Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides
Hydrogen and ammonia are the chemical molecules that are vital to Earth’s energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of...
Saved in:
Published in | Accounts of chemical research Vol. 50; no. 1; pp. 112 - 121 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.01.2017
|
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen and ammonia are the chemical molecules that are vital to Earth’s energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber–Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1–x Zn x )(N1–x O x ), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the NN triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses. |
---|---|
AbstractList | Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses. Hydrogen and ammonia are the chemical molecules that are vital to Earth’s energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber–Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1–x Zn x )(N1–x O x ), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the NN triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses. Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO , SrTiO , (Ga Zn )(N O ), CdS, and g-C N for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N . This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses. |
Author | Zhang, Lizhi Zhan, Guangming Li, Jie Li, Hao |
AuthorAffiliation | Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry Central China Normal University |
AuthorAffiliation_xml | – name: Central China Normal University – name: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry |
Author_xml | – sequence: 1 givenname: Jie surname: Li fullname: Li, Jie – sequence: 2 givenname: Hao surname: Li fullname: Li, Hao – sequence: 3 givenname: Guangming surname: Zhan fullname: Zhan, Guangming – sequence: 4 givenname: Lizhi orcidid: 0000-0002-6842-9167 surname: Zhang fullname: Zhang, Lizhi email: zhanglz@mail.ccnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28009157$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PwzAQhi1UBOXjHyCUkaXFduwkZoOKAqKiQ0GM1sVxwFVqF9sR7b8n0HZhgOnudO9z0j1HqGed1QidETwkmJJLUGEISrnWxjDMSow5TfdQn3CKB6wQRQ_1Mcak6xk9REchzLuRsiw_QIe0wFgQnvfR48w14JNXiNons2VjYjT2LQFbJU8mevembTI2K4jG2eTTxPdkAmvtdZXcmLBou3m6Wr9DYyodTtB-DU3Qp9t6jF7Gt8-j-8Fkevcwup4MIGVFHAgsylLrMuNKCCbKNBMcakJAEYC6IqSoaFUIoGlWlyrjmucp6DyDjHLMKEuP0cXm7tK7j1aHKBcmKN00YLVrgyQFp3nBWIq76Pk22pYLXcmlNwvwa7kT0AWuNgHlXQhe11KZ-PNt9GAaSbD8ti0723JnW25tdzD7Be_u_4PhDfa9nbvW287W38gXH1aYfg |
CitedBy_id | crossref_primary_10_1021_acscatal_2c06413 crossref_primary_10_1021_acsaem_0c02202 crossref_primary_10_1016_j_apcatb_2017_08_049 crossref_primary_10_1021_acs_jpcc_8b03383 crossref_primary_10_1039_C8CS00396C crossref_primary_10_1016_j_cej_2019_123974 crossref_primary_10_1002_adma_202007891 crossref_primary_10_1016_j_cej_2022_141187 crossref_primary_10_1016_j_nanoen_2019_103886 crossref_primary_10_1016_j_mcat_2023_113471 crossref_primary_10_1039_D3NR02116E crossref_primary_10_1016_j_nanoen_2017_09_045 crossref_primary_10_1021_acs_inorgchem_2c00058 crossref_primary_10_1016_j_ijbiomac_2024_130612 crossref_primary_10_1039_C7RA01723E crossref_primary_10_1016_j_checat_2024_101128 crossref_primary_10_1016_j_jcis_2022_06_076 crossref_primary_10_1021_acssuschemeng_1c00977 crossref_primary_10_1002_cssc_202002242 crossref_primary_10_1007_s12274_021_3725_0 crossref_primary_10_1016_j_molstruc_2025_141660 crossref_primary_10_1002_smtd_201800352 crossref_primary_10_1016_j_cclet_2019_10_041 crossref_primary_10_1039_C9TA13589H crossref_primary_10_1002_smtd_202200413 crossref_primary_10_1016_j_apsusc_2021_150215 crossref_primary_10_1038_s41467_021_26219_6 crossref_primary_10_1038_s41467_019_12347_7 crossref_primary_10_1039_D0CP02007A crossref_primary_10_1007_s40843_018_9284_0 crossref_primary_10_1016_j_jcis_2017_09_053 crossref_primary_10_1021_acs_inorgchem_3c00716 crossref_primary_10_1002_aenm_202003294 crossref_primary_10_1016_j_jcat_2019_01_002 crossref_primary_10_1039_C8CC01873A crossref_primary_10_1016_j_apsusc_2023_158710 crossref_primary_10_1021_acsami_1c09774 crossref_primary_10_1016_j_apcatb_2018_02_006 crossref_primary_10_1007_s11426_024_2436_4 crossref_primary_10_1016_j_solener_2021_05_090 crossref_primary_10_1016_j_matchemphys_2020_123891 crossref_primary_10_1039_C8TA07587E crossref_primary_10_1016_j_envpol_2023_122374 crossref_primary_10_1016_j_jcis_2020_10_048 crossref_primary_10_1002_smtd_201800333 crossref_primary_10_1002_cptc_202200192 crossref_primary_10_1007_s12598_021_01762_9 crossref_primary_10_1002_admi_202202172 crossref_primary_10_1002_aenm_202002199 crossref_primary_10_1016_j_mtchem_2022_100823 crossref_primary_10_1002_adfm_202106713 crossref_primary_10_1002_cnma_202100105 crossref_primary_10_1039_C8TA11627J crossref_primary_10_1016_j_apcatb_2017_07_013 crossref_primary_10_1016_S1872_2067_18_63104_3 crossref_primary_10_1039_C9MH01668F crossref_primary_10_1103_PhysRevApplied_18_014053 crossref_primary_10_1021_acsami_2c03837 crossref_primary_10_1039_D0CC04790B crossref_primary_10_1039_D0TA09729B crossref_primary_10_1039_C9TA10144F crossref_primary_10_1002_smsc_202000069 crossref_primary_10_1002_ange_202208791 crossref_primary_10_1039_C9TA10471B crossref_primary_10_1016_j_jallcom_2020_154953 crossref_primary_10_1007_s10934_021_01038_8 crossref_primary_10_1021_acsami_0c06601 crossref_primary_10_1016_j_mtcomm_2022_103270 crossref_primary_10_1039_C8CS00607E crossref_primary_10_1021_jacs_0c00409 crossref_primary_10_1016_j_apcatb_2021_120679 crossref_primary_10_1088_1674_4926_42_5_052301 crossref_primary_10_1016_j_colsurfa_2022_128829 crossref_primary_10_1021_acsami_9b08109 crossref_primary_10_1002_ange_202105496 crossref_primary_10_1016_j_apcatb_2023_123557 crossref_primary_10_1002_ange_201708645 crossref_primary_10_1016_j_apsusc_2021_151694 crossref_primary_10_1016_j_colsurfa_2022_130903 crossref_primary_10_1039_D1TA08257D crossref_primary_10_1021_acs_chemmater_8b04444 crossref_primary_10_1016_j_jcis_2017_09_005 crossref_primary_10_1016_j_jece_2020_104997 crossref_primary_10_1007_s00339_020_03721_0 crossref_primary_10_1016_j_jhazmat_2019_121635 crossref_primary_10_1016_j_optmat_2022_113346 crossref_primary_10_1016_j_jechem_2023_02_043 crossref_primary_10_1039_C9CY00946A crossref_primary_10_1002_aenm_201700529 crossref_primary_10_1002_smtd_201800388 crossref_primary_10_3390_catal7050153 crossref_primary_10_1039_C9CY01945F crossref_primary_10_1016_j_mattod_2019_05_004 crossref_primary_10_1016_j_ceramint_2018_12_173 crossref_primary_10_3390_catal11010106 crossref_primary_10_1016_j_cclet_2024_110125 crossref_primary_10_1016_j_jece_2020_104505 crossref_primary_10_1016_j_nanoen_2017_09_008 crossref_primary_10_1021_acs_langmuir_2c00741 crossref_primary_10_1039_C8CP01396A crossref_primary_10_1002_chem_201904025 crossref_primary_10_1016_j_ccr_2021_214033 crossref_primary_10_1002_ange_202014302 crossref_primary_10_1063_1_5021721 crossref_primary_10_1016_j_apcatb_2017_09_036 crossref_primary_10_1021_acscatal_7b03338 crossref_primary_10_1016_j_nanoen_2018_02_040 crossref_primary_10_1016_j_ecoenv_2024_115927 crossref_primary_10_1016_j_mssp_2021_105781 crossref_primary_10_1021_acs_nanolett_4c00951 crossref_primary_10_1016_j_apcatb_2019_117823 crossref_primary_10_1039_C7NR06697J crossref_primary_10_1016_j_matchemphys_2020_123325 crossref_primary_10_1021_acsanm_0c03042 crossref_primary_10_1016_j_apcatb_2024_123732 crossref_primary_10_1021_acssuschemeng_8b01023 crossref_primary_10_1016_j_matlet_2021_130384 crossref_primary_10_1021_acs_jpclett_9b03575 crossref_primary_10_1021_acsami_7b10233 crossref_primary_10_1002_solr_202000132 crossref_primary_10_1002_solr_202200653 crossref_primary_10_1002_adfm_201910005 crossref_primary_10_1016_j_surfin_2024_105083 crossref_primary_10_1007_s40820_020_00545_8 crossref_primary_10_1016_j_joule_2018_04_014 crossref_primary_10_1039_C9DT00792J crossref_primary_10_1002_aenm_202001289 crossref_primary_10_1021_acs_jpcc_3c00757 crossref_primary_10_1016_j_mtphys_2020_100293 crossref_primary_10_34133_2022_9767651 crossref_primary_10_1002_anie_202014302 crossref_primary_10_1016_j_envres_2024_119015 crossref_primary_10_1021_acs_energyfuels_2c01083 crossref_primary_10_1039_D0TA05621A crossref_primary_10_1016_j_cis_2018_03_004 crossref_primary_10_1016_j_apcatb_2024_123722 crossref_primary_10_1002_aenm_202304282 crossref_primary_10_1002_anie_202105496 crossref_primary_10_1016_j_cej_2022_136425 crossref_primary_10_1021_acs_analchem_8b03681 crossref_primary_10_1016_j_ijhydene_2021_06_076 crossref_primary_10_1016_j_cej_2020_126033 crossref_primary_10_1016_j_jece_2020_104766 crossref_primary_10_1016_j_jphotochem_2023_115255 crossref_primary_10_1021_acsaem_2c01346 crossref_primary_10_1039_D0TA04068A crossref_primary_10_1016_j_ijhydene_2023_05_152 crossref_primary_10_1016_j_colsurfa_2023_132721 crossref_primary_10_1039_C8DT02613K crossref_primary_10_1016_j_seppur_2024_130627 crossref_primary_10_1002_aesr_202000097 crossref_primary_10_1021_acscatal_0c02947 crossref_primary_10_1002_adma_201704548 crossref_primary_10_1002_adfm_201801983 crossref_primary_10_1016_j_catcom_2021_106294 crossref_primary_10_1039_D1TC01624E crossref_primary_10_1039_C9CC02291K crossref_primary_10_1002_adfm_202201352 crossref_primary_10_1016_j_nanoen_2024_110109 crossref_primary_10_1016_j_seppur_2023_123379 crossref_primary_10_1002_aenm_201701392 crossref_primary_10_1016_j_mtener_2023_101303 crossref_primary_10_1021_acsnano_1c02884 crossref_primary_10_1002_jctb_7199 crossref_primary_10_1016_j_cclet_2021_03_083 crossref_primary_10_1016_j_jechem_2019_01_027 crossref_primary_10_1021_acs_inorgchem_2c02198 crossref_primary_10_1039_C8TA04529A crossref_primary_10_1016_j_apsusc_2018_09_025 crossref_primary_10_1016_j_jece_2024_114100 crossref_primary_10_1039_C7TA09350K crossref_primary_10_1016_j_solidstatesciences_2022_106985 crossref_primary_10_1039_D0TA04163G crossref_primary_10_1016_j_cej_2017_08_100 crossref_primary_10_1016_j_jcis_2019_08_067 crossref_primary_10_1021_acs_inorgchem_4c01162 crossref_primary_10_1002_ep_13943 crossref_primary_10_1016_j_cej_2022_138066 crossref_primary_10_1002_anie_201708645 crossref_primary_10_1039_D0TA08165E crossref_primary_10_1016_j_ssc_2021_114419 crossref_primary_10_1039_C8TA08834A crossref_primary_10_1002_cctc_201800750 crossref_primary_10_1039_D1TA04180K crossref_primary_10_1016_j_jallcom_2018_12_003 crossref_primary_10_1039_D4NR01749H crossref_primary_10_1039_D1RA06961F crossref_primary_10_1021_accountsmr_4c00103 crossref_primary_10_1016_j_mseb_2018_10_003 crossref_primary_10_2174_1874088X01812010002 crossref_primary_10_1016_j_jcis_2023_01_002 crossref_primary_10_1002_solr_202000442 crossref_primary_10_1016_j_apcatb_2019_118403 crossref_primary_10_3389_fctls_2022_839072 crossref_primary_10_1002_smll_202302623 crossref_primary_10_1016_j_apcatb_2023_122642 crossref_primary_10_2139_ssrn_4186632 crossref_primary_10_1021_acs_jpclett_0c01415 crossref_primary_10_1016_j_chemosphere_2022_136616 crossref_primary_10_1021_acsami_0c18430 crossref_primary_10_1016_j_seppur_2024_128882 crossref_primary_10_1186_s11671_018_2778_9 crossref_primary_10_3390_catal14080500 crossref_primary_10_1016_j_nantod_2021_101285 crossref_primary_10_1016_j_apsusc_2023_157338 crossref_primary_10_1016_j_jhazmat_2021_128195 crossref_primary_10_1002_adma_202211182 crossref_primary_10_1039_C9TA13038A crossref_primary_10_1002_eom2_12122 crossref_primary_10_1016_j_cej_2019_06_019 crossref_primary_10_3390_catal8120621 crossref_primary_10_1016_j_cej_2019_06_018 crossref_primary_10_1007_s40820_021_00681_9 crossref_primary_10_2139_ssrn_4047545 crossref_primary_10_1016_j_ccr_2022_214541 crossref_primary_10_1007_s00339_019_2393_3 crossref_primary_10_1016_j_apcatb_2021_120274 crossref_primary_10_1016_j_jallcom_2018_12_387 crossref_primary_10_1007_s42247_024_00966_w crossref_primary_10_1016_j_mattod_2021_01_029 crossref_primary_10_1016_j_solener_2019_08_063 crossref_primary_10_1021_acsnano_2c00101 crossref_primary_10_1002_slct_201902964 crossref_primary_10_1039_D4QI00564C crossref_primary_10_1039_C8CE00157J crossref_primary_10_1016_j_jallcom_2017_10_175 crossref_primary_10_1016_j_jmst_2021_01_022 crossref_primary_10_1021_acsmaterialslett_1c00160 crossref_primary_10_1002_cssc_201901196 crossref_primary_10_1016_j_wri_2023_100211 crossref_primary_10_1021_acsanm_4c06452 crossref_primary_10_1016_j_matchemphys_2020_123830 crossref_primary_10_1021_acs_inorgchem_9b00858 crossref_primary_10_1002_smll_201701607 crossref_primary_10_1021_acsmaterialslett_4c00041 crossref_primary_10_1016_j_apsusc_2021_150765 crossref_primary_10_1021_acscatal_4c07453 crossref_primary_10_1016_j_jechem_2021_03_001 crossref_primary_10_1002_asia_202000889 crossref_primary_10_1016_j_ceramint_2017_12_168 crossref_primary_10_1016_j_jmrt_2020_02_052 crossref_primary_10_1016_j_seppur_2022_121953 crossref_primary_10_1039_D4TA03204G crossref_primary_10_2166_wst_2020_205 crossref_primary_10_1016_j_chemosphere_2020_127384 crossref_primary_10_1038_s41598_021_85005_y crossref_primary_10_1016_j_jcis_2023_01_116 crossref_primary_10_1016_j_apcata_2024_119574 crossref_primary_10_1016_j_apcatb_2021_120059 crossref_primary_10_1021_acsami_0c06744 crossref_primary_10_1016_j_ijhydene_2022_10_034 crossref_primary_10_1007_s10854_019_02825_5 crossref_primary_10_1002_adma_202005256 crossref_primary_10_1002_anie_201708709 crossref_primary_10_1016_j_ccr_2022_214515 crossref_primary_10_1016_j_trac_2019_05_002 crossref_primary_10_1039_D0CY00656D crossref_primary_10_3390_catal14010009 crossref_primary_10_1016_j_cclet_2021_03_077 crossref_primary_10_1134_S0022476623100013 crossref_primary_10_1007_s12274_018_2268_5 crossref_primary_10_1021_acsami_3c03331 crossref_primary_10_1007_s11244_022_01604_7 crossref_primary_10_1016_j_jechem_2021_11_023 crossref_primary_10_1021_acsnano_2c02831 crossref_primary_10_1016_j_apsusc_2021_150305 crossref_primary_10_1016_j_apsusc_2018_09_126 crossref_primary_10_1016_j_cogsc_2017_05_008 crossref_primary_10_1002_cctc_201901597 crossref_primary_10_1016_j_cogsc_2017_05_005 crossref_primary_10_1016_j_jeurceramsoc_2021_11_063 crossref_primary_10_1016_j_catcom_2018_07_018 crossref_primary_10_1016_j_enchem_2019_100013 crossref_primary_10_1021_acs_jpcc_1c10853 crossref_primary_10_1016_j_jece_2022_107675 crossref_primary_10_1016_j_nexres_2024_100088 crossref_primary_10_1016_j_nantod_2022_101432 crossref_primary_10_1016_j_inoche_2023_111210 crossref_primary_10_1039_D2TA09877F crossref_primary_10_1002_anie_202412340 crossref_primary_10_1016_j_apsusc_2024_159307 crossref_primary_10_1016_j_cej_2018_01_109 crossref_primary_10_1039_C9SE01004A crossref_primary_10_1016_j_apcatb_2019_118262 crossref_primary_10_1016_j_mssp_2024_109249 crossref_primary_10_1002_adma_202300648 crossref_primary_10_1016_j_apcatb_2019_118026 crossref_primary_10_1039_C7CY01291H crossref_primary_10_1016_j_cplett_2018_05_053 crossref_primary_10_1021_acsanm_1c00288 crossref_primary_10_1039_D0CY01227K crossref_primary_10_3390_catal10070759 crossref_primary_10_1016_j_cej_2022_139425 crossref_primary_10_1016_j_jcis_2017_06_060 crossref_primary_10_1002_adma_201904717 crossref_primary_10_1021_acsami_4c04468 crossref_primary_10_1039_D0TA06044E crossref_primary_10_1021_acssuschemeng_7b04584 crossref_primary_10_1016_j_apcatb_2019_118390 crossref_primary_10_1016_j_nantod_2019_100830 crossref_primary_10_1002_adfm_201707178 crossref_primary_10_1002_admi_201900091 crossref_primary_10_1039_D2TA08812F crossref_primary_10_1016_j_ccr_2017_08_010 crossref_primary_10_1016_j_cej_2019_04_052 crossref_primary_10_1039_C7TA02183F crossref_primary_10_1021_acs_inorgchem_3c02583 crossref_primary_10_1016_j_mtcomm_2020_100903 crossref_primary_10_1016_j_joule_2019_03_003 crossref_primary_10_1039_C8CY02357C crossref_primary_10_1021_acs_chemmater_9b04448 crossref_primary_10_1007_s40820_025_01695_3 crossref_primary_10_1021_acs_inorgchem_9b02053 crossref_primary_10_1016_j_jhazmat_2018_02_027 crossref_primary_10_1002_adfm_201703923 crossref_primary_10_1016_j_inoche_2019_107643 crossref_primary_10_1016_j_jallcom_2021_161036 crossref_primary_10_1002_anie_201811728 crossref_primary_10_1021_acsanm_4c06675 crossref_primary_10_1021_acscatal_3c03210 crossref_primary_10_1039_C9GC03731D crossref_primary_10_1007_s11051_022_05599_w crossref_primary_10_1016_j_apcatb_2020_118852 crossref_primary_10_1016_j_apsusc_2019_144806 crossref_primary_10_1007_s12274_021_3641_3 crossref_primary_10_1002_adfm_201803309 crossref_primary_10_1016_j_apsusc_2020_148798 crossref_primary_10_1021_acsnano_3c04268 crossref_primary_10_1016_j_jhazmat_2019_05_084 crossref_primary_10_1016_j_mssp_2021_106384 crossref_primary_10_1016_j_jcis_2022_01_115 crossref_primary_10_3390_nano12101697 crossref_primary_10_1002_ceat_202300114 crossref_primary_10_1149_1945_7111_acd02d crossref_primary_10_1021_acsestengg_1c00103 crossref_primary_10_1021_acsomega_3c07560 crossref_primary_10_1016_j_nanoen_2020_104959 crossref_primary_10_1039_D0TA01453B crossref_primary_10_1016_j_buildenv_2019_106481 crossref_primary_10_1021_acs_jpcc_7b08661 crossref_primary_10_1016_j_apcatb_2020_118984 crossref_primary_10_1016_j_matlet_2019_01_094 crossref_primary_10_1016_j_solidstatesciences_2023_107154 crossref_primary_10_1016_j_inoche_2021_108450 crossref_primary_10_1016_j_molstruc_2023_137390 crossref_primary_10_1021_acssuschemeng_8b00782 crossref_primary_10_1002_slct_202201220 crossref_primary_10_1016_j_apcatb_2017_12_057 crossref_primary_10_1016_j_cclet_2019_05_030 crossref_primary_10_1039_C7EE02220D crossref_primary_10_1016_j_cej_2021_133617 crossref_primary_10_1039_C8CE00700D crossref_primary_10_1515_pac_2020_0704 crossref_primary_10_1016_j_cattod_2023_02_011 crossref_primary_10_1039_D4CC00455H crossref_primary_10_1016_j_jiec_2022_08_013 crossref_primary_10_1016_j_inoche_2023_111286 crossref_primary_10_1039_D0SE01224F crossref_primary_10_1007_s13738_018_1559_9 crossref_primary_10_1016_j_ccr_2019_05_008 crossref_primary_10_1016_j_cej_2021_131693 crossref_primary_10_1039_D1TA07899B crossref_primary_10_1007_s12598_023_02471_1 crossref_primary_10_1016_j_apsusc_2019_01_147 crossref_primary_10_1016_j_matlet_2020_128352 crossref_primary_10_1002_adma_201807576 crossref_primary_10_1016_j_matpr_2021_12_229 crossref_primary_10_1016_j_apcatb_2018_05_034 crossref_primary_10_1016_j_jallcom_2023_170015 crossref_primary_10_1002_adma_201806482 crossref_primary_10_1016_j_ccr_2020_213316 crossref_primary_10_1021_acs_nanolett_1c00530 crossref_primary_10_1039_C9CP05147C crossref_primary_10_1016_j_jhazmat_2021_125186 crossref_primary_10_1039_D0GC01896A crossref_primary_10_1002_ange_202303487 crossref_primary_10_1002_adma_202303845 crossref_primary_10_1039_D3RA03921H crossref_primary_10_1016_j_jphotochem_2022_114208 crossref_primary_10_1016_j_apcatb_2018_06_015 crossref_primary_10_1016_j_mssp_2019_03_002 crossref_primary_10_1016_j_cej_2022_136084 crossref_primary_10_1016_j_apcatb_2018_06_014 crossref_primary_10_1016_j_jphotochemrev_2018_11_001 crossref_primary_10_1007_s11157_022_09617_0 crossref_primary_10_1002_adfm_202100919 crossref_primary_10_1039_D2TA03333J crossref_primary_10_1016_j_arabjc_2024_105950 crossref_primary_10_1021_jacs_8b13062 crossref_primary_10_1002_adma_202100143 crossref_primary_10_1016_j_cej_2024_158816 crossref_primary_10_1039_C8CY00143J crossref_primary_10_1039_D4CY01083C crossref_primary_10_1021_acs_inorgchem_1c00186 crossref_primary_10_1039_D0QI00311E crossref_primary_10_1016_j_chempr_2018_12_003 crossref_primary_10_1016_j_jphotochem_2021_113264 crossref_primary_10_1021_acsnano_1c06017 crossref_primary_10_1016_j_jenvman_2023_117411 crossref_primary_10_1016_j_inoche_2024_112431 crossref_primary_10_1021_acssuschemeng_2c05326 crossref_primary_10_1039_C7CP08363G crossref_primary_10_1016_j_envres_2023_116351 crossref_primary_10_1016_j_jtice_2018_01_017 crossref_primary_10_1021_acs_jpcc_3c06627 crossref_primary_10_1039_D0RA03562A crossref_primary_10_1016_j_pmatsci_2022_101044 crossref_primary_10_1016_j_jcis_2018_08_091 crossref_primary_10_1002_inf2_12033 crossref_primary_10_1002_cjce_23835 crossref_primary_10_1016_j_jcis_2022_10_160 crossref_primary_10_1021_acs_inorgchem_1c03588 crossref_primary_10_1021_acssuschemeng_0c08064 crossref_primary_10_1002_adfm_202313883 crossref_primary_10_1016_j_cej_2019_122026 crossref_primary_10_1002_admi_201901034 crossref_primary_10_1039_C7TA08415C crossref_primary_10_1016_j_jclepro_2021_129975 crossref_primary_10_1016_j_ccr_2022_214468 crossref_primary_10_1016_j_apcatb_2020_119632 crossref_primary_10_1016_j_jcis_2019_08_048 crossref_primary_10_1016_j_joule_2017_07_007 crossref_primary_10_1039_D2CP03565K crossref_primary_10_1039_D2CS00797E crossref_primary_10_1016_j_mtphys_2024_101542 crossref_primary_10_1002_gch2_202300185 crossref_primary_10_1016_j_jece_2023_109996 crossref_primary_10_1016_j_rser_2025_115490 crossref_primary_10_1016_j_cej_2024_155646 crossref_primary_10_1016_j_mcat_2021_112091 crossref_primary_10_1016_j_jece_2021_106569 crossref_primary_10_1016_j_jpcs_2019_109141 crossref_primary_10_1039_D2TA09780J crossref_primary_10_1016_j_apsusc_2022_153160 crossref_primary_10_1016_j_apsusc_2019_06_201 crossref_primary_10_1134_S0036024420030322 crossref_primary_10_1039_C8QI01098F crossref_primary_10_1016_j_apcatb_2020_119520 crossref_primary_10_1016_j_apsusc_2020_145413 crossref_primary_10_1016_j_apsusc_2018_10_020 crossref_primary_10_1515_eng_2024_0024 crossref_primary_10_1016_j_apcata_2024_120080 crossref_primary_10_1016_j_cej_2022_140926 crossref_primary_10_1021_acsanm_8b00907 crossref_primary_10_1002_anie_202208791 crossref_primary_10_1002_smll_202105228 crossref_primary_10_1016_j_jiec_2019_06_022 crossref_primary_10_1039_D2TA09345F crossref_primary_10_3389_fchem_2022_1051496 crossref_primary_10_1021_acs_iecr_2c02495 crossref_primary_10_1021_jacs_4c00265 crossref_primary_10_1021_acscatal_1c00072 crossref_primary_10_1002_aenm_201902020 crossref_primary_10_1088_1361_6528_abe575 crossref_primary_10_1016_j_apsusc_2020_146858 crossref_primary_10_1016_j_jlumin_2023_119860 crossref_primary_10_1088_1742_6596_1637_1_012055 crossref_primary_10_1016_j_inoche_2020_107806 crossref_primary_10_1016_j_apsusc_2020_145647 crossref_primary_10_1039_D4CY00820K crossref_primary_10_1016_j_inoche_2022_109665 crossref_primary_10_1039_D0NJ01060J crossref_primary_10_1002_anie_202303487 crossref_primary_10_1039_C7TA08117K crossref_primary_10_1039_C8RA03981J crossref_primary_10_1016_j_ccr_2023_215246 crossref_primary_10_1021_acssuschemeng_4c09790 crossref_primary_10_1039_D1NA00223F crossref_primary_10_1002_smll_202202252 crossref_primary_10_1016_j_colsurfa_2023_131055 crossref_primary_10_1016_j_seppur_2020_117872 crossref_primary_10_1016_j_colsurfa_2021_126744 crossref_primary_10_1016_j_jallcom_2022_168469 crossref_primary_10_1002_advs_202003626 crossref_primary_10_1016_j_rser_2022_112767 crossref_primary_10_1021_acssuschemeng_8b04977 crossref_primary_10_1007_s11706_017_0379_7 crossref_primary_10_1007_s12209_020_00243_x crossref_primary_10_1002_cplu_202000131 crossref_primary_10_1016_j_chemosphere_2018_04_017 crossref_primary_10_1007_s11426_018_9273_1 crossref_primary_10_1039_C7TA09897A crossref_primary_10_1016_j_cis_2024_103136 crossref_primary_10_1021_acscatal_0c01081 crossref_primary_10_1039_C9NR02502B crossref_primary_10_1002_cssc_201901899 crossref_primary_10_1039_D1SE00594D crossref_primary_10_1002_ange_201811728 crossref_primary_10_1002_adma_202005721 crossref_primary_10_1021_acsanm_4c02248 crossref_primary_10_1021_acs_chemrev_9b00659 crossref_primary_10_1016_j_jhazmat_2019_121854 crossref_primary_10_1021_acs_chemrev_0c01071 crossref_primary_10_1016_j_jmst_2020_10_056 crossref_primary_10_1080_21622515_2025_2466757 crossref_primary_10_1016_j_inoche_2024_112080 crossref_primary_10_1016_j_mcat_2021_111913 crossref_primary_10_1016_j_jphotochem_2019_112163 crossref_primary_10_1021_acscatal_9b03246 crossref_primary_10_1016_j_cogsc_2021_100580 crossref_primary_10_1016_j_jcis_2017_08_042 crossref_primary_10_1088_1361_6528_ac0a16 crossref_primary_10_1002_cey2_305 crossref_primary_10_1016_j_apsusc_2018_07_054 crossref_primary_10_1039_C9QI01287G crossref_primary_10_1002_sstr_202200380 crossref_primary_10_1021_acsaem_9b01961 crossref_primary_10_1016_j_chempr_2024_06_014 crossref_primary_10_1016_j_jcis_2020_09_111 crossref_primary_10_1016_j_apcatb_2018_09_058 crossref_primary_10_1016_j_jcat_2019_10_018 crossref_primary_10_1016_j_jcis_2024_08_218 crossref_primary_10_1039_C9TA01925A crossref_primary_10_1021_acsami_9b21167 crossref_primary_10_1039_C9CE01835B crossref_primary_10_1016_j_ensm_2019_03_021 crossref_primary_10_1016_j_mtchem_2018_11_002 crossref_primary_10_1021_acs_cgd_9b01141 crossref_primary_10_1016_j_cej_2022_138653 crossref_primary_10_1016_j_apcatb_2020_119689 crossref_primary_10_1080_00150193_2019_1592454 crossref_primary_10_1039_D0MA00590H crossref_primary_10_1364_OSAC_399616 crossref_primary_10_1039_D2NJ04216A crossref_primary_10_1002_aesr_202400083 crossref_primary_10_1021_acscatal_1c03407 crossref_primary_10_1021_acscatal_9b03015 crossref_primary_10_1021_jacs_4c13254 crossref_primary_10_1016_j_jclepro_2023_136017 crossref_primary_10_1039_D3EY00019B crossref_primary_10_1088_1361_6528_ab3f15 crossref_primary_10_1002_aelm_202000168 crossref_primary_10_1016_j_scib_2019_05_009 crossref_primary_10_1039_D3TB00566F crossref_primary_10_1016_j_cattod_2018_11_043 crossref_primary_10_1016_j_jmst_2020_11_037 crossref_primary_10_1021_acsami_9b12328 crossref_primary_10_1016_j_jmst_2021_08_085 crossref_primary_10_1016_j_cej_2024_151913 crossref_primary_10_1016_j_jhazmat_2019_120822 crossref_primary_10_1021_acs_chemrev_8b00400 crossref_primary_10_1039_D1CY00366F crossref_primary_10_1016_j_cej_2021_129305 crossref_primary_10_1021_acs_jpclett_0c02480 crossref_primary_10_1038_s41586_019_1260_x crossref_primary_10_1002_adma_201703828 crossref_primary_10_1039_D0CC05449F crossref_primary_10_1111_php_13831 crossref_primary_10_1002_adma_201804211 crossref_primary_10_1002_chem_201800535 crossref_primary_10_1039_D4CY01079E crossref_primary_10_1039_D0QI00153H crossref_primary_10_1007_s10853_022_06970_x crossref_primary_10_1039_C9TA02373A crossref_primary_10_1016_j_cej_2020_124822 crossref_primary_10_1039_D2SC03863C crossref_primary_10_1088_2053_1591_aabe6f crossref_primary_10_1016_j_jclepro_2021_128137 crossref_primary_10_1002_adma_201701774 crossref_primary_10_2139_ssrn_4119152 crossref_primary_10_1016_j_rser_2022_112967 crossref_primary_10_2139_ssrn_4192948 crossref_primary_10_1016_j_jhazmat_2018_10_063 crossref_primary_10_1016_j_jallcom_2024_177467 crossref_primary_10_1016_j_cej_2019_122422 crossref_primary_10_1002_ange_202412340 crossref_primary_10_1186_s40580_021_00273_8 crossref_primary_10_1016_j_cej_2019_01_051 crossref_primary_10_1039_D0NJ04068A crossref_primary_10_1016_j_jcis_2020_03_062 crossref_primary_10_1039_D0RA10439F crossref_primary_10_1016_j_apcato_2024_206919 crossref_primary_10_1002_eem2_12432 crossref_primary_10_1039_D0NR01359E crossref_primary_10_1002_ange_201708709 crossref_primary_10_1039_C7MH00557A crossref_primary_10_1016_j_jcis_2021_10_037 crossref_primary_10_1039_D0TA11201A crossref_primary_10_1039_D1RA08004K crossref_primary_10_1016_j_jcis_2018_01_096 crossref_primary_10_1016_j_mattod_2019_10_022 crossref_primary_10_1016_j_jcis_2021_05_075 crossref_primary_10_1016_j_ceramint_2021_07_230 crossref_primary_10_1039_D0CE00932F |
Cites_doi | 10.1021/cr400641x 10.1021/ar2003013 10.1021/acs.accounts.6b00036 10.1039/C3NR05246J 10.1039/C5EE01398D 10.1021/ja402956f 10.1038/ncomms11480 10.1021/jp065373m 10.1021/cr500008u 10.1039/C5RA07776A 10.1039/B800489G 10.1016/j.jcat.2009.06.024 10.1016/j.apcatb.2013.05.047 10.1021/ja512491v 10.1073/pnas.1605512113 10.1021/ja00464a015 10.1016/j.ijhydene.2016.04.236 10.1126/science.1186120 10.1039/c2jm33556e 10.1038/nmat3696 10.1039/c3en00098b 10.1021/ja210484t 10.1021/acs.chemmater.6b00349 10.1021/cr5001892 10.1002/chem.201503778 10.1039/c3nr05529a 10.1039/C6SC00389C 10.1039/C4NR02553A 10.1039/C3CS60206K 10.1021/jacs.5b03105 10.1002/adfm.201404178 10.1039/C4CP03166K 10.1016/j.apcatb.2014.07.024 10.1039/c4nr01315h 10.1039/C5NR07380D 10.1039/C4CS00223G 10.1039/C3CS60378D 10.1021/jp077471t 10.1002/adma.201501200 10.1016/j.apcatb.2013.02.009 10.1039/c1cc11015b 10.1002/anie.201101182 10.1021/ar300227e 10.1016/j.apcatb.2006.08.002 10.1002/chem.201302884 10.1002/anie.201404748 10.1021/ja4092903 10.1016/j.apcatb.2012.12.003 10.1002/adma.201600301 10.1039/C4RA06419D |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.6b00523 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 121 |
ExternalDocumentID | 28009157 10_1021_acs_accounts_6b00523 b226968 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a348t-909bbeeb65c9949b3695af11ac1aafd118d2d89a236fbc65e573ae76a62504243 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 04:16:40 EDT 2025 Thu Apr 03 07:10:51 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Tue Jul 01 03:15:58 EDT 2025 Thu Aug 27 13:41:59 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-909bbeeb65c9949b3695af11ac1aafd118d2d89a236fbc65e573ae76a62504243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6842-9167 |
PMID | 28009157 |
PQID | 1852784430 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1852784430 pubmed_primary_28009157 crossref_citationtrail_10_1021_acs_accounts_6b00523 crossref_primary_10_1021_acs_accounts_6b00523 acs_journals_10_1021_acs_accounts_6b00523 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-17 |
PublicationDateYYYYMMDD | 2017-01-17 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1021/cr400641x – ident: ref5/cit5 doi: 10.1021/ar2003013 – ident: ref8/cit8 doi: 10.1021/acs.accounts.6b00036 – ident: ref30/cit30 doi: 10.1039/C3NR05246J – ident: ref40/cit40 doi: 10.1039/C5EE01398D – ident: ref24/cit24 doi: 10.1021/ja402956f – ident: ref39/cit39 doi: 10.1038/ncomms11480 – ident: ref35/cit35 doi: 10.1021/jp065373m – ident: ref1/cit1 doi: 10.1021/cr500008u – ident: ref41/cit41 doi: 10.1039/C5RA07776A – ident: ref15/cit15 doi: 10.1039/B800489G – ident: ref16/cit16 doi: 10.1016/j.jcat.2009.06.024 – ident: ref31/cit31 doi: 10.1016/j.apcatb.2013.05.047 – ident: ref11/cit11 doi: 10.1021/ja512491v – ident: ref10/cit10 doi: 10.1073/pnas.1605512113 – ident: ref13/cit13 doi: 10.1021/ja00464a015 – ident: ref44/cit44 doi: 10.1016/j.ijhydene.2016.04.236 – ident: ref6/cit6 doi: 10.1126/science.1186120 – ident: ref33/cit33 doi: 10.1039/c2jm33556e – ident: ref9/cit9 doi: 10.1038/nmat3696 – ident: ref21/cit21 doi: 10.1039/c3en00098b – ident: ref37/cit37 doi: 10.1021/ja210484t – ident: ref49/cit49 doi: 10.1021/acs.chemmater.6b00349 – ident: ref14/cit14 doi: 10.1021/cr5001892 – ident: ref43/cit43 doi: 10.1002/chem.201503778 – ident: ref20/cit20 doi: 10.1039/c3nr05529a – ident: ref50/cit50 doi: 10.1039/C6SC00389C – ident: ref19/cit19 doi: 10.1039/C4NR02553A – ident: ref2/cit2 doi: 10.1039/C3CS60206K – ident: ref27/cit27 doi: 10.1021/jacs.5b03105 – ident: ref42/cit42 doi: 10.1002/adfm.201404178 – ident: ref48/cit48 doi: 10.1039/C4CP03166K – ident: ref45/cit45 doi: 10.1016/j.apcatb.2014.07.024 – ident: ref29/cit29 doi: 10.1039/c4nr01315h – ident: ref47/cit47 doi: 10.1039/C5NR07380D – ident: ref3/cit3 doi: 10.1039/C4CS00223G – ident: ref17/cit17 doi: 10.1039/C3CS60378D – ident: ref26/cit26 doi: 10.1021/jp077471t – ident: ref25/cit25 doi: 10.1002/adma.201501200 – ident: ref32/cit32 doi: 10.1016/j.apcatb.2013.02.009 – ident: ref23/cit23 doi: 10.1039/c1cc11015b – ident: ref18/cit18 doi: 10.1002/anie.201101182 – ident: ref7/cit7 doi: 10.1021/ar300227e – ident: ref34/cit34 doi: 10.1016/j.apcatb.2006.08.002 – ident: ref36/cit36 doi: 10.1002/chem.201302884 – ident: ref12/cit12 doi: 10.1002/anie.201404748 – ident: ref28/cit28 doi: 10.1021/ja4092903 – ident: ref46/cit46 doi: 10.1016/j.apcatb.2012.12.003 – ident: ref38/cit38 doi: 10.1002/adma.201600301 – ident: ref22/cit22 doi: 10.1039/C4RA06419D |
SSID | ssj0002467 |
Score | 2.667762 |
Snippet | Hydrogen and ammonia are the chemical molecules that are vital to Earth’s energy, environmental, and biological processes. Hydrogen with renewable,... Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112 |
Title | Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides |
URI | http://dx.doi.org/10.1021/acs.accounts.6b00523 https://www.ncbi.nlm.nih.gov/pubmed/28009157 https://www.proquest.com/docview/1852784430 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKPcCFtjzabQEZiQuHLOtHnPhYVl0hCruHBcEtmtiOWNFm0SYrQX99x3ksAoSAWxzZo3hmHH_j8cwQsq-t1cyADgQ3vUBaBwFofOrxLBOQhUxYH5x8NlTHF_LkKrx6MBSfevA5OwRTIOmqckLRVfU55hL5yBWuYw-F-uPFn5dLVefIRBNZxpK3oXIvUPEbkikeb0gvoMxqtxl8IqM2Zqe-ZHLTnZdp1_x7nsLxjRP5TNYa4El_1pryhXxw-TpZ6bf13jbI77G3cuklgs8ZHSM2rW5EU8gtHU7K2RQ1jQ4md5UkqT--padw7yt90qNJ8XeO7dHd_TXCeuuKTXIx-HXePw6aUgsBCBmXge7pNHUuVaHRWupUKB1CxhgYBpBZtEIst7EGLlSWGhW6MBLgIgXKp0DjUmyR5Xyau2-EIg0lQGInNB4VN3EUiSyOhPJYE9FRhxwgJ5JmqRRJ5QXnLPEvW_YkDXs6RLSySUyTs9yXzvjzyqhgMeq2ztnxSv-9VuwJ8tx7TCB30zl-Wxx6x6wUvQ75WuvDgiJHqK1ZGH1_x3x-kFXuYQHqJ4u2yXI5m7sdBDVlultp8n8pHvNt |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xeGAv29hnx8Y8aS97SFd_Jn6EalUZpTwUNt4ix3a0CpZOTSoBfz3nfBRtEkK8JZZ9su8u8e98vjuAL9o5Ta3REWd2EAnnTWQ0Pg1YnnOTS8pdCE4-nqrxmfhxLs83QHaxMDiJEimVtRP_LrsA_RbaTFNAoeyr5jjzCWwhHmFBsfeHs_UPmAnVpMpES1kkgnURc_dQCfuSLf_dl-4Bm_WmM3oOP9fTre-aXPRXVda3N_9lcnz0el7AsxaGkv1Gb3ZgwxcvYXvYVX97BUezYPOSXwhFl2SGSLW-H01M4ch0Xi0XqHdkNL-q5UrCYS6ZmOtQ95MczMs_K3w_ubr-jSDf-fI1nI2-nw7HUVt4ITJcJFWkBzrLvM-UtFoLnXGlpckpNZYakzu0SRxziTaMqzyzSnoZc-NjZVRIiMYEfwObxaLw74AgDcWNwE5oSipmkzjmeRJzFZAnYqUefEVOpO2HU6a1T5zRNDR27Elb9vSAdyJKbZvBPBTSuHxgVLQe9bfJ4PFA_8-d9FPkefCfmMIvVji3RAY3reCDHrxt1GJNkSHw1lTG7x-xnk-wPT49nqSTw-nRLjxlATCgytL4A2xWy5X_iHCnyvZq5b4Frmf7zg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgEXoDyXQmskLhyyrB9x4mNZWBVaFqSlouISTWxHrIBstclKLb--4zxWgFRV7S2J7JE9_hx_47FnAF4Z5wy3aCIp7ChSzmOEhp5GoigkFjGXLlxO_jTV-0fq43F8_FeqL2pERZKqxokfZvWJK7oIA_xN-I5tEoVqqNstzQ24GTx3Adx749n6JyyUbsNlkrWsUiX6W3MXSAlrk63-XZsuIJzNwjO5B9_XTW7Om_wcrup8aP_8F83xWn26D3c7Osr2WvxswQ1fPoDb4z4L3EM4mAXbl30jSrpkM2KszTlphqVj03m9XBD-2GR-2owvC5u67BDPQv5P9nZe_V7R--fTsx9E9p2vHsHR5P3X8X7UJWCIUKq0jszI5Ln3uY6tMcrkUpsYC87RcsTCkW3ihEsNCqmL3OrYx4lEn2jUITCaUPIxbJaL0j8FRjK0REWFyKTUwqZJIos0kTowUOJMA3hNmsi6CVRljW9c8Cx87NWTdeoZgOyHKbNdJPOQUOPXJbWida2TNpLHJeVf9gjISOfBj4KlX6yobWkc3LVKjgbwpIXGWqIgAm54nDy7Qn924daXd5Ps8MP0YBvuiMAbCLU8eQ6b9XLlXxDrqfOdBt_n1Ib-UQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar+Water+Splitting+and+Nitrogen+Fixation+with+Layered+Bismuth+Oxyhalides&rft.jtitle=Accounts+of+chemical+research&rft.au=Li%2C+Jie&rft.au=Li%2C+Hao&rft.au=Zhan%2C+Guangming&rft.au=Zhang%2C+Lizhi&rft.date=2017-01-17&rft.eissn=1520-4898&rft.volume=50&rft.issue=1&rft.spage=112&rft_id=info:doi/10.1021%2Facs.accounts.6b00523&rft_id=info%3Apmid%2F28009157&rft.externalDocID=28009157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |