Aromatic Amide and Hydrazide Foldamer-Based Responsive Host–Guest Systems
Conspectus In host–guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host–guest chemistry focused on the recognition of spherical metal or ammonium ions by macrocyclic hosts, such as cyclic crown ethers. In these systems,...
Saved in:
Published in | Accounts of chemical research Vol. 47; no. 7; pp. 1961 - 1970 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus In host–guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host–guest chemistry focused on the recognition of spherical metal or ammonium ions by macrocyclic hosts, such as cyclic crown ethers. In these systems, preorganization enables their binding sites to cooperatively contact and attract a guest. Although some open-chain crown ether analogues possess similar, but generally lower, binding affinities, the design of acyclic molecular recognition hosts has remained challenging. One of the most successful examples was rigid molecular tweezers, acyclic covalently bonded preorganized host molecules with open cavities that bind tightly as they stiffen. Depending on the length of the atomic backbones, hydrogen bonding-driven aromatic amide foldamers can form open or closed cavities. Through rational design of the backbones and the introduction of added functional groups, researchers can regulate the shape and size of the cavity. The directionality of hydrogen bonding and the inherent rigidity of aromatic amide units allow researchers to predict both the shape and size of the cavity of an aromatic amide foldamer. Therefore, researchers can then design guest molecules with structure that matches the cavity shape, size, and binding sites of the foldamer host. In addition, because hydrogen bonds are dynamic, researchers can design structures that can adapt to outside stimuli to produce responsive supramolecular architectures. In this Account, we discuss how aromatic amide and hydrazide foldamers induced by hydrogen bonding can produce responsive host–guest systems, based on research by our group and others. First we highlight the helical chirality induced as binding occurs in solution, which includes the induction of helicity by chiral guests in oligomeric and polymeric foldamers, the formation of diastereomeric complexes between chiral foldamer hosts and guests, and the induction of helical chirality by chiral guests into inherently flexible backbones. In addition, molecular or ion-pair guests can produce supramolecular helical chirality in the organogel state. Such structures exhibit remarkable time-dependence and a “Sergeants and Soldiers” effect that are not observed for other two-component organogels that have been reported. We further illustrate that the reversible folding behavior of an aromatic amide foldamer segment can modulate the switching behavior of donor–acceptor interaction-based [2]rotaxanes. Finally we show that a folded oligomer can induce folding in one or two attached intrinsically flexible oligomers, an example of a solvent-responsive intramolecular host–guest system. |
---|---|
AbstractList | Conspectus In host–guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host–guest chemistry focused on the recognition of spherical metal or ammonium ions by macrocyclic hosts, such as cyclic crown ethers. In these systems, preorganization enables their binding sites to cooperatively contact and attract a guest. Although some open-chain crown ether analogues possess similar, but generally lower, binding affinities, the design of acyclic molecular recognition hosts has remained challenging. One of the most successful examples was rigid molecular tweezers, acyclic covalently bonded preorganized host molecules with open cavities that bind tightly as they stiffen. Depending on the length of the atomic backbones, hydrogen bonding-driven aromatic amide foldamers can form open or closed cavities. Through rational design of the backbones and the introduction of added functional groups, researchers can regulate the shape and size of the cavity. The directionality of hydrogen bonding and the inherent rigidity of aromatic amide units allow researchers to predict both the shape and size of the cavity of an aromatic amide foldamer. Therefore, researchers can then design guest molecules with structure that matches the cavity shape, size, and binding sites of the foldamer host. In addition, because hydrogen bonds are dynamic, researchers can design structures that can adapt to outside stimuli to produce responsive supramolecular architectures. In this Account, we discuss how aromatic amide and hydrazide foldamers induced by hydrogen bonding can produce responsive host–guest systems, based on research by our group and others. First we highlight the helical chirality induced as binding occurs in solution, which includes the induction of helicity by chiral guests in oligomeric and polymeric foldamers, the formation of diastereomeric complexes between chiral foldamer hosts and guests, and the induction of helical chirality by chiral guests into inherently flexible backbones. In addition, molecular or ion-pair guests can produce supramolecular helical chirality in the organogel state. Such structures exhibit remarkable time-dependence and a “Sergeants and Soldiers” effect that are not observed for other two-component organogels that have been reported. We further illustrate that the reversible folding behavior of an aromatic amide foldamer segment can modulate the switching behavior of donor–acceptor interaction-based [2]rotaxanes. Finally we show that a folded oligomer can induce folding in one or two attached intrinsically flexible oligomers, an example of a solvent-responsive intramolecular host–guest system. CONSPECTUS: In host-guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host-guest chemistry focused on the recognition of spherical metal or ammonium ions by macrocyclic hosts, such as cyclic crown ethers. In these systems, preorganization enables their binding sites to cooperatively contact and attract a guest. Although some open-chain crown ether analogues possess similar, but generally lower, binding affinities, the design of acyclic molecular recognition hosts has remained challenging. One of the most successful examples was rigid molecular tweezers, acyclic covalently bonded preorganized host molecules with open cavities that bind tightly as they stiffen. Depending on the length of the atomic backbones, hydrogen bonding-driven aromatic amide foldamers can form open or closed cavities. Through rational design of the backbones and the introduction of added functional groups, researchers can regulate the shape and size of the cavity. The directionality of hydrogen bonding and the inherent rigidity of aromatic amide units allow researchers to predict both the shape and size of the cavity of an aromatic amide foldamer. Therefore, researchers can then design guest molecules with structure that matches the cavity shape, size, and binding sites of the foldamer host. In addition, because hydrogen bonds are dynamic, researchers can design structures that can adapt to outside stimuli to produce responsive supramolecular architectures. In this Account, we discuss how aromatic amide and hydrazide foldamers induced by hydrogen bonding can produce responsive host-guest systems, based on research by our group and others. First we highlight the helical chirality induced as binding occurs in solution, which includes the induction of helicity by chiral guests in oligomeric and polymeric foldamers, the formation of diastereomeric complexes between chiral foldamer hosts and guests, and the induction of helical chirality by chiral guests into inherently flexible backbones. In addition, molecular or ion-pair guests can produce supramolecular helical chirality in the organogel state. Such structures exhibit remarkable time-dependence and a "Sergeants and Soldiers" effect that are not observed for other two-component organogels that have been reported. We further illustrate that the reversible folding behavior of an aromatic amide foldamer segment can modulate the switching behavior of donor-acceptor interaction-based [2]rotaxanes. Finally we show that a folded oligomer can induce folding in one or two attached intrinsically flexible oligomers, an example of a solvent-responsive intramolecular host-guest system. |
Author | Zhang, Dan-Wei Zhao, Xin Li, Zhan-Ting |
AuthorAffiliation | Department of Chemistry Fudan University Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Fudan University – name: Department of Chemistry – name: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Dan-Wei surname: Zhang fullname: Zhang, Dan-Wei organization: Fudan University – sequence: 2 givenname: Xin surname: Zhao fullname: Zhao, Xin organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences – sequence: 3 givenname: Zhan-Ting surname: Li fullname: Li, Zhan-Ting email: ztli@fudan.edu.cn organization: Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24673152$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0MtKAzEUBuAgFXvRhS8gsxF0MZpMMk2yrMW2YkHwsh4yySlM6UxqMiPUle_gG_okZmztSnB1Tg4fP-Hvo05lK0DolOArghNyrVyKMU5YcoB6JE1wzIQUHdQLRxJ2lnRR3_vljxnyI9RtBw2yh-5HzpaqLnQ0KgsDkapMNNsYp97b18SujCrBxTfKg4kewa9t5Ys3iGbW118fn9MGfB09bXwNpT9Ghwu18nCymwP0Mrl9Hs_i-cP0bjyax4oyUcdCpFQpijlIjXGqsFScL3LKzBDSsEtCKadAhwIMZrmWuSBEgeC5FkLnOR2gi23u2tnX9gNZWXgNq5WqwDY-I5xjyjGX7H-aspQRSbAM9HJLtbPeO1hka1eUym0ygrO25mxfc7Bnu9gmL8Hs5W-vAZxvgdI-W9rGVaGQP4K-AXBghF0 |
CitedBy_id | crossref_primary_10_1002_ange_201505278 crossref_primary_10_1002_ange_202400989 crossref_primary_10_1021_acs_orglett_5b01455 crossref_primary_10_1039_D1PY00144B crossref_primary_10_1021_jacs_9b13584 crossref_primary_10_1021_jacs_7b03635 crossref_primary_10_1021_acs_jpcc_0c00672 crossref_primary_10_1002_chem_201501102 crossref_primary_10_1016_j_ica_2014_09_028 crossref_primary_10_1021_acsmacrolett_9b00527 crossref_primary_10_1002_ange_201605440 crossref_primary_10_1002_marc_201800731 crossref_primary_10_2174_0122133372274680231105072522 crossref_primary_10_1021_acs_joc_0c00281 crossref_primary_10_1002_adsc_201801619 crossref_primary_10_1039_C5QO00244C crossref_primary_10_3390_molecules20023354 crossref_primary_10_1039_C6TA02575G crossref_primary_10_1039_C7CC07253H crossref_primary_10_1002_chem_201604573 crossref_primary_10_1016_j_memsci_2018_10_084 crossref_primary_10_1039_D1OB00580D crossref_primary_10_1016_j_tet_2024_133977 crossref_primary_10_1039_C6CC00045B crossref_primary_10_1038_s41598_017_16503_1 crossref_primary_10_1002_cjoc_201400881 crossref_primary_10_1002_cjoc_201600140 crossref_primary_10_1021_acs_joc_7b03111 crossref_primary_10_1002_chem_202301832 crossref_primary_10_1039_C5CC05728K crossref_primary_10_1039_C6CC00788K crossref_primary_10_1002_adom_202000265 crossref_primary_10_1039_D0SC06060G crossref_primary_10_1016_j_comptc_2020_113040 crossref_primary_10_1021_acs_inorgchem_6b01911 crossref_primary_10_1021_acs_joc_8b01405 crossref_primary_10_6023_cjoc202102012 crossref_primary_10_1002_adfm_202315750 crossref_primary_10_1021_acs_joc_9b00541 crossref_primary_10_1016_j_jphotochem_2017_07_003 crossref_primary_10_1002_qua_26924 crossref_primary_10_1039_C5PY00096C crossref_primary_10_1039_C9QO00089E crossref_primary_10_1002_chem_202304033 crossref_primary_10_1016_j_cclet_2019_02_010 crossref_primary_10_1021_acs_joc_8b02045 crossref_primary_10_1038_srep31187 crossref_primary_10_1016_j_memsci_2020_118041 crossref_primary_10_1021_acs_macromol_9b02727 crossref_primary_10_1038_s41467_022_34358_7 crossref_primary_10_1002_ejoc_201601323 crossref_primary_10_1021_acscatal_6b01939 crossref_primary_10_1039_C8TA01864B crossref_primary_10_3389_fchem_2019_00611 crossref_primary_10_1002_chem_201601804 crossref_primary_10_3184_174751916X14768938598056 crossref_primary_10_1016_j_tetlet_2016_08_007 crossref_primary_10_1039_C8CC02360C crossref_primary_10_1002_anie_201505278 crossref_primary_10_1002_anie_201610279 crossref_primary_10_1016_j_tetlet_2016_06_090 crossref_primary_10_1002_chem_201500568 crossref_primary_10_1038_s41428_021_00550_7 crossref_primary_10_1016_j_tet_2019_06_022 crossref_primary_10_1002_ejoc_201700102 crossref_primary_10_1007_s11426_017_9059_4 crossref_primary_10_1039_C9QO00612E crossref_primary_10_1002_chem_202301613 crossref_primary_10_1039_D0CC04831C crossref_primary_10_1021_acs_joc_7b02840 crossref_primary_10_1021_acs_analchem_7b02170 crossref_primary_10_1002_asia_201600289 crossref_primary_10_1021_cr5005315 crossref_primary_10_1515_pac_2015_0109 crossref_primary_10_1002_anie_201407092 crossref_primary_10_1002_cplu_202000825 crossref_primary_10_1002_adma_201606117 crossref_primary_10_1039_C8PY01396A crossref_primary_10_1016_j_dyepig_2017_05_047 crossref_primary_10_1021_jacs_2c06251 crossref_primary_10_1002_ange_201610279 crossref_primary_10_1039_C8QM00314A crossref_primary_10_1021_acs_joc_6b00617 crossref_primary_10_1021_ma502283f crossref_primary_10_1002_jcc_25127 crossref_primary_10_1021_cr500671p crossref_primary_10_1021_acs_orglett_6b02156 crossref_primary_10_1002_chem_202202665 crossref_primary_10_1039_D1CC04991G crossref_primary_10_1021_acs_orglett_6b03005 crossref_primary_10_1002_ange_201407092 crossref_primary_10_1039_C7CC05422J crossref_primary_10_1016_j_cclet_2017_11_045 crossref_primary_10_1039_C7CE01109A crossref_primary_10_3762_bjoc_11_222 crossref_primary_10_1002_ejoc_201800531 crossref_primary_10_1039_C6RA20910F crossref_primary_10_1039_C7OB01736G crossref_primary_10_1039_D1CC02704B crossref_primary_10_1002_anie_201605440 crossref_primary_10_1039_C5PY00419E crossref_primary_10_1021_acs_macromol_5b01269 crossref_primary_10_1039_C6CC02110G crossref_primary_10_1002_anie_201410757 crossref_primary_10_1002_marc_202000099 crossref_primary_10_1002_chem_201705346 crossref_primary_10_1002_ange_201502405 crossref_primary_10_1002_anie_202400989 crossref_primary_10_1016_j_cclet_2017_06_006 crossref_primary_10_1039_C6CC01724J crossref_primary_10_1016_j_trechm_2020_11_006 crossref_primary_10_1039_D0CC01205J crossref_primary_10_1016_j_dyepig_2018_08_025 crossref_primary_10_1039_C8CE02187B crossref_primary_10_1039_D1CP01089A crossref_primary_10_1039_C9CC02498K crossref_primary_10_1080_10610278_2014_1002840 crossref_primary_10_1002_chem_201603231 crossref_primary_10_1002_chem_202303421 crossref_primary_10_1039_D2ME00117A crossref_primary_10_1021_acs_orglett_1c01592 crossref_primary_10_1021_jacs_9b02904 crossref_primary_10_1039_C4CS00531G crossref_primary_10_1002_chem_201901272 crossref_primary_10_1021_acs_chemrev_6b00354 crossref_primary_10_1002_ijch_202000109 crossref_primary_10_1016_j_tetlet_2015_12_031 crossref_primary_10_1021_acs_joc_0c00051 crossref_primary_10_1002_adom_201701278 crossref_primary_10_1002_chin_201437268 crossref_primary_10_1039_C8CC02077A crossref_primary_10_1021_jacs_5b11808 crossref_primary_10_1002_chem_201406521 crossref_primary_10_1021_acsnano_1c11057 crossref_primary_10_1002_chem_201603987 crossref_primary_10_1021_acs_jpca_0c03120 crossref_primary_10_1002_ange_201410757 crossref_primary_10_1002_tcr_201402046 crossref_primary_10_1039_C5PY00129C crossref_primary_10_1039_C7CC03552G crossref_primary_10_1080_10610278_2016_1161196 crossref_primary_10_1002_anie_201502405 crossref_primary_10_1021_acsami_9b18588 crossref_primary_10_1016_j_ica_2021_120676 crossref_primary_10_1016_j_tetlet_2015_11_058 crossref_primary_10_1039_C6CC03999E crossref_primary_10_1007_s10118_019_2305_1 crossref_primary_10_1021_acscentsci_5b00377 crossref_primary_10_1248_yakushi_18_00179_2 crossref_primary_10_1039_C7OB00660H crossref_primary_10_1016_j_tet_2017_02_034 crossref_primary_10_1039_C9CC02472G |
Cites_doi | 10.1021/ja984017h 10.1002/cber.18940270364 10.1039/c0cc03689g 10.1039/b818033b 10.1021/jo901293b 10.1021/ja9019758 10.1002/ejoc.200300495 10.1021/ar700219m 10.1021/ar960298r 10.1002/cjoc.201300009 10.1016/j.tet.2009.10.073 10.1007/s11426-008-0142-0 10.1039/c2cc36391g 10.1021/ja801618p 10.1016/j.tet.2005.06.042 10.1351/pac197749060857 10.1002/anie.201104099 10.1002/chem.201304161 10.1021/ja047436p 10.1039/a704933a 10.1021/ja039511m 10.1021/ja0663529 10.1126/science.183.4127.803 10.1007/BFb0111281 10.1039/B607187B 10.1039/c3cc42349b 10.1002/anie.200500982 10.1021/ar8001393 10.1021/cr900162q 10.1039/b508773b 10.1021/ja00309a067 10.1002/adma201302015 10.5012/bkcs.2009.30.2.482 10.1021/ar010009l 10.1039/b926162c 10.1016/j.tet.2011.10.116 10.1021/ja102794a 10.1021/la8034243 10.1021/ol070492l 10.1021/la302818r 10.1021/ja056509h 10.1039/c3cc38261c 10.1021/ja993830p 10.1002/chem.200700640 10.1021/ma100952h 10.1021/ja8043322 10.1021/cr990125q 10.1039/c1ob06026k 10.1039/C3QO00032J 10.1039/c2cs35091b 10.1038/453171a 10.1021/jo050798a 10.1002/anie.200462898 10.1002/macp.201000259 10.1021/ol2011083 10.1021/ar700266f 10.1039/b819597h 10.1016/j.tet.2009.09.107 10.1021/cr300116k 10.1126/science.1200143 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/ar5000242 |
DatabaseName | PubMed CrossRef MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 1970 |
ExternalDocumentID | 10_1021_ar5000242 24673152 a233614766 |
Genre | Journal Article |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 ABJNI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CUPRZ GGK IH2 NPM XSW ZCA ~02 AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a348t-8853aa307e9c005a09a77fb34d6e59a7913373e368ed04bc9b811ae87bc88cbb3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 |
IngestDate | Sat Oct 26 01:37:21 EDT 2024 Sat Oct 26 00:40:32 EDT 2024 Thu Sep 26 19:16:22 EDT 2024 Sat Sep 28 08:02:52 EDT 2024 Thu Aug 27 13:42:11 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-8853aa307e9c005a09a77fb34d6e59a7913373e368ed04bc9b811ae87bc88cbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24673152 |
PQID | 1545419109 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1770370794 proquest_miscellaneous_1545419109 crossref_primary_10_1021_ar5000242 pubmed_primary_24673152 acs_journals_10_1021_ar5000242 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2014-07-15 |
PublicationDateYYYYMMDD | 2014-07-15 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Juwarker H. (ref16/cit16) 2010; 39 Wu C.-F. (ref27/cit27) 2014; 20 Cai W. (ref46/cit46) 2008; 130 Gin M. S. (ref39/cit39) 1999; 121 Ong W. Q. (ref21/cit21) 2011; 13 Naidu V. R. (ref41/cit41) 2009; 30 Nygaard S. (ref59/cit59) 2007; 129 Yan X. (ref7/cit7) 2012; 41 Hua Y. (ref17/cit17) 2010; 39 Zhang K.-D. (ref28/cit28) 2011; 50 Saraogi I. (ref14/cit14) 2009; 38 Gan Q. (ref23/cit23) 2011; 331 Du P. (ref31/cit31) 2009; 52 Zhang D.-W. (ref15/cit15) 2012; 112 Garric J. (ref22/cit22) 2007; 13 Hou J.-L. (ref18/cit18) 2004; 126 Seebach D. (ref9/cit9) 1997 Li C.-Z. (ref50/cit50) 2013; 31 Wu Z.-Q. (ref49/cit49) 2005; 127 Wang L. (ref44/cit44) 2009; 65 Sánchez-García D. (ref61/cit61) 2009; 131 Garric J. (ref37/cit37) 2005; 44 Green M. M. (ref48/cit48) 2001; 34 Prince R. B. (ref30/cit30) 2000; 122 Yamato K. (ref20/cit20) 2012; 48 Sun C. (ref36/cit36) 2013; 49 Li Z.-T. (ref19/cit19) 2008; 41 Yuan L. (ref34/cit34) 2005; 70 Lehn J.-M. (ref3/cit3) 1977; 49 Huc I. (ref12/cit12) 2004 Ferrand Y. (ref38/cit38) 2010; 132 Zhou C. (ref45/cit45) 2010; 211 Yashima E. (ref29/cit29) 2009; 109 Xu Y.-X. (ref52/cit52) 2009; 25 Li C. (ref42/cit42) 2007; 9 Brunsveld L. (ref55/cit55) 2001; 101 Gong B. (ref13/cit13) 2008; 41 De Greef T. F. A. (ref47/cit47) 2008; 453 Yi H.-P. (ref33/cit33) 2005; 29 Cai W. (ref43/cit43) 2008; 130 Fischer E. (ref1/cit1) 1894; 27 Zimmerman S. C. (ref4/cit4) 1993; 165 Shi Z.-M. (ref57/cit57) 2010; 43 Yi H.-P. (ref56/cit56) 2005; 61 Zhang K.-D. (ref60/cit60) 2012; 28 Li X. (ref11/cit11) 2008; 41 Zhang K.-D. (ref58/cit58) 2012; 68 Liu K. (ref8/cit8) 2013; 25 Xu Y.-X. (ref54/cit54) 2014; 1 Saha S. (ref6/cit6) 2007; 36 Xu Y.-X. (ref24/cit24) 2009; 74 Cram D. J. (ref2/cit2) 1974; 183 Rebek J. (ref5/cit5) 1985; 107 Shi Z.-M. (ref25/cit25) 2013; 49 Sun C. (ref26/cit26) 2013; 49 Gellman S. H. (ref10/cit10) 1998; 31 Xiao Z.-Y. (ref51/cit51) 2009; 65 Li C. (ref32/cit32) 2005; 44 Lu Y.-X. (ref35/cit35) 2010; 46 Shi Z.-M. (ref53/cit53) 2011; 9 Jiang H. (ref40/cit40) 2004; 126 |
References_xml | – volume: 121 start-page: 2643 year: 1999 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja984017h contributor: fullname: Gin M. S. – volume: 27 start-page: 2985 year: 1894 ident: ref1/cit1 publication-title: Ber. Dtsch. Chem. Ges. doi: 10.1002/cber.18940270364 contributor: fullname: Fischer E. – volume: 46 start-page: 9019 year: 2010 ident: ref35/cit35 publication-title: Chem. Commun. doi: 10.1039/c0cc03689g contributor: fullname: Lu Y.-X. – volume: 39 start-page: 1262 year: 2010 ident: ref17/cit17 publication-title: Chem. Soc. Rev. doi: 10.1039/b818033b contributor: fullname: Hua Y. – volume: 74 start-page: 7267 year: 2009 ident: ref24/cit24 publication-title: J. Org. Chem. doi: 10.1021/jo901293b contributor: fullname: Xu Y.-X. – volume: 131 start-page: 8642 year: 2009 ident: ref61/cit61 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9019758 contributor: fullname: Sánchez-García D. – start-page: 17 year: 2004 ident: ref12/cit12 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.200300495 contributor: fullname: Huc I. – volume: 41 start-page: 1343 year: 2008 ident: ref19/cit19 publication-title: Acc. Chem. Res. doi: 10.1021/ar700219m contributor: fullname: Li Z.-T. – volume: 31 start-page: 173 year: 1998 ident: ref10/cit10 publication-title: Acc. Chem. Res. doi: 10.1021/ar960298r contributor: fullname: Gellman S. H. – volume: 31 start-page: 582 year: 2013 ident: ref50/cit50 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201300009 contributor: fullname: Li C.-Z. – volume: 65 start-page: 10544 year: 2009 ident: ref44/cit44 publication-title: Tetrahedron doi: 10.1016/j.tet.2009.10.073 contributor: fullname: Wang L. – volume: 52 start-page: 489 year: 2009 ident: ref31/cit31 publication-title: Sci. China B doi: 10.1007/s11426-008-0142-0 contributor: fullname: Du P. – volume: 48 start-page: 12142 year: 2012 ident: ref20/cit20 publication-title: Chem. Commun. doi: 10.1039/c2cc36391g contributor: fullname: Yamato K. – volume: 130 start-page: 6936 year: 2008 ident: ref43/cit43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801618p contributor: fullname: Cai W. – volume: 61 start-page: 7974 year: 2005 ident: ref56/cit56 publication-title: Tetrahedron doi: 10.1016/j.tet.2005.06.042 contributor: fullname: Yi H.-P. – volume: 49 start-page: 857 year: 1977 ident: ref3/cit3 publication-title: Pure Appl. Chem. doi: 10.1351/pac197749060857 contributor: fullname: Lehn J.-M. – volume: 50 start-page: 9866 year: 2011 ident: ref28/cit28 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201104099 contributor: fullname: Zhang K.-D. – volume: 20 start-page: 1418 year: 2014 ident: ref27/cit27 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201304161 contributor: fullname: Wu C.-F. – volume: 126 start-page: 12386 year: 2004 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047436p contributor: fullname: Hou J.-L. – start-page: 2015 year: 1997 ident: ref9/cit9 publication-title: Chem. Commun. doi: 10.1039/a704933a contributor: fullname: Seebach D. – volume: 126 start-page: 1034 year: 2004 ident: ref40/cit40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja039511m contributor: fullname: Jiang H. – volume: 129 start-page: 960 year: 2007 ident: ref59/cit59 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0663529 contributor: fullname: Nygaard S. – volume: 183 start-page: 803 year: 1974 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.183.4127.803 contributor: fullname: Cram D. J. – volume: 165 start-page: 71 year: 1993 ident: ref4/cit4 publication-title: Top. Curr. Chem. doi: 10.1007/BFb0111281 contributor: fullname: Zimmerman S. C. – volume: 36 start-page: 77 year: 2007 ident: ref6/cit6 publication-title: Chem. Soc. Rev. doi: 10.1039/B607187B contributor: fullname: Saha S. – volume: 49 start-page: 5307 year: 2013 ident: ref26/cit26 publication-title: Chem. Commun. doi: 10.1039/c3cc42349b contributor: fullname: Sun C. – volume: 44 start-page: 5725 year: 2005 ident: ref32/cit32 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200500982 contributor: fullname: Li C. – volume: 41 start-page: 1428 year: 2008 ident: ref11/cit11 publication-title: Acc. Chem. Res. doi: 10.1021/ar8001393 contributor: fullname: Li X. – volume: 109 start-page: 6102 year: 2009 ident: ref29/cit29 publication-title: Chem. Rev. doi: 10.1021/cr900162q contributor: fullname: Yashima E. – volume: 29 start-page: 1213 year: 2005 ident: ref33/cit33 publication-title: New J. Chem. doi: 10.1039/b508773b contributor: fullname: Yi H.-P. – volume: 107 start-page: 6736 year: 1985 ident: ref5/cit5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00309a067 contributor: fullname: Rebek J. – volume: 25 start-page: 5530 year: 2013 ident: ref8/cit8 publication-title: Adv. Mater. doi: 10.1002/adma201302015 contributor: fullname: Liu K. – volume: 30 start-page: 482 year: 2009 ident: ref41/cit41 publication-title: Bull. Korean Chem. Soc. doi: 10.5012/bkcs.2009.30.2.482 contributor: fullname: Naidu V. R. – volume: 34 start-page: 672 year: 2001 ident: ref48/cit48 publication-title: Acc. Chem. Res. doi: 10.1021/ar010009l contributor: fullname: Green M. M. – volume: 39 start-page: 3664 year: 2010 ident: ref16/cit16 publication-title: Chem. Soc. Rev. doi: 10.1039/b926162c contributor: fullname: Juwarker H. – volume: 68 start-page: 4517 year: 2012 ident: ref58/cit58 publication-title: Tetrahedron doi: 10.1016/j.tet.2011.10.116 contributor: fullname: Zhang K.-D. – volume: 132 start-page: 7858 year: 2010 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102794a contributor: fullname: Ferrand Y. – volume: 25 start-page: 2684 year: 2009 ident: ref52/cit52 publication-title: Langmuir doi: 10.1021/la8034243 contributor: fullname: Xu Y.-X. – volume: 9 start-page: 1797 year: 2007 ident: ref42/cit42 publication-title: Org. Lett. doi: 10.1021/ol070492l contributor: fullname: Li C. – volume: 28 start-page: 14839 year: 2012 ident: ref60/cit60 publication-title: Langmuir doi: 10.1021/la302818r contributor: fullname: Zhang K.-D. – volume: 127 start-page: 17460 year: 2005 ident: ref49/cit49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056509h contributor: fullname: Wu Z.-Q. – volume: 49 start-page: 2673 year: 2013 ident: ref25/cit25 publication-title: Chem. Commun. doi: 10.1039/c3cc38261c contributor: fullname: Shi Z.-M. – volume: 122 start-page: 2758 year: 2000 ident: ref30/cit30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993830p contributor: fullname: Prince R. B. – volume: 13 start-page: 8454 year: 2007 ident: ref22/cit22 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200700640 contributor: fullname: Garric J. – volume: 49 start-page: 5307 year: 2013 ident: ref36/cit36 publication-title: Chem. Commun. doi: 10.1039/c3cc42349b contributor: fullname: Sun C. – volume: 43 start-page: 6185 year: 2010 ident: ref57/cit57 publication-title: Macromolecules doi: 10.1021/ma100952h contributor: fullname: Shi Z.-M. – volume: 130 start-page: 13450 year: 2008 ident: ref46/cit46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8043322 contributor: fullname: Cai W. – volume: 101 start-page: 4071 year: 2001 ident: ref55/cit55 publication-title: Chem. Rev. doi: 10.1021/cr990125q contributor: fullname: Brunsveld L. – volume: 9 start-page: 8122 year: 2011 ident: ref53/cit53 publication-title: Org. Biomol. Chem. doi: 10.1039/c1ob06026k contributor: fullname: Shi Z.-M. – volume: 1 start-page: 73 year: 2014 ident: ref54/cit54 publication-title: Org. Chem. Front. doi: 10.1039/C3QO00032J contributor: fullname: Xu Y.-X. – volume: 41 start-page: 6042 year: 2012 ident: ref7/cit7 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35091b contributor: fullname: Yan X. – volume: 453 start-page: 171 year: 2008 ident: ref47/cit47 publication-title: Nature doi: 10.1038/453171a contributor: fullname: De Greef T. F. A. – volume: 70 start-page: 10660 year: 2005 ident: ref34/cit34 publication-title: J. Org. Chem. doi: 10.1021/jo050798a contributor: fullname: Yuan L. – volume: 44 start-page: 1954 year: 2005 ident: ref37/cit37 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200462898 contributor: fullname: Garric J. – volume: 211 start-page: 2090 year: 2010 ident: ref45/cit45 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201000259 contributor: fullname: Zhou C. – volume: 13 start-page: 3194 year: 2011 ident: ref21/cit21 publication-title: Org. Lett. doi: 10.1021/ol2011083 contributor: fullname: Ong W. Q. – volume: 41 start-page: 1376 year: 2008 ident: ref13/cit13 publication-title: Acc. Chem. Res. doi: 10.1021/ar700266f contributor: fullname: Gong B. – volume: 38 start-page: 1726 year: 2009 ident: ref14/cit14 publication-title: Chem. Soc. Rev. doi: 10.1039/b819597h contributor: fullname: Saraogi I. – volume: 65 start-page: 10182 year: 2009 ident: ref51/cit51 publication-title: Tetrahedron doi: 10.1016/j.tet.2009.09.107 contributor: fullname: Xiao Z.-Y. – volume: 112 start-page: 5271 year: 2012 ident: ref15/cit15 publication-title: Chem. Rev. doi: 10.1021/cr300116k contributor: fullname: Zhang D.-W. – volume: 331 start-page: 1172 year: 2011 ident: ref23/cit23 publication-title: Science doi: 10.1126/science.1200143 contributor: fullname: Gan Q. |
SSID | ssj0002467 |
Score | 2.5586596 |
Snippet | Conspectus In host–guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host–guest... CONSPECTUS: In host-guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host-guest... Conspectus In host-guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host-guest... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1961 |
SubjectTerms | Amides Backbone Chirality Crown ethers Design engineering Helical Holes Molecular structure |
Title | Aromatic Amide and Hydrazide Foldamer-Based Responsive Host–Guest Systems |
URI | http://dx.doi.org/10.1021/ar5000242 https://www.ncbi.nlm.nih.gov/pubmed/24673152 https://search.proquest.com/docview/1545419109 https://search.proquest.com/docview/1770370794 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB0VOMCFfSmbwnJNSRw3cY6lUCqQOLBIvUXeKiEgQWmKRE_8A3_IlzDOUoGg5RIlkpM49ozfG4_zDHBsOGhAhLCR2mOAQhxuixBjHj8QnpRaIUjnq3yv_e49vew1ezU4mpDBJ-4JT41mPyLJDMyRAJ3C8J_27Xi4JdQvhDExLqaMkko-6PutBnrk4Cf0TOCTOa50luCs-junWE7y2BhmoiFHv8Uap1V5GRZLXmm1CkNYgZqOV2G-XW3ntgZXrTTJ5Vmt1vOD0haPldV9UykfmatO8qT4s07tU0Q1Zd2UK2dftdVNBtnn-8eF-Qir1Ddfh_vO-V27a5c7KdjcoyyzGYIy5-jOOpTodtwJeRD0hUeVr5t4HmKkGnja85lWDhUyFMx1uWaBkIxJIbwNmI2TWG-BpZBg6D4ejEwMkZJ5SOIUbfYdSZjr6zrsY1NHpScMojzJTdxo3CZ1OKx6IXopFDX-KnRQ9U-E7WSSGDzWyRCfh5SPYpDphFPKBDiOGek_WofNonPHrzLm4iFp2f6vnjuwgOSImnlct7kLs1k61HtIQDKxnxvgF69a0SU |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57070,57120 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8pqENeULE7iHEtFCRQ4sEi9Rd4qISBBSYpET_wDf8iXMM5SFrFdokRynIk99nsTT54R2tMc1Lc5N4DaQ4Bim8zgAcQ8ns8dIZQEkC6yfM-98Jqc9NxeJZOj_4UBIzKoKSsW8d_VBax9lmrpfgCUcTTp-uComga1L0ezrk28Uh8TwmNCiV2rCH28VSOQyD4j0A-0soCXzmy5T1FhWJFVctsc5Lwphl80G_9n-RyaqVgmbpVuMY_GVLyAptr15m6LqNtKk0KsFbfub6TCLJY4fJIpG-qrTnIn2b1KjQPAOIkvqjzaR4XDJMtfn1-O9LvgSu18CV13Dq_aoVHtq2Awh9DcoADRjMHgVoGAQcjMgPl-nztEesqF8wDiVt9RjkeVNAkXAaeWxRT1uaBUcO4so4k4idUqwhLohurDQYvG2EJQByidJG7fFDa1PNVAW9AkUTUusqhY8rataNQmDbRbd0b0UOprfFdop-6mCNpJL2mwWCUDqA8IIIGQ0wx-KePDrKaFAEkDrZR9PHqU9hoHKMzaX3Zuo6nw6uw0Oj0-766jaaBNRH_htdwNNJGnA7UJ1CTnW4VPvgG3ztmF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSMCFfSlLCYhrShYncY6lUMoiQECl3iJvlRCQoCRFghP_wB_yJYzTtALEdokSyXEmtsfvTTx5BtjRHDRwODeR2mOA4ljM5CHGPH7AXSGURJAusnzP_FabHHe8Thko6n9h0IgMa8qKRXzt1Q-yWyoM2Lss1fL9CCqjMO4FtqO3aqg3roYzr0P8vkYmhsiEEmegJPTxVo1CIvuMQj9QywJimjNwPjSuyCy5rfVyXhPPX3Qb_2_9LEyXbNOo94fHHIyoeB4mG4NN3hbgpJ4mhWirUb-_kcpgsTRaTzJlz_qqmdxJdq9Scw-xThqXZT7tozJaSZa_vbwe6vcxStXzRWg3D64bLbPcX8FkLqG5SRGqGUMnV6FAZ2RWyIKgy10ifeXheYjxa-Aq16dKWoSLkFPbZooGXFAqOHeXYCxOYrUChkTaobp40OIxjhDURWonide1hENtX1Wgis0Slf6RRcXSt2NHwzapwPagQ6KHvs7Gd4W2Bl0VYTvppQ0Wq6SH9SERJBh6WuEvZQKc3bQgIKnAcr-fh4_SI8dFKrP6l52bMHGx34xOj85O1mAK2RPRH3ptbx3G8rSnNpCh5LxaDMt36Wfb_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aromatic+Amide+and+Hydrazide+Foldamer-Based+Responsive+Host-Guest+Systems&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhang%2C+Dan-Wei&rft.au=Zhao%2C+Xin&rft.au=Li%2C+Zhan-Ting&rft.date=2014-07-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=47&rft.issue=7&rft.spage=1961&rft.epage=1970-1961-1970&rft_id=info:doi/10.1021%2Far5000242&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |