml | – name: Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences – name: School of Materials Science & Engineering – name: School of Mechanical & Aerospace Engineering – name: Nanyang Technological University |
Author_xml | – sequence: 1 givenname: Kee Chun surname: Poon fullname: Poon, Kee Chun – sequence: 2 givenname: Desmond C. L surname: Tan fullname: Tan, Desmond C. L – sequence: 3 givenname: Thang D.T surname: Vo fullname: Vo, Thang D.T – sequence: 4 givenname: Bahareh surname: Khezri fullname: Khezri, Bahareh – sequence: 5 givenname: Haibin surname: Su fullname: Su, Haibin – sequence: 6 givenname: Richard D surname: Webster fullname: Webster, Richard D – sequence: 7 givenname: Hirotaka surname: Sato fullname: Sato, Hirotaka email: hirosato@ntu.edu.sg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24661048$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAQxy1EBQvlwAtUvlRqDym2EyfpcUWXUglBBe05mjgT1luvHWwHmlfr09XLAocKqSd7Zn7z9Z8DsmudRUKOOfvEmeAnK5CMiUr6HTLjUrBMclHukhlL3qyqy3yfHISwSmYhar5H9kVRlpwV9Yz8ucQHM9EveI_GDdjRm4jDgw5IFwZV9M5gCCk8uKCjdpYuLLTJR4Fe4xr8r2RN9AyUNkhvJhuXGHSgrqfn-naZQnMV9T1SsJvSm1Q6Xzs_LN0Y6PeOXoJ1A_iolXlpqSCCmUIMtHeeXv2ebtGmbt2oHie4Rnj8vCVvejABj57eQ_LzbPHj9Dy7uPr67XR-kUFe1DGDkreKyRqSJgLKnFcs7z4XqKoeVFv2UkDXVRwY8grbuitqFHkn275FBi32-SH5sK07eHc3YojNWgeFxoDFtEUjkq55lddF9V-US14UQta5TOi7J3Rs19g1g9dJzql5Pk0CTraA8i4Ej32jdITN4tGDNg1nzeb4zcvxU8bHfzKei77Gvt-yoEKzcqO3ScJXuL-6LL8k |
CitedBy_id | crossref_primary_10_1016_j_bios_2015_11_055 crossref_primary_10_20517_microstructures_2023_66 crossref_primary_10_1016_j_apsusc_2018_06_285 crossref_primary_10_1039_C5RA28168G crossref_primary_10_1039_C8NR06257A crossref_primary_10_1039_C5RA17151B crossref_primary_10_1016_j_ijhydene_2021_07_045 crossref_primary_10_1021_acs_chemmater_5b00450 crossref_primary_10_1039_D4DT03577A crossref_primary_10_1002_ange_201603022 crossref_primary_10_1002_smll_202106396 crossref_primary_10_1039_D0QM01113D crossref_primary_10_1002_adma_201802120 crossref_primary_10_1016_j_jcis_2023_04_008 crossref_primary_10_1002_anie_201601727 crossref_primary_10_1007_s41365_016_0098_2 crossref_primary_10_1039_C5CC08669H crossref_primary_10_1016_j_snb_2018_02_025 crossref_primary_10_1016_j_chempr_2018_01_002 crossref_primary_10_1007_s12598_022_02211_x crossref_primary_10_1039_C5TA06644A crossref_primary_10_1002_smll_201903057 crossref_primary_10_1021_acscatal_8b00640 crossref_primary_10_1021_acscatal_5b00524 crossref_primary_10_1039_C6TA07124D crossref_primary_10_1039_C8CE01490F crossref_primary_10_1016_j_jelechem_2017_11_031 crossref_primary_10_1038_s41427_022_00423_2 crossref_primary_10_1002_aesr_202400270 crossref_primary_10_1149_1945_7111_aceb92 crossref_primary_10_3390_ma17122879 crossref_primary_10_1002_anie_201410792 crossref_primary_10_1002_cjoc_201600829 crossref_primary_10_1007_s11051_018_4296_1 crossref_primary_10_1016_j_electacta_2017_02_044 crossref_primary_10_1039_C6RA09402C crossref_primary_10_1021_acsami_9b19969 crossref_primary_10_1021_acs_chemmater_7b03732 crossref_primary_10_1002_adfm_202208057 crossref_primary_10_1002_cplu_201700245 crossref_primary_10_1002_sstr_202100188 crossref_primary_10_1016_j_nanoen_2016_02_044 crossref_primary_10_1002_aenm_202001537 crossref_primary_10_1016_j_ccr_2024_216418 crossref_primary_10_1016_j_electacta_2016_10_092 crossref_primary_10_1021_acsami_1c21419 crossref_primary_10_1038_s41570_020_0173_4 crossref_primary_10_1016_j_jechem_2023_10_014 crossref_primary_10_1016_j_joule_2019_03_014 crossref_primary_10_1002_ange_201703209 crossref_primary_10_1021_acs_nanolett_6b00121 crossref_primary_10_3389_fchem_2018_00596 crossref_primary_10_1002_anie_202300406 crossref_primary_10_1002_smtd_202201513 crossref_primary_10_1021_acs_nanolett_3c00535 crossref_primary_10_1039_C5CP07184D crossref_primary_10_1002_ange_201410792 crossref_primary_10_1039_C7RA13677C crossref_primary_10_1002_adma_201803234 crossref_primary_10_1016_j_jelechem_2016_09_034 crossref_primary_10_1002_adfm_202405867 crossref_primary_10_1016_j_apcatb_2020_119713 crossref_primary_10_1002_smll_201401598 crossref_primary_10_1039_D0TA02300K crossref_primary_10_1039_C7TA02437A crossref_primary_10_1039_D0CP05697A crossref_primary_10_1016_j_ijhydene_2022_05_145 crossref_primary_10_1021_acs_chemmater_5b04343 crossref_primary_10_1002_smll_201604000 crossref_primary_10_1016_j_jelechem_2018_02_050 crossref_primary_10_1002_anie_201703209 crossref_primary_10_1021_jacsau_2c00495 crossref_primary_10_1016_j_nanoen_2022_107877 crossref_primary_10_1002_ange_202300406 crossref_primary_10_1007_s11434_016_1125_8 crossref_primary_10_1016_j_jallcom_2024_175630 crossref_primary_10_1021_acsami_1c08691 crossref_primary_10_1016_S1872_2067_23_64569_3 crossref_primary_10_1039_D1NR06570J crossref_primary_10_1002_celc_201701304 crossref_primary_10_1021_acscatal_8b03447 crossref_primary_10_1021_acs_chemrev_3c00229 crossref_primary_10_1002_adfm_202100982 crossref_primary_10_1016_j_microc_2024_112637 crossref_primary_10_1021_acscatal_8b00455 crossref_primary_10_1002_asia_201701616 crossref_primary_10_1002_elan_201700818 crossref_primary_10_3390_molecules200814386 crossref_primary_10_1021_acsami_7b16359 crossref_primary_10_1007_s12274_021_3682_7 crossref_primary_10_1016_j_jpowsour_2014_10_115 crossref_primary_10_1021_acs_langmuir_7b03725 crossref_primary_10_1007_s10853_021_05935_w crossref_primary_10_1016_j_apsusc_2014_09_056 crossref_primary_10_1002_celc_201700051 crossref_primary_10_1002_chem_201602078 crossref_primary_10_1016_j_electacta_2023_142082 crossref_primary_10_1149_2_1601712jes crossref_primary_10_1002_ppsc_201500234 crossref_primary_10_1002_anie_201603022 crossref_primary_10_1039_D1SE00584G crossref_primary_10_1016_j_apsusc_2016_06_117 crossref_primary_10_1016_j_apsusc_2019_02_071 crossref_primary_10_1039_D4CY00363B crossref_primary_10_1021_acs_nanolett_1c00147 crossref_primary_10_1002_ange_201601727 crossref_primary_10_1039_C6RA22925E crossref_primary_10_3390_catal7040119 crossref_primary_10_1016_j_apsusc_2016_11_035 crossref_primary_10_1039_C5DT03205A crossref_primary_10_1016_j_jece_2024_112271 crossref_primary_10_1002_aenm_201700919 crossref_primary_10_1021_acs_chemrev_3c00364 crossref_primary_10_1039_C5SC00124B crossref_primary_10_1002_celc_202100285 crossref_primary_10_1021_acsaem_1c01075 crossref_primary_10_1039_D0SC06496C crossref_primary_10_1002_smsc_202100061 crossref_primary_10_1002_aenm_202203893 crossref_primary_10_1016_j_elecom_2017_08_003 crossref_primary_10_1016_j_ijhydene_2021_02_006 crossref_primary_10_1021_acsami_2c12163 crossref_primary_10_1021_acsami_0c03823 crossref_primary_10_1039_C6CY00789A crossref_primary_10_1021_ja5041094 crossref_primary_10_1007_s40843_022_2069_8 crossref_primary_10_1016_j_ultsonch_2016_02_006 crossref_primary_10_1039_D1CC04141J crossref_primary_10_1002_adfm_201707219 crossref_primary_10_1021_jacs_7b03101 crossref_primary_10_1039_D4NR00561A crossref_primary_10_1016_j_jechem_2023_01_026 crossref_primary_10_1016_j_checat_2025_101324 crossref_primary_10_1016_S1872_2067_20_63652_X crossref_primary_10_1007_s40843_020_1298_x crossref_primary_10_1039_D3RA03139J crossref_primary_10_1002_cplu_201900641 |
Cites_doi | 10.1016/j.elecom.2010.12.008 10.1016/j.electacta.2008.12.054 10.1016/S0360-3199(96)00208-X 10.1021/nn302984x 10.1021/cm4027545 10.1016/j.elecom.2005.01.007 10.1149/1.3098478 10.1021/nn901850u 10.1021/ja0449729 10.1016/j.electacta.2012.02.106 10.1016/j.electacta.2011.10.074 10.1039/C3TA13585C 10.1016/0022-5088(66)90002-6 10.1016/0013-4686(89)87122-1 10.1016/j.jpowsour.2007.08.043 10.1149/2.002303jes 10.1016/S1388-2481(03)00053-5 10.1016/j.elecom.2012.10.021 10.1016/0022-0728(86)90088-4 10.1016/j.jelechem.2011.04.016 10.1016/j.jpowsour.2013.06.007 10.1002/anie.200604332 10.1016/j.jelechem.2003.09.035 10.1149/2.106204jes 10.1016/j.jelechem.2006.05.006 10.1039/b820837a 10.1039/c1cc11004g 10.1016/j.jcat.2006.01.022 10.1038/nmat3087 10.1016/j.jelechem.2006.02.029 10.1021/cm901698s 10.1002/anie.201206152 10.1038/nchem.931 10.1002/anie.200700894 10.1021/cs300219j 10.1021/ja108039j 10.1021/ja8063765 10.1039/c2cc17537a 10.1016/S1388-2481(02)00263-1 10.1016/j.apcatb.2011.03.007 10.1021/nl2029078 10.1016/j.jpowsour.2005.05.098 10.1021/cm9013046 10.1039/C3TA13757K |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/ja500275r |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 5220 |
ExternalDocumentID | 24661048 10_1021_ja500275r c275388949 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK XSW YQT ZCA ~02 NPM 7X8 7S9 AAYWT L.6 |
ID | FETCH-LOGICAL-a348t-a61bc058a1262a631703d94ec7facb6f52add71a0e17eb8d48e23d5bfbe0abef3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 21 09:59:49 EDT 2025 Fri Jul 11 07:50:39 EDT 2025 Thu Apr 03 07:09:13 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 04:32:57 EDT 2025 Fri Dec 18 21:25:39 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-a61bc058a1262a631703d94ec7facb6f52add71a0e17eb8d48e23d5bfbe0abef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24661048 |
PQID | 1514425835 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2000373847 proquest_miscellaneous_1514425835 pubmed_primary_24661048 crossref_citationtrail_10_1021_ja500275r crossref_primary_10_1021_ja500275r acs_journals_10_1021_ja500275r |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140409 2014-04-09 2014-Apr-09 |
PublicationDateYYYYMMDD | 2014-04-09 |
PublicationDate_xml | – month: 04 year: 2014 text: 20140409 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Yang W. (ref32/cit32) 2010; 133 Mentus S. (ref17/cit17) 2012; 69 Suo Y. (ref10/cit10) 2007; 46 Tang Q. (ref15/cit15) 2011; 104 Papandrew A. B. (ref18/cit18) 2013; 160 Budniok A. (ref23/cit23) 1989; 34 Maciá M. D. (ref41/cit41) 2004; 564 Niu K. (ref31/cit31) 2013; 243 Cui Z. (ref33/cit33) 2013; 25 Li D. (ref30/cit30) 2012; 2 Kreysa G. (ref24/cit24) 1986; 201 Dong H.-Q. (ref34/cit34) 2014; 2 Park J.-S. (ref2/cit2) 2008; 178 Chen Z. (ref3/cit3) 2007; 46 Shao M. (ref9/cit9) 2011; 47 Oezaslan M. (ref14/cit14) 2012; 159 Erikson H. (ref20/cit20) 2012; 59 Yin H. (ref28/cit28) 2012; 6 Lee J.-S. (ref37/cit37) 2011; 11 Lin Y. (ref7/cit7) 2005; 7 Fernández J. L. (ref5/cit5) 2004; 127 Jiang L. (ref16/cit16) 2009; 156 Lima F. H. B. (ref39/cit39) 2006; 590 Neergat M. (ref22/cit22) 2011; 658 Kuzume A. (ref42/cit42) 2007; 599 Cheng F. (ref43/cit43) 2011; 3 Antolini E. (ref27/cit27) 2009; 2 Yan X.-Y. (ref12/cit12) 2012; 48 Maheswari S. (ref21/cit21) 2013; 26 Gullman L. O. (ref36/cit36) 1966; 11 Kim J. (ref6/cit6) 2009; 54 Wang B. (ref11/cit11) 2005; 152 Lee Y. (ref29/cit29) 2009; 22 Liang Y. (ref13/cit13) 2011; 10 Podestá J. J. (ref25/cit25) 1997; 22 El- Deab M. S. (ref4/cit4) 2002; 4 Matter P. H. (ref8/cit8) 2006; 239 Seo M. H. (ref19/cit19) 2011; 13 Qu L. (ref44/cit44) 2010; 4 Xiao L. (ref26/cit26) 2008; 131 Guo S. (ref1/cit1) 2012; 51 Yang J. (ref38/cit38) 2003; 5 Han C. (ref35/cit35) 2014; 2 Cheng F. (ref40/cit40) 2009; 22 |
References_xml | – volume: 13 start-page: 182 year: 2011 ident: ref19/cit19 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.12.008 – volume: 54 start-page: 3412 year: 2009 ident: ref6/cit6 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.12.054 – volume: 22 start-page: 753 year: 1997 ident: ref25/cit25 publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(96)00208-X – volume: 6 start-page: 8288 year: 2012 ident: ref28/cit28 publication-title: ACS Nano doi: 10.1021/nn302984x – volume: 25 start-page: 3782 year: 2013 ident: ref33/cit33 publication-title: Chem. Mater. doi: 10.1021/cm4027545 – volume: 7 start-page: 267 year: 2005 ident: ref7/cit7 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2005.01.007 – volume: 156 start-page: B643 year: 2009 ident: ref16/cit16 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3098478 – volume: 4 start-page: 1321 year: 2010 ident: ref44/cit44 publication-title: ACS Nano doi: 10.1021/nn901850u – volume: 127 start-page: 357 year: 2004 ident: ref5/cit5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0449729 – volume: 69 start-page: 174 year: 2012 ident: ref17/cit17 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.02.106 – volume: 59 start-page: 329 year: 2012 ident: ref20/cit20 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.10.074 – volume: 2 start-page: 1272 year: 2014 ident: ref34/cit34 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13585C – volume: 11 start-page: 157 year: 1966 ident: ref36/cit36 publication-title: J. Less-Common Met. doi: 10.1016/0022-5088(66)90002-6 – volume: 34 start-page: 871 year: 1989 ident: ref23/cit23 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(89)87122-1 – volume: 178 start-page: 620 year: 2008 ident: ref2/cit2 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.08.043 – volume: 160 start-page: F175 year: 2013 ident: ref18/cit18 publication-title: J. Electrochem. Soc. doi: 10.1149/2.002303jes – volume: 5 start-page: 306 year: 2003 ident: ref38/cit38 publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(03)00053-5 – volume: 26 start-page: 97 year: 2013 ident: ref21/cit21 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.10.021 – volume: 201 start-page: 61 year: 1986 ident: ref24/cit24 publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(86)90088-4 – volume: 658 start-page: 25 year: 2011 ident: ref22/cit22 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2011.04.016 – volume: 243 start-page: 65 year: 2013 ident: ref31/cit31 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.007 – volume: 46 start-page: 2862 year: 2007 ident: ref10/cit10 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604332 – volume: 564 start-page: 141 year: 2004 ident: ref41/cit41 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2003.09.035 – volume: 159 start-page: B444 year: 2012 ident: ref14/cit14 publication-title: J. Electrochem. Soc. doi: 10.1149/2.106204jes – volume: 599 start-page: 333 year: 2007 ident: ref42/cit42 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.05.006 – volume: 2 start-page: 915 year: 2009 ident: ref27/cit27 publication-title: Energy Environ. Sci. doi: 10.1039/b820837a – volume: 47 start-page: 6566 year: 2011 ident: ref9/cit9 publication-title: Chem. Commun. doi: 10.1039/c1cc11004g – volume: 239 start-page: 83 year: 2006 ident: ref8/cit8 publication-title: J. Catal. doi: 10.1016/j.jcat.2006.01.022 – volume: 10 start-page: 780 year: 2011 ident: ref13/cit13 publication-title: Nat. Mater. doi: 10.1038/nmat3087 – volume: 590 start-page: 152 year: 2006 ident: ref39/cit39 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.02.029 – volume: 22 start-page: 898 year: 2009 ident: ref40/cit40 publication-title: Chem. Mater. doi: 10.1021/cm901698s – volume: 51 start-page: 11770 year: 2012 ident: ref1/cit1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201206152 – volume: 3 start-page: 79 year: 2011 ident: ref43/cit43 publication-title: Nat Chem doi: 10.1038/nchem.931 – volume: 46 start-page: 4060 year: 2007 ident: ref3/cit3 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200700894 – volume: 2 start-page: 1358 year: 2012 ident: ref30/cit30 publication-title: ACS Catalysis doi: 10.1021/cs300219j – volume: 133 start-page: 206 year: 2010 ident: ref32/cit32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja108039j – volume: 131 start-page: 602 year: 2008 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8063765 – volume: 48 start-page: 1892 year: 2012 ident: ref12/cit12 publication-title: Chem. Commun. doi: 10.1039/c2cc17537a – volume: 4 start-page: 288 year: 2002 ident: ref4/cit4 publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(02)00263-1 – volume: 104 start-page: 337 year: 2011 ident: ref15/cit15 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2011.03.007 – volume: 11 start-page: 5362 year: 2011 ident: ref37/cit37 publication-title: Nano Lett. doi: 10.1021/nl2029078 – volume: 152 start-page: 1 year: 2005 ident: ref11/cit11 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.05.098 – volume: 22 start-page: 755 year: 2009 ident: ref29/cit29 publication-title: Chem. Mater. doi: 10.1021/cm9013046 – volume: 2 start-page: 605 year: 2014 ident: ref35/cit35 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13757K |
SSID | ssj0004281 |
Score | 2.4854388 |
Snippet | This paper reports on highly active and stable amorphous Pd nanoparticle electrocatalysts for the oxygen reduction reaction. The amorphous catalysts were... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5217 |
SubjectTerms | carbon catalysts electrodes ions nanoparticles oxygen palladium phosphorus platinum reducing agents sodium |
Title | Newly Developed Stepwise Electroless Deposition Enables a Remarkably Facile Synthesis of Highly Active and Stable Amorphous Pd Nanoparticle Electrocatalysts for Oxygen Reduction Reaction |
URI | http://dx.doi.org/10.1021/ja500275r https://www.ncbi.nlm.nih.gov/pubmed/24661048 https://www.proquest.com/docview/1514425835 https://www.proquest.com/docview/2000373847 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3BbtQwELVKOcCFQoGyhVZT4MAlVeIkjve4WnZVVSqglkq9RXZsS1W3WbTOiqafxtcxjuPSqt1yS-RxbGfs5zf2eEzIZ61MxmSeRKLIh1GmUxEJFfOIm0pxw0ysujXdo2_s4DQ7PMvP1sinFTv41MUHyp3tlC-ekKeU8cJZWKPxyb_Dj5QngeMWnKUhfNDtrG7qqezdqWcFn-zmlekG-RpO53h3kov9ZSP3q-v7wRofq_JL8qLnlTDyHeEVWdP1Jnk2Dte5vSZ_EM5mLfROQlqB8-_6fW41TPxNODPEPEwOXlww6U5VWRBwrC_F4gLfWpiKCmEETtoaiaM9tzA34FxFMGnUISeI2n3aZYXR5Ry1OF9a-KEAYRztc1-9UGS3dtTaxgJSZ_h-1WJvxtKUj2iLT_7UxRtyOp38HB9E_cUNkUgz3kSCJbKKcy4SyqhgSFHiVA0zXRVGVJKZnCKqFomIdVJoyVXGNU1VLo3UsZDapG_Jej2v9TsCzDCJJNAkRtGMMUQTBAyqOR8K7fZEB2QXNVv2A8-W3Z46RZsmqGBAvgSll1Uf9tzdvjF7SPTjjegvH-vjIaG90HNK1KDbXhG1xl9ZInfKEAGR0q6WoV3AnxQpwYBs-W53U5RrHxrHfPt_TXpPniNt8_5Dww9kvVks9Q5So0budkPjL3ufDCI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOZQLlO-lHwyIA5dUiZM43uNqtaultAXRVuotsmNbqrrNonVWEH4av65jO2kpagW3RHFiJ-M8v7HHbwj5oJXJmMyTSBT5MMp0KiKhYh5xUylumImVn9M9PGKz02z_LD_rZHLcXhhshMUnWb-If6Mu4GSCcudC5csH5CGSEOocrdH4-GYPJOVJT3ULztJeRejPW90IVNnbI9A9tNIPL9MnIU-Rb5iPKrnYWzVyr_r1l2bj_7V8kzzuWCaMQrd4StZ0_YxsjPvkbs_JbwS3eQtdyJBW4KK9fpxbDZOQF2eOCIiX-5gumPg9VhYEfNOXYnmBZy1MRYWgAsdtjTTSnltYGHCBI3hp5HEURO0e7W6F0eUCbbpYWfiqAEEdvfXQvL5KP5PU2sYCEmn48rPFvo21qaBvi0dhD8YLcjqdnIxnUZfGIRJpxptIsERWcc5FQhkVDAlLnKphpqvCiEoyk1PE2CIRsU4KLbnKuKapyqWROhZSm_QlWa8XtX5NgBkmkRKaxCiaMYbYgvBBNedDod0K6YDsogXK7je0pV9hp-jh9CYYkI-97cuqE0F3uTjmdxV9f130e1D-uKvQu74DlWhBt9giao2fskQmlSEeIsG9vwz18j8pEoQBeRV633VV7v3QVeZv_vVKb8nG7OTwoDz4dPR5izxCQhcii4bbZL1ZrvQOkqZG7vq_5QqoBhSD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagSMAL97EcZUA88JIqcRLH-7hadlWutqJU6ltkx2Op6jZbrbOC8NP4dYydZDnUCt4SxWfG_vyNZzxm7DUamwmdJ5Eq8nGUYaoiZWIZSVsZaYWNTdjT_bQndo-y98f5ca8o-rMw1AhHJblgxPez-tzYPsKADxWUezUqX11l17y5zitbk-nhr3OQXCYD3S2kSIdIQr9n9atQ5f5chS6hlmGJmd9m-5vGBc-S0511o3eq73_Fbfz_1t9ht3q2CZNueNxlV7C-x25Mh0ve7rMfBHKLFnrXITTgvb6-njiEWXc_zoKQkD4Pvl0wC2etHCj4jGdqdUpvLcxVReACh21NdNKdOFha8A4k9GkS8BRU7Yv2WWFytiTZLtcODgwQuJPW3jVvqDLsKLWucUCEGva_tTTGqTbTxbmlp-4sxgN2NJ99me5G_XUOkUoz2URKJLqKc6kSLrgSRFzi1IwzrAqrKi1szglri0TFmBSopckk8tTk2mqMlUabPmRb9bLGxwyEFZqooU2s4ZkQhDEEIxylHCv0ltIR2yYplP10dGWwtHPSdAYRjNibQf5l1QdD93dyLC5K-mqT9LyLAHJRopfDICpJgt7oomqkX1kSo8oIF4noXp6GhzBAKRGFEXvUjcBNVb5_pDLLJ__q0gt2_eDtvPz4bu_DU3aTeF3nYDR-xraa1RqfE3dq9HaYMD8BfCYXBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Newly+Developed+Stepwise+Electroless+Deposition+Enables+a+Remarkably+Facile+Synthesis+of+Highly+Active+and+Stable+Amorphous+Pd+Nanoparticle+Electrocatalysts+for+Oxygen+Reduction+Reaction&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Poon%2C+Kee+Chun&rft.au=Tan%2C+Desmond+C.+L&rft.au=Vo%2C+Thang+D.T&rft.au=Khezri%2C+Bahareh&rft.date=2014-04-09&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=136&rft.issue=14&rft.spage=5217&rft.epage=5220&rft_id=info:doi/10.1021%2Fja500275r&rft.externalDocID=c275388949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |