Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides

Hydrogen and ammonia are the chemical molecules that are vital to Earth’s energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 50; no. 1; pp. 112 - 121
Main Authors Li, Jie, Li, Hao, Zhan, Guangming, Zhang, Lizhi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.01.2017
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen and ammonia are the chemical molecules that are vital to Earth’s energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber–Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1–x Zn x )­(N1–x O x ), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the NN triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.
AbstractList Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.
Hydrogen and ammonia are the chemical molecules that are vital to Earth’s energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber–Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1–x Zn x )­(N1–x O x ), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the NN triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.
Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO , SrTiO , (Ga Zn )(N O ), CdS, and g-C N for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N . This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.
Author Zhang, Lizhi
Zhan, Guangming
Li, Jie
Li, Hao
AuthorAffiliation Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry
Central China Normal University
AuthorAffiliation_xml – name: Central China Normal University
– name: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry
Author_xml – sequence: 1
  givenname: Jie
  surname: Li
  fullname: Li, Jie
– sequence: 2
  givenname: Hao
  surname: Li
  fullname: Li, Hao
– sequence: 3
  givenname: Guangming
  surname: Zhan
  fullname: Zhan, Guangming
– sequence: 4
  givenname: Lizhi
  orcidid: 0000-0002-6842-9167
  surname: Zhang
  fullname: Zhang, Lizhi
  email: zhanglz@mail.ccnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28009157$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAQhi1UBOXjHyCUkaXFduwkZoOKAqKiQ0GM1sVxwFVqF9sR7b8n0HZhgOnudO9z0j1HqGed1QidETwkmJJLUGEISrnWxjDMSow5TfdQn3CKB6wQRQ_1Mcak6xk9REchzLuRsiw_QIe0wFgQnvfR48w14JNXiNons2VjYjT2LQFbJU8mevembTI2K4jG2eTTxPdkAmvtdZXcmLBou3m6Wr9DYyodTtB-DU3Qp9t6jF7Gt8-j-8Fkevcwup4MIGVFHAgsylLrMuNKCCbKNBMcakJAEYC6IqSoaFUIoGlWlyrjmucp6DyDjHLMKEuP0cXm7tK7j1aHKBcmKN00YLVrgyQFp3nBWIq76Pk22pYLXcmlNwvwa7kT0AWuNgHlXQhe11KZ-PNt9GAaSbD8ti0723JnW25tdzD7Be_u_4PhDfa9nbvW287W38gXH1aYfg
CitedBy_id crossref_primary_10_1021_acscatal_2c06413
crossref_primary_10_1021_acsaem_0c02202
crossref_primary_10_1016_j_apcatb_2017_08_049
crossref_primary_10_1021_acs_jpcc_8b03383
crossref_primary_10_1039_C8CS00396C
crossref_primary_10_1016_j_cej_2019_123974
crossref_primary_10_1002_adma_202007891
crossref_primary_10_1016_j_cej_2022_141187
crossref_primary_10_1016_j_nanoen_2019_103886
crossref_primary_10_1016_j_mcat_2023_113471
crossref_primary_10_1039_D3NR02116E
crossref_primary_10_1016_j_nanoen_2017_09_045
crossref_primary_10_1021_acs_inorgchem_2c00058
crossref_primary_10_1016_j_ijbiomac_2024_130612
crossref_primary_10_1039_C7RA01723E
crossref_primary_10_1016_j_checat_2024_101128
crossref_primary_10_1016_j_jcis_2022_06_076
crossref_primary_10_1021_acssuschemeng_1c00977
crossref_primary_10_1002_cssc_202002242
crossref_primary_10_1007_s12274_021_3725_0
crossref_primary_10_1016_j_molstruc_2025_141660
crossref_primary_10_1002_smtd_201800352
crossref_primary_10_1016_j_cclet_2019_10_041
crossref_primary_10_1039_C9TA13589H
crossref_primary_10_1002_smtd_202200413
crossref_primary_10_1016_j_apsusc_2021_150215
crossref_primary_10_1038_s41467_021_26219_6
crossref_primary_10_1038_s41467_019_12347_7
crossref_primary_10_1039_D0CP02007A
crossref_primary_10_1007_s40843_018_9284_0
crossref_primary_10_1016_j_jcis_2017_09_053
crossref_primary_10_1021_acs_inorgchem_3c00716
crossref_primary_10_1002_aenm_202003294
crossref_primary_10_1016_j_jcat_2019_01_002
crossref_primary_10_1039_C8CC01873A
crossref_primary_10_1016_j_apsusc_2023_158710
crossref_primary_10_1021_acsami_1c09774
crossref_primary_10_1016_j_apcatb_2018_02_006
crossref_primary_10_1007_s11426_024_2436_4
crossref_primary_10_1016_j_solener_2021_05_090
crossref_primary_10_1016_j_matchemphys_2020_123891
crossref_primary_10_1039_C8TA07587E
crossref_primary_10_1016_j_envpol_2023_122374
crossref_primary_10_1016_j_jcis_2020_10_048
crossref_primary_10_1002_smtd_201800333
crossref_primary_10_1002_cptc_202200192
crossref_primary_10_1007_s12598_021_01762_9
crossref_primary_10_1002_admi_202202172
crossref_primary_10_1002_aenm_202002199
crossref_primary_10_1016_j_mtchem_2022_100823
crossref_primary_10_1002_adfm_202106713
crossref_primary_10_1002_cnma_202100105
crossref_primary_10_1039_C8TA11627J
crossref_primary_10_1016_j_apcatb_2017_07_013
crossref_primary_10_1016_S1872_2067_18_63104_3
crossref_primary_10_1039_C9MH01668F
crossref_primary_10_1103_PhysRevApplied_18_014053
crossref_primary_10_1021_acsami_2c03837
crossref_primary_10_1039_D0CC04790B
crossref_primary_10_1039_D0TA09729B
crossref_primary_10_1039_C9TA10144F
crossref_primary_10_1002_smsc_202000069
crossref_primary_10_1002_ange_202208791
crossref_primary_10_1039_C9TA10471B
crossref_primary_10_1016_j_jallcom_2020_154953
crossref_primary_10_1007_s10934_021_01038_8
crossref_primary_10_1021_acsami_0c06601
crossref_primary_10_1016_j_mtcomm_2022_103270
crossref_primary_10_1039_C8CS00607E
crossref_primary_10_1021_jacs_0c00409
crossref_primary_10_1016_j_apcatb_2021_120679
crossref_primary_10_1088_1674_4926_42_5_052301
crossref_primary_10_1016_j_colsurfa_2022_128829
crossref_primary_10_1021_acsami_9b08109
crossref_primary_10_1002_ange_202105496
crossref_primary_10_1016_j_apcatb_2023_123557
crossref_primary_10_1002_ange_201708645
crossref_primary_10_1016_j_apsusc_2021_151694
crossref_primary_10_1016_j_colsurfa_2022_130903
crossref_primary_10_1039_D1TA08257D
crossref_primary_10_1021_acs_chemmater_8b04444
crossref_primary_10_1016_j_jcis_2017_09_005
crossref_primary_10_1016_j_jece_2020_104997
crossref_primary_10_1007_s00339_020_03721_0
crossref_primary_10_1016_j_jhazmat_2019_121635
crossref_primary_10_1016_j_optmat_2022_113346
crossref_primary_10_1016_j_jechem_2023_02_043
crossref_primary_10_1039_C9CY00946A
crossref_primary_10_1002_aenm_201700529
crossref_primary_10_1002_smtd_201800388
crossref_primary_10_3390_catal7050153
crossref_primary_10_1039_C9CY01945F
crossref_primary_10_1016_j_mattod_2019_05_004
crossref_primary_10_1016_j_ceramint_2018_12_173
crossref_primary_10_3390_catal11010106
crossref_primary_10_1016_j_cclet_2024_110125
crossref_primary_10_1016_j_jece_2020_104505
crossref_primary_10_1016_j_nanoen_2017_09_008
crossref_primary_10_1021_acs_langmuir_2c00741
crossref_primary_10_1039_C8CP01396A
crossref_primary_10_1002_chem_201904025
crossref_primary_10_1016_j_ccr_2021_214033
crossref_primary_10_1002_ange_202014302
crossref_primary_10_1063_1_5021721
crossref_primary_10_1016_j_apcatb_2017_09_036
crossref_primary_10_1021_acscatal_7b03338
crossref_primary_10_1016_j_nanoen_2018_02_040
crossref_primary_10_1016_j_ecoenv_2024_115927
crossref_primary_10_1016_j_mssp_2021_105781
crossref_primary_10_1021_acs_nanolett_4c00951
crossref_primary_10_1016_j_apcatb_2019_117823
crossref_primary_10_1039_C7NR06697J
crossref_primary_10_1016_j_matchemphys_2020_123325
crossref_primary_10_1021_acsanm_0c03042
crossref_primary_10_1016_j_apcatb_2024_123732
crossref_primary_10_1021_acssuschemeng_8b01023
crossref_primary_10_1016_j_matlet_2021_130384
crossref_primary_10_1021_acs_jpclett_9b03575
crossref_primary_10_1021_acsami_7b10233
crossref_primary_10_1002_solr_202000132
crossref_primary_10_1002_solr_202200653
crossref_primary_10_1002_adfm_201910005
crossref_primary_10_1016_j_surfin_2024_105083
crossref_primary_10_1007_s40820_020_00545_8
crossref_primary_10_1016_j_joule_2018_04_014
crossref_primary_10_1039_C9DT00792J
crossref_primary_10_1002_aenm_202001289
crossref_primary_10_1021_acs_jpcc_3c00757
crossref_primary_10_1016_j_mtphys_2020_100293
crossref_primary_10_34133_2022_9767651
crossref_primary_10_1002_anie_202014302
crossref_primary_10_1016_j_envres_2024_119015
crossref_primary_10_1021_acs_energyfuels_2c01083
crossref_primary_10_1039_D0TA05621A
crossref_primary_10_1016_j_cis_2018_03_004
crossref_primary_10_1016_j_apcatb_2024_123722
crossref_primary_10_1002_aenm_202304282
crossref_primary_10_1002_anie_202105496
crossref_primary_10_1016_j_cej_2022_136425
crossref_primary_10_1021_acs_analchem_8b03681
crossref_primary_10_1016_j_ijhydene_2021_06_076
crossref_primary_10_1016_j_cej_2020_126033
crossref_primary_10_1016_j_jece_2020_104766
crossref_primary_10_1016_j_jphotochem_2023_115255
crossref_primary_10_1021_acsaem_2c01346
crossref_primary_10_1039_D0TA04068A
crossref_primary_10_1016_j_ijhydene_2023_05_152
crossref_primary_10_1016_j_colsurfa_2023_132721
crossref_primary_10_1039_C8DT02613K
crossref_primary_10_1016_j_seppur_2024_130627
crossref_primary_10_1002_aesr_202000097
crossref_primary_10_1021_acscatal_0c02947
crossref_primary_10_1002_adma_201704548
crossref_primary_10_1002_adfm_201801983
crossref_primary_10_1016_j_catcom_2021_106294
crossref_primary_10_1039_D1TC01624E
crossref_primary_10_1039_C9CC02291K
crossref_primary_10_1002_adfm_202201352
crossref_primary_10_1016_j_nanoen_2024_110109
crossref_primary_10_1016_j_seppur_2023_123379
crossref_primary_10_1002_aenm_201701392
crossref_primary_10_1016_j_mtener_2023_101303
crossref_primary_10_1021_acsnano_1c02884
crossref_primary_10_1002_jctb_7199
crossref_primary_10_1016_j_cclet_2021_03_083
crossref_primary_10_1016_j_jechem_2019_01_027
crossref_primary_10_1021_acs_inorgchem_2c02198
crossref_primary_10_1039_C8TA04529A
crossref_primary_10_1016_j_apsusc_2018_09_025
crossref_primary_10_1016_j_jece_2024_114100
crossref_primary_10_1039_C7TA09350K
crossref_primary_10_1016_j_solidstatesciences_2022_106985
crossref_primary_10_1039_D0TA04163G
crossref_primary_10_1016_j_cej_2017_08_100
crossref_primary_10_1016_j_jcis_2019_08_067
crossref_primary_10_1021_acs_inorgchem_4c01162
crossref_primary_10_1002_ep_13943
crossref_primary_10_1016_j_cej_2022_138066
crossref_primary_10_1002_anie_201708645
crossref_primary_10_1039_D0TA08165E
crossref_primary_10_1016_j_ssc_2021_114419
crossref_primary_10_1039_C8TA08834A
crossref_primary_10_1002_cctc_201800750
crossref_primary_10_1039_D1TA04180K
crossref_primary_10_1016_j_jallcom_2018_12_003
crossref_primary_10_1039_D4NR01749H
crossref_primary_10_1039_D1RA06961F
crossref_primary_10_1021_accountsmr_4c00103
crossref_primary_10_1016_j_mseb_2018_10_003
crossref_primary_10_2174_1874088X01812010002
crossref_primary_10_1016_j_jcis_2023_01_002
crossref_primary_10_1002_solr_202000442
crossref_primary_10_1016_j_apcatb_2019_118403
crossref_primary_10_3389_fctls_2022_839072
crossref_primary_10_1002_smll_202302623
crossref_primary_10_1016_j_apcatb_2023_122642
crossref_primary_10_2139_ssrn_4186632
crossref_primary_10_1021_acs_jpclett_0c01415
crossref_primary_10_1016_j_chemosphere_2022_136616
crossref_primary_10_1021_acsami_0c18430
crossref_primary_10_1016_j_seppur_2024_128882
crossref_primary_10_1186_s11671_018_2778_9
crossref_primary_10_3390_catal14080500
crossref_primary_10_1016_j_nantod_2021_101285
crossref_primary_10_1016_j_apsusc_2023_157338
crossref_primary_10_1016_j_jhazmat_2021_128195
crossref_primary_10_1002_adma_202211182
crossref_primary_10_1039_C9TA13038A
crossref_primary_10_1002_eom2_12122
crossref_primary_10_1016_j_cej_2019_06_019
crossref_primary_10_3390_catal8120621
crossref_primary_10_1016_j_cej_2019_06_018
crossref_primary_10_1007_s40820_021_00681_9
crossref_primary_10_2139_ssrn_4047545
crossref_primary_10_1016_j_ccr_2022_214541
crossref_primary_10_1007_s00339_019_2393_3
crossref_primary_10_1016_j_apcatb_2021_120274
crossref_primary_10_1016_j_jallcom_2018_12_387
crossref_primary_10_1007_s42247_024_00966_w
crossref_primary_10_1016_j_mattod_2021_01_029
crossref_primary_10_1016_j_solener_2019_08_063
crossref_primary_10_1021_acsnano_2c00101
crossref_primary_10_1002_slct_201902964
crossref_primary_10_1039_D4QI00564C
crossref_primary_10_1039_C8CE00157J
crossref_primary_10_1016_j_jallcom_2017_10_175
crossref_primary_10_1016_j_jmst_2021_01_022
crossref_primary_10_1021_acsmaterialslett_1c00160
crossref_primary_10_1002_cssc_201901196
crossref_primary_10_1016_j_wri_2023_100211
crossref_primary_10_1021_acsanm_4c06452
crossref_primary_10_1016_j_matchemphys_2020_123830
crossref_primary_10_1021_acs_inorgchem_9b00858
crossref_primary_10_1002_smll_201701607
crossref_primary_10_1021_acsmaterialslett_4c00041
crossref_primary_10_1016_j_apsusc_2021_150765
crossref_primary_10_1021_acscatal_4c07453
crossref_primary_10_1016_j_jechem_2021_03_001
crossref_primary_10_1002_asia_202000889
crossref_primary_10_1016_j_ceramint_2017_12_168
crossref_primary_10_1016_j_jmrt_2020_02_052
crossref_primary_10_1016_j_seppur_2022_121953
crossref_primary_10_1039_D4TA03204G
crossref_primary_10_2166_wst_2020_205
crossref_primary_10_1016_j_chemosphere_2020_127384
crossref_primary_10_1038_s41598_021_85005_y
crossref_primary_10_1016_j_jcis_2023_01_116
crossref_primary_10_1016_j_apcata_2024_119574
crossref_primary_10_1016_j_apcatb_2021_120059
crossref_primary_10_1021_acsami_0c06744
crossref_primary_10_1016_j_ijhydene_2022_10_034
crossref_primary_10_1007_s10854_019_02825_5
crossref_primary_10_1002_adma_202005256
crossref_primary_10_1002_anie_201708709
crossref_primary_10_1016_j_ccr_2022_214515
crossref_primary_10_1016_j_trac_2019_05_002
crossref_primary_10_1039_D0CY00656D
crossref_primary_10_3390_catal14010009
crossref_primary_10_1016_j_cclet_2021_03_077
crossref_primary_10_1134_S0022476623100013
crossref_primary_10_1007_s12274_018_2268_5
crossref_primary_10_1021_acsami_3c03331
crossref_primary_10_1007_s11244_022_01604_7
crossref_primary_10_1016_j_jechem_2021_11_023
crossref_primary_10_1021_acsnano_2c02831
crossref_primary_10_1016_j_apsusc_2021_150305
crossref_primary_10_1016_j_apsusc_2018_09_126
crossref_primary_10_1016_j_cogsc_2017_05_008
crossref_primary_10_1002_cctc_201901597
crossref_primary_10_1016_j_cogsc_2017_05_005
crossref_primary_10_1016_j_jeurceramsoc_2021_11_063
crossref_primary_10_1016_j_catcom_2018_07_018
crossref_primary_10_1016_j_enchem_2019_100013
crossref_primary_10_1021_acs_jpcc_1c10853
crossref_primary_10_1016_j_jece_2022_107675
crossref_primary_10_1016_j_nexres_2024_100088
crossref_primary_10_1016_j_nantod_2022_101432
crossref_primary_10_1016_j_inoche_2023_111210
crossref_primary_10_1039_D2TA09877F
crossref_primary_10_1002_anie_202412340
crossref_primary_10_1016_j_apsusc_2024_159307
crossref_primary_10_1016_j_cej_2018_01_109
crossref_primary_10_1039_C9SE01004A
crossref_primary_10_1016_j_apcatb_2019_118262
crossref_primary_10_1016_j_mssp_2024_109249
crossref_primary_10_1002_adma_202300648
crossref_primary_10_1016_j_apcatb_2019_118026
crossref_primary_10_1039_C7CY01291H
crossref_primary_10_1016_j_cplett_2018_05_053
crossref_primary_10_1021_acsanm_1c00288
crossref_primary_10_1039_D0CY01227K
crossref_primary_10_3390_catal10070759
crossref_primary_10_1016_j_cej_2022_139425
crossref_primary_10_1016_j_jcis_2017_06_060
crossref_primary_10_1002_adma_201904717
crossref_primary_10_1021_acsami_4c04468
crossref_primary_10_1039_D0TA06044E
crossref_primary_10_1021_acssuschemeng_7b04584
crossref_primary_10_1016_j_apcatb_2019_118390
crossref_primary_10_1016_j_nantod_2019_100830
crossref_primary_10_1002_adfm_201707178
crossref_primary_10_1002_admi_201900091
crossref_primary_10_1039_D2TA08812F
crossref_primary_10_1016_j_ccr_2017_08_010
crossref_primary_10_1016_j_cej_2019_04_052
crossref_primary_10_1039_C7TA02183F
crossref_primary_10_1021_acs_inorgchem_3c02583
crossref_primary_10_1016_j_mtcomm_2020_100903
crossref_primary_10_1016_j_joule_2019_03_003
crossref_primary_10_1039_C8CY02357C
crossref_primary_10_1021_acs_chemmater_9b04448
crossref_primary_10_1007_s40820_025_01695_3
crossref_primary_10_1021_acs_inorgchem_9b02053
crossref_primary_10_1016_j_jhazmat_2018_02_027
crossref_primary_10_1002_adfm_201703923
crossref_primary_10_1016_j_inoche_2019_107643
crossref_primary_10_1016_j_jallcom_2021_161036
crossref_primary_10_1002_anie_201811728
crossref_primary_10_1021_acsanm_4c06675
crossref_primary_10_1021_acscatal_3c03210
crossref_primary_10_1039_C9GC03731D
crossref_primary_10_1007_s11051_022_05599_w
crossref_primary_10_1016_j_apcatb_2020_118852
crossref_primary_10_1016_j_apsusc_2019_144806
crossref_primary_10_1007_s12274_021_3641_3
crossref_primary_10_1002_adfm_201803309
crossref_primary_10_1016_j_apsusc_2020_148798
crossref_primary_10_1021_acsnano_3c04268
crossref_primary_10_1016_j_jhazmat_2019_05_084
crossref_primary_10_1016_j_mssp_2021_106384
crossref_primary_10_1016_j_jcis_2022_01_115
crossref_primary_10_3390_nano12101697
crossref_primary_10_1002_ceat_202300114
crossref_primary_10_1149_1945_7111_acd02d
crossref_primary_10_1021_acsestengg_1c00103
crossref_primary_10_1021_acsomega_3c07560
crossref_primary_10_1016_j_nanoen_2020_104959
crossref_primary_10_1039_D0TA01453B
crossref_primary_10_1016_j_buildenv_2019_106481
crossref_primary_10_1021_acs_jpcc_7b08661
crossref_primary_10_1016_j_apcatb_2020_118984
crossref_primary_10_1016_j_matlet_2019_01_094
crossref_primary_10_1016_j_solidstatesciences_2023_107154
crossref_primary_10_1016_j_inoche_2021_108450
crossref_primary_10_1016_j_molstruc_2023_137390
crossref_primary_10_1021_acssuschemeng_8b00782
crossref_primary_10_1002_slct_202201220
crossref_primary_10_1016_j_apcatb_2017_12_057
crossref_primary_10_1016_j_cclet_2019_05_030
crossref_primary_10_1039_C7EE02220D
crossref_primary_10_1016_j_cej_2021_133617
crossref_primary_10_1039_C8CE00700D
crossref_primary_10_1515_pac_2020_0704
crossref_primary_10_1016_j_cattod_2023_02_011
crossref_primary_10_1039_D4CC00455H
crossref_primary_10_1016_j_jiec_2022_08_013
crossref_primary_10_1016_j_inoche_2023_111286
crossref_primary_10_1039_D0SE01224F
crossref_primary_10_1007_s13738_018_1559_9
crossref_primary_10_1016_j_ccr_2019_05_008
crossref_primary_10_1016_j_cej_2021_131693
crossref_primary_10_1039_D1TA07899B
crossref_primary_10_1007_s12598_023_02471_1
crossref_primary_10_1016_j_apsusc_2019_01_147
crossref_primary_10_1016_j_matlet_2020_128352
crossref_primary_10_1002_adma_201807576
crossref_primary_10_1016_j_matpr_2021_12_229
crossref_primary_10_1016_j_apcatb_2018_05_034
crossref_primary_10_1016_j_jallcom_2023_170015
crossref_primary_10_1002_adma_201806482
crossref_primary_10_1016_j_ccr_2020_213316
crossref_primary_10_1021_acs_nanolett_1c00530
crossref_primary_10_1039_C9CP05147C
crossref_primary_10_1016_j_jhazmat_2021_125186
crossref_primary_10_1039_D0GC01896A
crossref_primary_10_1002_ange_202303487
crossref_primary_10_1002_adma_202303845
crossref_primary_10_1039_D3RA03921H
crossref_primary_10_1016_j_jphotochem_2022_114208
crossref_primary_10_1016_j_apcatb_2018_06_015
crossref_primary_10_1016_j_mssp_2019_03_002
crossref_primary_10_1016_j_cej_2022_136084
crossref_primary_10_1016_j_apcatb_2018_06_014
crossref_primary_10_1016_j_jphotochemrev_2018_11_001
crossref_primary_10_1007_s11157_022_09617_0
crossref_primary_10_1002_adfm_202100919
crossref_primary_10_1039_D2TA03333J
crossref_primary_10_1016_j_arabjc_2024_105950
crossref_primary_10_1021_jacs_8b13062
crossref_primary_10_1002_adma_202100143
crossref_primary_10_1016_j_cej_2024_158816
crossref_primary_10_1039_C8CY00143J
crossref_primary_10_1039_D4CY01083C
crossref_primary_10_1021_acs_inorgchem_1c00186
crossref_primary_10_1039_D0QI00311E
crossref_primary_10_1016_j_chempr_2018_12_003
crossref_primary_10_1016_j_jphotochem_2021_113264
crossref_primary_10_1021_acsnano_1c06017
crossref_primary_10_1016_j_jenvman_2023_117411
crossref_primary_10_1016_j_inoche_2024_112431
crossref_primary_10_1021_acssuschemeng_2c05326
crossref_primary_10_1039_C7CP08363G
crossref_primary_10_1016_j_envres_2023_116351
crossref_primary_10_1016_j_jtice_2018_01_017
crossref_primary_10_1021_acs_jpcc_3c06627
crossref_primary_10_1039_D0RA03562A
crossref_primary_10_1016_j_pmatsci_2022_101044
crossref_primary_10_1016_j_jcis_2018_08_091
crossref_primary_10_1002_inf2_12033
crossref_primary_10_1002_cjce_23835
crossref_primary_10_1016_j_jcis_2022_10_160
crossref_primary_10_1021_acs_inorgchem_1c03588
crossref_primary_10_1021_acssuschemeng_0c08064
crossref_primary_10_1002_adfm_202313883
crossref_primary_10_1016_j_cej_2019_122026
crossref_primary_10_1002_admi_201901034
crossref_primary_10_1039_C7TA08415C
crossref_primary_10_1016_j_jclepro_2021_129975
crossref_primary_10_1016_j_ccr_2022_214468
crossref_primary_10_1016_j_apcatb_2020_119632
crossref_primary_10_1016_j_jcis_2019_08_048
crossref_primary_10_1016_j_joule_2017_07_007
crossref_primary_10_1039_D2CP03565K
crossref_primary_10_1039_D2CS00797E
crossref_primary_10_1016_j_mtphys_2024_101542
crossref_primary_10_1002_gch2_202300185
crossref_primary_10_1016_j_jece_2023_109996
crossref_primary_10_1016_j_rser_2025_115490
crossref_primary_10_1016_j_cej_2024_155646
crossref_primary_10_1016_j_mcat_2021_112091
crossref_primary_10_1016_j_jece_2021_106569
crossref_primary_10_1016_j_jpcs_2019_109141
crossref_primary_10_1039_D2TA09780J
crossref_primary_10_1016_j_apsusc_2022_153160
crossref_primary_10_1016_j_apsusc_2019_06_201
crossref_primary_10_1134_S0036024420030322
crossref_primary_10_1039_C8QI01098F
crossref_primary_10_1016_j_apcatb_2020_119520
crossref_primary_10_1016_j_apsusc_2020_145413
crossref_primary_10_1016_j_apsusc_2018_10_020
crossref_primary_10_1515_eng_2024_0024
crossref_primary_10_1016_j_apcata_2024_120080
crossref_primary_10_1016_j_cej_2022_140926
crossref_primary_10_1021_acsanm_8b00907
crossref_primary_10_1002_anie_202208791
crossref_primary_10_1002_smll_202105228
crossref_primary_10_1016_j_jiec_2019_06_022
crossref_primary_10_1039_D2TA09345F
crossref_primary_10_3389_fchem_2022_1051496
crossref_primary_10_1021_acs_iecr_2c02495
crossref_primary_10_1021_jacs_4c00265
crossref_primary_10_1021_acscatal_1c00072
crossref_primary_10_1002_aenm_201902020
crossref_primary_10_1088_1361_6528_abe575
crossref_primary_10_1016_j_apsusc_2020_146858
crossref_primary_10_1016_j_jlumin_2023_119860
crossref_primary_10_1088_1742_6596_1637_1_012055
crossref_primary_10_1016_j_inoche_2020_107806
crossref_primary_10_1016_j_apsusc_2020_145647
crossref_primary_10_1039_D4CY00820K
crossref_primary_10_1016_j_inoche_2022_109665
crossref_primary_10_1039_D0NJ01060J
crossref_primary_10_1002_anie_202303487
crossref_primary_10_1039_C7TA08117K
crossref_primary_10_1039_C8RA03981J
crossref_primary_10_1016_j_ccr_2023_215246
crossref_primary_10_1021_acssuschemeng_4c09790
crossref_primary_10_1039_D1NA00223F
crossref_primary_10_1002_smll_202202252
crossref_primary_10_1016_j_colsurfa_2023_131055
crossref_primary_10_1016_j_seppur_2020_117872
crossref_primary_10_1016_j_colsurfa_2021_126744
crossref_primary_10_1016_j_jallcom_2022_168469
crossref_primary_10_1002_advs_202003626
crossref_primary_10_1016_j_rser_2022_112767
crossref_primary_10_1021_acssuschemeng_8b04977
crossref_primary_10_1007_s11706_017_0379_7
crossref_primary_10_1007_s12209_020_00243_x
crossref_primary_10_1002_cplu_202000131
crossref_primary_10_1016_j_chemosphere_2018_04_017
crossref_primary_10_1007_s11426_018_9273_1
crossref_primary_10_1039_C7TA09897A
crossref_primary_10_1016_j_cis_2024_103136
crossref_primary_10_1021_acscatal_0c01081
crossref_primary_10_1039_C9NR02502B
crossref_primary_10_1002_cssc_201901899
crossref_primary_10_1039_D1SE00594D
crossref_primary_10_1002_ange_201811728
crossref_primary_10_1002_adma_202005721
crossref_primary_10_1021_acsanm_4c02248
crossref_primary_10_1021_acs_chemrev_9b00659
crossref_primary_10_1016_j_jhazmat_2019_121854
crossref_primary_10_1021_acs_chemrev_0c01071
crossref_primary_10_1016_j_jmst_2020_10_056
crossref_primary_10_1080_21622515_2025_2466757
crossref_primary_10_1016_j_inoche_2024_112080
crossref_primary_10_1016_j_mcat_2021_111913
crossref_primary_10_1016_j_jphotochem_2019_112163
crossref_primary_10_1021_acscatal_9b03246
crossref_primary_10_1016_j_cogsc_2021_100580
crossref_primary_10_1016_j_jcis_2017_08_042
crossref_primary_10_1088_1361_6528_ac0a16
crossref_primary_10_1002_cey2_305
crossref_primary_10_1016_j_apsusc_2018_07_054
crossref_primary_10_1039_C9QI01287G
crossref_primary_10_1002_sstr_202200380
crossref_primary_10_1021_acsaem_9b01961
crossref_primary_10_1016_j_chempr_2024_06_014
crossref_primary_10_1016_j_jcis_2020_09_111
crossref_primary_10_1016_j_apcatb_2018_09_058
crossref_primary_10_1016_j_jcat_2019_10_018
crossref_primary_10_1016_j_jcis_2024_08_218
crossref_primary_10_1039_C9TA01925A
crossref_primary_10_1021_acsami_9b21167
crossref_primary_10_1039_C9CE01835B
crossref_primary_10_1016_j_ensm_2019_03_021
crossref_primary_10_1016_j_mtchem_2018_11_002
crossref_primary_10_1021_acs_cgd_9b01141
crossref_primary_10_1016_j_cej_2022_138653
crossref_primary_10_1016_j_apcatb_2020_119689
crossref_primary_10_1080_00150193_2019_1592454
crossref_primary_10_1039_D0MA00590H
crossref_primary_10_1364_OSAC_399616
crossref_primary_10_1039_D2NJ04216A
crossref_primary_10_1002_aesr_202400083
crossref_primary_10_1021_acscatal_1c03407
crossref_primary_10_1021_acscatal_9b03015
crossref_primary_10_1021_jacs_4c13254
crossref_primary_10_1016_j_jclepro_2023_136017
crossref_primary_10_1039_D3EY00019B
crossref_primary_10_1088_1361_6528_ab3f15
crossref_primary_10_1002_aelm_202000168
crossref_primary_10_1016_j_scib_2019_05_009
crossref_primary_10_1039_D3TB00566F
crossref_primary_10_1016_j_cattod_2018_11_043
crossref_primary_10_1016_j_jmst_2020_11_037
crossref_primary_10_1021_acsami_9b12328
crossref_primary_10_1016_j_jmst_2021_08_085
crossref_primary_10_1016_j_cej_2024_151913
crossref_primary_10_1016_j_jhazmat_2019_120822
crossref_primary_10_1021_acs_chemrev_8b00400
crossref_primary_10_1039_D1CY00366F
crossref_primary_10_1016_j_cej_2021_129305
crossref_primary_10_1021_acs_jpclett_0c02480
crossref_primary_10_1038_s41586_019_1260_x
crossref_primary_10_1002_adma_201703828
crossref_primary_10_1039_D0CC05449F
crossref_primary_10_1111_php_13831
crossref_primary_10_1002_adma_201804211
crossref_primary_10_1002_chem_201800535
crossref_primary_10_1039_D4CY01079E
crossref_primary_10_1039_D0QI00153H
crossref_primary_10_1007_s10853_022_06970_x
crossref_primary_10_1039_C9TA02373A
crossref_primary_10_1016_j_cej_2020_124822
crossref_primary_10_1039_D2SC03863C
crossref_primary_10_1088_2053_1591_aabe6f
crossref_primary_10_1016_j_jclepro_2021_128137
crossref_primary_10_1002_adma_201701774
crossref_primary_10_2139_ssrn_4119152
crossref_primary_10_1016_j_rser_2022_112967
crossref_primary_10_2139_ssrn_4192948
crossref_primary_10_1016_j_jhazmat_2018_10_063
crossref_primary_10_1016_j_jallcom_2024_177467
crossref_primary_10_1016_j_cej_2019_122422
crossref_primary_10_1002_ange_202412340
crossref_primary_10_1186_s40580_021_00273_8
crossref_primary_10_1016_j_cej_2019_01_051
crossref_primary_10_1039_D0NJ04068A
crossref_primary_10_1016_j_jcis_2020_03_062
crossref_primary_10_1039_D0RA10439F
crossref_primary_10_1016_j_apcato_2024_206919
crossref_primary_10_1002_eem2_12432
crossref_primary_10_1039_D0NR01359E
crossref_primary_10_1002_ange_201708709
crossref_primary_10_1039_C7MH00557A
crossref_primary_10_1016_j_jcis_2021_10_037
crossref_primary_10_1039_D0TA11201A
crossref_primary_10_1039_D1RA08004K
crossref_primary_10_1016_j_jcis_2018_01_096
crossref_primary_10_1016_j_mattod_2019_10_022
crossref_primary_10_1016_j_jcis_2021_05_075
crossref_primary_10_1016_j_ceramint_2021_07_230
crossref_primary_10_1039_D0CE00932F
Cites_doi 10.1021/cr400641x
10.1021/ar2003013
10.1021/acs.accounts.6b00036
10.1039/C3NR05246J
10.1039/C5EE01398D
10.1021/ja402956f
10.1038/ncomms11480
10.1021/jp065373m
10.1021/cr500008u
10.1039/C5RA07776A
10.1039/B800489G
10.1016/j.jcat.2009.06.024
10.1016/j.apcatb.2013.05.047
10.1021/ja512491v
10.1073/pnas.1605512113
10.1021/ja00464a015
10.1016/j.ijhydene.2016.04.236
10.1126/science.1186120
10.1039/c2jm33556e
10.1038/nmat3696
10.1039/c3en00098b
10.1021/ja210484t
10.1021/acs.chemmater.6b00349
10.1021/cr5001892
10.1002/chem.201503778
10.1039/c3nr05529a
10.1039/C6SC00389C
10.1039/C4NR02553A
10.1039/C3CS60206K
10.1021/jacs.5b03105
10.1002/adfm.201404178
10.1039/C4CP03166K
10.1016/j.apcatb.2014.07.024
10.1039/c4nr01315h
10.1039/C5NR07380D
10.1039/C4CS00223G
10.1039/C3CS60378D
10.1021/jp077471t
10.1002/adma.201501200
10.1016/j.apcatb.2013.02.009
10.1039/c1cc11015b
10.1002/anie.201101182
10.1021/ar300227e
10.1016/j.apcatb.2006.08.002
10.1002/chem.201302884
10.1002/anie.201404748
10.1021/ja4092903
10.1016/j.apcatb.2012.12.003
10.1002/adma.201600301
10.1039/C4RA06419D
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.6b00523
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 121
ExternalDocumentID 28009157
10_1021_acs_accounts_6b00523
b226968
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
7X8
ID FETCH-LOGICAL-a348t-909bbeeb65c9949b3695af11ac1aafd118d2d89a236fbc65e573ae76a62504243
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 04:16:40 EDT 2025
Thu Apr 03 07:10:51 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Tue Jul 01 03:15:58 EDT 2025
Thu Aug 27 13:41:59 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-909bbeeb65c9949b3695af11ac1aafd118d2d89a236fbc65e573ae76a62504243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6842-9167
PMID 28009157
PQID 1852784430
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1852784430
pubmed_primary_28009157
crossref_citationtrail_10_1021_acs_accounts_6b00523
crossref_primary_10_1021_acs_accounts_6b00523
acs_journals_10_1021_acs_accounts_6b00523
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-17
PublicationDateYYYYMMDD 2017-01-17
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1021/cr400641x
– ident: ref5/cit5
  doi: 10.1021/ar2003013
– ident: ref8/cit8
  doi: 10.1021/acs.accounts.6b00036
– ident: ref30/cit30
  doi: 10.1039/C3NR05246J
– ident: ref40/cit40
  doi: 10.1039/C5EE01398D
– ident: ref24/cit24
  doi: 10.1021/ja402956f
– ident: ref39/cit39
  doi: 10.1038/ncomms11480
– ident: ref35/cit35
  doi: 10.1021/jp065373m
– ident: ref1/cit1
  doi: 10.1021/cr500008u
– ident: ref41/cit41
  doi: 10.1039/C5RA07776A
– ident: ref15/cit15
  doi: 10.1039/B800489G
– ident: ref16/cit16
  doi: 10.1016/j.jcat.2009.06.024
– ident: ref31/cit31
  doi: 10.1016/j.apcatb.2013.05.047
– ident: ref11/cit11
  doi: 10.1021/ja512491v
– ident: ref10/cit10
  doi: 10.1073/pnas.1605512113
– ident: ref13/cit13
  doi: 10.1021/ja00464a015
– ident: ref44/cit44
  doi: 10.1016/j.ijhydene.2016.04.236
– ident: ref6/cit6
  doi: 10.1126/science.1186120
– ident: ref33/cit33
  doi: 10.1039/c2jm33556e
– ident: ref9/cit9
  doi: 10.1038/nmat3696
– ident: ref21/cit21
  doi: 10.1039/c3en00098b
– ident: ref37/cit37
  doi: 10.1021/ja210484t
– ident: ref49/cit49
  doi: 10.1021/acs.chemmater.6b00349
– ident: ref14/cit14
  doi: 10.1021/cr5001892
– ident: ref43/cit43
  doi: 10.1002/chem.201503778
– ident: ref20/cit20
  doi: 10.1039/c3nr05529a
– ident: ref50/cit50
  doi: 10.1039/C6SC00389C
– ident: ref19/cit19
  doi: 10.1039/C4NR02553A
– ident: ref2/cit2
  doi: 10.1039/C3CS60206K
– ident: ref27/cit27
  doi: 10.1021/jacs.5b03105
– ident: ref42/cit42
  doi: 10.1002/adfm.201404178
– ident: ref48/cit48
  doi: 10.1039/C4CP03166K
– ident: ref45/cit45
  doi: 10.1016/j.apcatb.2014.07.024
– ident: ref29/cit29
  doi: 10.1039/c4nr01315h
– ident: ref47/cit47
  doi: 10.1039/C5NR07380D
– ident: ref3/cit3
  doi: 10.1039/C4CS00223G
– ident: ref17/cit17
  doi: 10.1039/C3CS60378D
– ident: ref26/cit26
  doi: 10.1021/jp077471t
– ident: ref25/cit25
  doi: 10.1002/adma.201501200
– ident: ref32/cit32
  doi: 10.1016/j.apcatb.2013.02.009
– ident: ref23/cit23
  doi: 10.1039/c1cc11015b
– ident: ref18/cit18
  doi: 10.1002/anie.201101182
– ident: ref7/cit7
  doi: 10.1021/ar300227e
– ident: ref34/cit34
  doi: 10.1016/j.apcatb.2006.08.002
– ident: ref36/cit36
  doi: 10.1002/chem.201302884
– ident: ref12/cit12
  doi: 10.1002/anie.201404748
– ident: ref28/cit28
  doi: 10.1021/ja4092903
– ident: ref46/cit46
  doi: 10.1016/j.apcatb.2012.12.003
– ident: ref38/cit38
  doi: 10.1002/adma.201600301
– ident: ref22/cit22
  doi: 10.1039/C4RA06419D
SSID ssj0002467
Score 2.667762
Snippet Hydrogen and ammonia are the chemical molecules that are vital to Earth’s energy, environmental, and biological processes. Hydrogen with renewable,...
Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112
Title Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides
URI http://dx.doi.org/10.1021/acs.accounts.6b00523
https://www.ncbi.nlm.nih.gov/pubmed/28009157
https://www.proquest.com/docview/1852784430
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKPcCFtjzabQEZiQuHLOtHnPhYVl0hCruHBcEtmtiOWNFm0SYrQX99x3ksAoSAWxzZo3hmHH_j8cwQsq-t1cyADgQ3vUBaBwFofOrxLBOQhUxYH5x8NlTHF_LkKrx6MBSfevA5OwRTIOmqckLRVfU55hL5yBWuYw-F-uPFn5dLVefIRBNZxpK3oXIvUPEbkikeb0gvoMxqtxl8IqM2Zqe-ZHLTnZdp1_x7nsLxjRP5TNYa4El_1pryhXxw-TpZ6bf13jbI77G3cuklgs8ZHSM2rW5EU8gtHU7K2RQ1jQ4md5UkqT--padw7yt90qNJ8XeO7dHd_TXCeuuKTXIx-HXePw6aUgsBCBmXge7pNHUuVaHRWupUKB1CxhgYBpBZtEIst7EGLlSWGhW6MBLgIgXKp0DjUmyR5Xyau2-EIg0lQGInNB4VN3EUiSyOhPJYE9FRhxwgJ5JmqRRJ5QXnLPEvW_YkDXs6RLSySUyTs9yXzvjzyqhgMeq2ztnxSv-9VuwJ8tx7TCB30zl-Wxx6x6wUvQ75WuvDgiJHqK1ZGH1_x3x-kFXuYQHqJ4u2yXI5m7sdBDVlultp8n8pHvNt
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xeGAv29hnx8Y8aS97SFd_Jn6EalUZpTwUNt4ix3a0CpZOTSoBfz3nfBRtEkK8JZZ9su8u8e98vjuAL9o5Ta3REWd2EAnnTWQ0Pg1YnnOTS8pdCE4-nqrxmfhxLs83QHaxMDiJEimVtRP_LrsA_RbaTFNAoeyr5jjzCWwhHmFBsfeHs_UPmAnVpMpES1kkgnURc_dQCfuSLf_dl-4Bm_WmM3oOP9fTre-aXPRXVda3N_9lcnz0el7AsxaGkv1Gb3ZgwxcvYXvYVX97BUezYPOSXwhFl2SGSLW-H01M4ch0Xi0XqHdkNL-q5UrCYS6ZmOtQ95MczMs_K3w_ubr-jSDf-fI1nI2-nw7HUVt4ITJcJFWkBzrLvM-UtFoLnXGlpckpNZYakzu0SRxziTaMqzyzSnoZc-NjZVRIiMYEfwObxaLw74AgDcWNwE5oSipmkzjmeRJzFZAnYqUefEVOpO2HU6a1T5zRNDR27Elb9vSAdyJKbZvBPBTSuHxgVLQe9bfJ4PFA_8-d9FPkefCfmMIvVji3RAY3reCDHrxt1GJNkSHw1lTG7x-xnk-wPT49nqSTw-nRLjxlATCgytL4A2xWy5X_iHCnyvZq5b4Frmf7zg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgEXoDyXQmskLhyyrB9x4mNZWBVaFqSlouISTWxHrIBstclKLb--4zxWgFRV7S2J7JE9_hx_47FnAF4Z5wy3aCIp7ChSzmOEhp5GoigkFjGXLlxO_jTV-0fq43F8_FeqL2pERZKqxokfZvWJK7oIA_xN-I5tEoVqqNstzQ24GTx3Adx749n6JyyUbsNlkrWsUiX6W3MXSAlrk63-XZsuIJzNwjO5B9_XTW7Om_wcrup8aP_8F83xWn26D3c7Osr2WvxswQ1fPoDb4z4L3EM4mAXbl30jSrpkM2KszTlphqVj03m9XBD-2GR-2owvC5u67BDPQv5P9nZe_V7R--fTsx9E9p2vHsHR5P3X8X7UJWCIUKq0jszI5Ln3uY6tMcrkUpsYC87RcsTCkW3ihEsNCqmL3OrYx4lEn2jUITCaUPIxbJaL0j8FRjK0REWFyKTUwqZJIos0kTowUOJMA3hNmsi6CVRljW9c8Cx87NWTdeoZgOyHKbNdJPOQUOPXJbWida2TNpLHJeVf9gjISOfBj4KlX6yobWkc3LVKjgbwpIXGWqIgAm54nDy7Qn924daXd5Ps8MP0YBvuiMAbCLU8eQ6b9XLlXxDrqfOdBt_n1Ib-UQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar+Water+Splitting+and+Nitrogen+Fixation+with+Layered+Bismuth+Oxyhalides&rft.jtitle=Accounts+of+chemical+research&rft.au=Li%2C+Jie&rft.au=Li%2C+Hao&rft.au=Zhan%2C+Guangming&rft.au=Zhang%2C+Lizhi&rft.date=2017-01-17&rft.eissn=1520-4898&rft.volume=50&rft.issue=1&rft.spage=112&rft_id=info:doi/10.1021%2Facs.accounts.6b00523&rft_id=info%3Apmid%2F28009157&rft.externalDocID=28009157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon