Aromatic Amide and Hydrazide Foldamer-Based Responsive Host–Guest Systems

Conspectus In host–guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host–guest chemistry focused on the recognition of spherical metal or ammonium ions by macrocyclic hosts, such as cyclic crown ethers. In these systems,...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 47; no. 7; pp. 1961 - 1970
Main Authors Zhang, Dan-Wei, Zhao, Xin, Li, Zhan-Ting
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conspectus In host–guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host–guest chemistry focused on the recognition of spherical metal or ammonium ions by macrocyclic hosts, such as cyclic crown ethers. In these systems, preorganization enables their binding sites to cooperatively contact and attract a guest. Although some open-chain crown ether analogues possess similar, but generally lower, binding affinities, the design of acyclic molecular recognition hosts has remained challenging. One of the most successful examples was rigid molecular tweezers, acyclic covalently bonded preorganized host molecules with open cavities that bind tightly as they stiffen. Depending on the length of the atomic backbones, hydrogen bonding-driven aromatic amide foldamers can form open or closed cavities. Through rational design of the backbones and the introduction of added functional groups, researchers can regulate the shape and size of the cavity. The directionality of hydrogen bonding and the inherent rigidity of aromatic amide units allow researchers to predict both the shape and size of the cavity of an aromatic amide foldamer. Therefore, researchers can then design guest molecules with structure that matches the cavity shape, size, and binding sites of the foldamer host. In addition, because hydrogen bonds are dynamic, researchers can design structures that can adapt to outside stimuli to produce responsive supramolecular architectures. In this Account, we discuss how aromatic amide and hydrazide foldamers induced by hydrogen bonding can produce responsive host–guest systems, based on research by our group and others. First we highlight the helical chirality induced as binding occurs in solution, which includes the induction of helicity by chiral guests in oligomeric and polymeric foldamers, the formation of diastereomeric complexes between chiral foldamer hosts and guests, and the induction of helical chirality by chiral guests into inherently flexible backbones. In addition, molecular or ion-pair guests can produce supramolecular helical chirality in the organogel state. Such structures exhibit remarkable time-dependence and a “Sergeants and Soldiers” effect that are not observed for other two-component organogels that have been reported. We further illustrate that the reversible folding behavior of an aromatic amide foldamer segment can modulate the switching behavior of donor–acceptor interaction-based [2]­rotaxanes. Finally we show that a folded oligomer can induce folding in one or two attached intrinsically flexible oligomers, an example of a solvent-responsive intramolecular host–guest system.
AbstractList Conspectus In host–guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host–guest chemistry focused on the recognition of spherical metal or ammonium ions by macrocyclic hosts, such as cyclic crown ethers. In these systems, preorganization enables their binding sites to cooperatively contact and attract a guest. Although some open-chain crown ether analogues possess similar, but generally lower, binding affinities, the design of acyclic molecular recognition hosts has remained challenging. One of the most successful examples was rigid molecular tweezers, acyclic covalently bonded preorganized host molecules with open cavities that bind tightly as they stiffen. Depending on the length of the atomic backbones, hydrogen bonding-driven aromatic amide foldamers can form open or closed cavities. Through rational design of the backbones and the introduction of added functional groups, researchers can regulate the shape and size of the cavity. The directionality of hydrogen bonding and the inherent rigidity of aromatic amide units allow researchers to predict both the shape and size of the cavity of an aromatic amide foldamer. Therefore, researchers can then design guest molecules with structure that matches the cavity shape, size, and binding sites of the foldamer host. In addition, because hydrogen bonds are dynamic, researchers can design structures that can adapt to outside stimuli to produce responsive supramolecular architectures. In this Account, we discuss how aromatic amide and hydrazide foldamers induced by hydrogen bonding can produce responsive host–guest systems, based on research by our group and others. First we highlight the helical chirality induced as binding occurs in solution, which includes the induction of helicity by chiral guests in oligomeric and polymeric foldamers, the formation of diastereomeric complexes between chiral foldamer hosts and guests, and the induction of helical chirality by chiral guests into inherently flexible backbones. In addition, molecular or ion-pair guests can produce supramolecular helical chirality in the organogel state. Such structures exhibit remarkable time-dependence and a “Sergeants and Soldiers” effect that are not observed for other two-component organogels that have been reported. We further illustrate that the reversible folding behavior of an aromatic amide foldamer segment can modulate the switching behavior of donor–acceptor interaction-based [2]­rotaxanes. Finally we show that a folded oligomer can induce folding in one or two attached intrinsically flexible oligomers, an example of a solvent-responsive intramolecular host–guest system.
CONSPECTUS: In host-guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host-guest chemistry focused on the recognition of spherical metal or ammonium ions by macrocyclic hosts, such as cyclic crown ethers. In these systems, preorganization enables their binding sites to cooperatively contact and attract a guest. Although some open-chain crown ether analogues possess similar, but generally lower, binding affinities, the design of acyclic molecular recognition hosts has remained challenging. One of the most successful examples was rigid molecular tweezers, acyclic covalently bonded preorganized host molecules with open cavities that bind tightly as they stiffen. Depending on the length of the atomic backbones, hydrogen bonding-driven aromatic amide foldamers can form open or closed cavities. Through rational design of the backbones and the introduction of added functional groups, researchers can regulate the shape and size of the cavity. The directionality of hydrogen bonding and the inherent rigidity of aromatic amide units allow researchers to predict both the shape and size of the cavity of an aromatic amide foldamer. Therefore, researchers can then design guest molecules with structure that matches the cavity shape, size, and binding sites of the foldamer host. In addition, because hydrogen bonds are dynamic, researchers can design structures that can adapt to outside stimuli to produce responsive supramolecular architectures. In this Account, we discuss how aromatic amide and hydrazide foldamers induced by hydrogen bonding can produce responsive host-guest systems, based on research by our group and others. First we highlight the helical chirality induced as binding occurs in solution, which includes the induction of helicity by chiral guests in oligomeric and polymeric foldamers, the formation of diastereomeric complexes between chiral foldamer hosts and guests, and the induction of helical chirality by chiral guests into inherently flexible backbones. In addition, molecular or ion-pair guests can produce supramolecular helical chirality in the organogel state. Such structures exhibit remarkable time-dependence and a "Sergeants and Soldiers" effect that are not observed for other two-component organogels that have been reported. We further illustrate that the reversible folding behavior of an aromatic amide foldamer segment can modulate the switching behavior of donor-acceptor interaction-based [2]rotaxanes. Finally we show that a folded oligomer can induce folding in one or two attached intrinsically flexible oligomers, an example of a solvent-responsive intramolecular host-guest system.
Author Zhang, Dan-Wei
Zhao, Xin
Li, Zhan-Ting
AuthorAffiliation Department of Chemistry
Fudan University
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
AuthorAffiliation_xml – name: Fudan University
– name: Department of Chemistry
– name: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Dan-Wei
  surname: Zhang
  fullname: Zhang, Dan-Wei
  organization: Fudan University
– sequence: 2
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
– sequence: 3
  givenname: Zhan-Ting
  surname: Li
  fullname: Li, Zhan-Ting
  email: ztli@fudan.edu.cn
  organization: Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24673152$$D View this record in MEDLINE/PubMed
BookMark eNqF0MtKAzEUBuAgFXvRhS8gsxF0MZpMMk2yrMW2YkHwsh4yySlM6UxqMiPUle_gG_okZmztSnB1Tg4fP-Hvo05lK0DolOArghNyrVyKMU5YcoB6JE1wzIQUHdQLRxJ2lnRR3_vljxnyI9RtBw2yh-5HzpaqLnQ0KgsDkapMNNsYp97b18SujCrBxTfKg4kewa9t5Ys3iGbW118fn9MGfB09bXwNpT9Ghwu18nCymwP0Mrl9Hs_i-cP0bjyax4oyUcdCpFQpijlIjXGqsFScL3LKzBDSsEtCKadAhwIMZrmWuSBEgeC5FkLnOR2gi23u2tnX9gNZWXgNq5WqwDY-I5xjyjGX7H-aspQRSbAM9HJLtbPeO1hka1eUym0ygrO25mxfc7Bnu9gmL8Hs5W-vAZxvgdI-W9rGVaGQP4K-AXBghF0
CitedBy_id crossref_primary_10_1002_ange_201505278
crossref_primary_10_1002_ange_202400989
crossref_primary_10_1021_acs_orglett_5b01455
crossref_primary_10_1039_D1PY00144B
crossref_primary_10_1021_jacs_9b13584
crossref_primary_10_1021_jacs_7b03635
crossref_primary_10_1021_acs_jpcc_0c00672
crossref_primary_10_1002_chem_201501102
crossref_primary_10_1016_j_ica_2014_09_028
crossref_primary_10_1021_acsmacrolett_9b00527
crossref_primary_10_1002_ange_201605440
crossref_primary_10_1002_marc_201800731
crossref_primary_10_2174_0122133372274680231105072522
crossref_primary_10_1021_acs_joc_0c00281
crossref_primary_10_1002_adsc_201801619
crossref_primary_10_1039_C5QO00244C
crossref_primary_10_3390_molecules20023354
crossref_primary_10_1039_C6TA02575G
crossref_primary_10_1039_C7CC07253H
crossref_primary_10_1002_chem_201604573
crossref_primary_10_1016_j_memsci_2018_10_084
crossref_primary_10_1039_D1OB00580D
crossref_primary_10_1016_j_tet_2024_133977
crossref_primary_10_1039_C6CC00045B
crossref_primary_10_1038_s41598_017_16503_1
crossref_primary_10_1002_cjoc_201400881
crossref_primary_10_1002_cjoc_201600140
crossref_primary_10_1021_acs_joc_7b03111
crossref_primary_10_1002_chem_202301832
crossref_primary_10_1039_C5CC05728K
crossref_primary_10_1039_C6CC00788K
crossref_primary_10_1002_adom_202000265
crossref_primary_10_1039_D0SC06060G
crossref_primary_10_1016_j_comptc_2020_113040
crossref_primary_10_1021_acs_inorgchem_6b01911
crossref_primary_10_1021_acs_joc_8b01405
crossref_primary_10_6023_cjoc202102012
crossref_primary_10_1002_adfm_202315750
crossref_primary_10_1021_acs_joc_9b00541
crossref_primary_10_1016_j_jphotochem_2017_07_003
crossref_primary_10_1002_qua_26924
crossref_primary_10_1039_C5PY00096C
crossref_primary_10_1039_C9QO00089E
crossref_primary_10_1002_chem_202304033
crossref_primary_10_1016_j_cclet_2019_02_010
crossref_primary_10_1021_acs_joc_8b02045
crossref_primary_10_1038_srep31187
crossref_primary_10_1016_j_memsci_2020_118041
crossref_primary_10_1021_acs_macromol_9b02727
crossref_primary_10_1038_s41467_022_34358_7
crossref_primary_10_1002_ejoc_201601323
crossref_primary_10_1021_acscatal_6b01939
crossref_primary_10_1039_C8TA01864B
crossref_primary_10_3389_fchem_2019_00611
crossref_primary_10_1002_chem_201601804
crossref_primary_10_3184_174751916X14768938598056
crossref_primary_10_1016_j_tetlet_2016_08_007
crossref_primary_10_1039_C8CC02360C
crossref_primary_10_1002_anie_201505278
crossref_primary_10_1002_anie_201610279
crossref_primary_10_1016_j_tetlet_2016_06_090
crossref_primary_10_1002_chem_201500568
crossref_primary_10_1038_s41428_021_00550_7
crossref_primary_10_1016_j_tet_2019_06_022
crossref_primary_10_1002_ejoc_201700102
crossref_primary_10_1007_s11426_017_9059_4
crossref_primary_10_1039_C9QO00612E
crossref_primary_10_1002_chem_202301613
crossref_primary_10_1039_D0CC04831C
crossref_primary_10_1021_acs_joc_7b02840
crossref_primary_10_1021_acs_analchem_7b02170
crossref_primary_10_1002_asia_201600289
crossref_primary_10_1021_cr5005315
crossref_primary_10_1515_pac_2015_0109
crossref_primary_10_1002_anie_201407092
crossref_primary_10_1002_cplu_202000825
crossref_primary_10_1002_adma_201606117
crossref_primary_10_1039_C8PY01396A
crossref_primary_10_1016_j_dyepig_2017_05_047
crossref_primary_10_1021_jacs_2c06251
crossref_primary_10_1002_ange_201610279
crossref_primary_10_1039_C8QM00314A
crossref_primary_10_1021_acs_joc_6b00617
crossref_primary_10_1021_ma502283f
crossref_primary_10_1002_jcc_25127
crossref_primary_10_1021_cr500671p
crossref_primary_10_1021_acs_orglett_6b02156
crossref_primary_10_1002_chem_202202665
crossref_primary_10_1039_D1CC04991G
crossref_primary_10_1021_acs_orglett_6b03005
crossref_primary_10_1002_ange_201407092
crossref_primary_10_1039_C7CC05422J
crossref_primary_10_1016_j_cclet_2017_11_045
crossref_primary_10_1039_C7CE01109A
crossref_primary_10_3762_bjoc_11_222
crossref_primary_10_1002_ejoc_201800531
crossref_primary_10_1039_C6RA20910F
crossref_primary_10_1039_C7OB01736G
crossref_primary_10_1039_D1CC02704B
crossref_primary_10_1002_anie_201605440
crossref_primary_10_1039_C5PY00419E
crossref_primary_10_1021_acs_macromol_5b01269
crossref_primary_10_1039_C6CC02110G
crossref_primary_10_1002_anie_201410757
crossref_primary_10_1002_marc_202000099
crossref_primary_10_1002_chem_201705346
crossref_primary_10_1002_ange_201502405
crossref_primary_10_1002_anie_202400989
crossref_primary_10_1016_j_cclet_2017_06_006
crossref_primary_10_1039_C6CC01724J
crossref_primary_10_1016_j_trechm_2020_11_006
crossref_primary_10_1039_D0CC01205J
crossref_primary_10_1016_j_dyepig_2018_08_025
crossref_primary_10_1039_C8CE02187B
crossref_primary_10_1039_D1CP01089A
crossref_primary_10_1039_C9CC02498K
crossref_primary_10_1080_10610278_2014_1002840
crossref_primary_10_1002_chem_201603231
crossref_primary_10_1002_chem_202303421
crossref_primary_10_1039_D2ME00117A
crossref_primary_10_1021_acs_orglett_1c01592
crossref_primary_10_1021_jacs_9b02904
crossref_primary_10_1039_C4CS00531G
crossref_primary_10_1002_chem_201901272
crossref_primary_10_1021_acs_chemrev_6b00354
crossref_primary_10_1002_ijch_202000109
crossref_primary_10_1016_j_tetlet_2015_12_031
crossref_primary_10_1021_acs_joc_0c00051
crossref_primary_10_1002_adom_201701278
crossref_primary_10_1002_chin_201437268
crossref_primary_10_1039_C8CC02077A
crossref_primary_10_1021_jacs_5b11808
crossref_primary_10_1002_chem_201406521
crossref_primary_10_1021_acsnano_1c11057
crossref_primary_10_1002_chem_201603987
crossref_primary_10_1021_acs_jpca_0c03120
crossref_primary_10_1002_ange_201410757
crossref_primary_10_1002_tcr_201402046
crossref_primary_10_1039_C5PY00129C
crossref_primary_10_1039_C7CC03552G
crossref_primary_10_1080_10610278_2016_1161196
crossref_primary_10_1002_anie_201502405
crossref_primary_10_1021_acsami_9b18588
crossref_primary_10_1016_j_ica_2021_120676
crossref_primary_10_1016_j_tetlet_2015_11_058
crossref_primary_10_1039_C6CC03999E
crossref_primary_10_1007_s10118_019_2305_1
crossref_primary_10_1021_acscentsci_5b00377
crossref_primary_10_1248_yakushi_18_00179_2
crossref_primary_10_1039_C7OB00660H
crossref_primary_10_1016_j_tet_2017_02_034
crossref_primary_10_1039_C9CC02472G
Cites_doi 10.1021/ja984017h
10.1002/cber.18940270364
10.1039/c0cc03689g
10.1039/b818033b
10.1021/jo901293b
10.1021/ja9019758
10.1002/ejoc.200300495
10.1021/ar700219m
10.1021/ar960298r
10.1002/cjoc.201300009
10.1016/j.tet.2009.10.073
10.1007/s11426-008-0142-0
10.1039/c2cc36391g
10.1021/ja801618p
10.1016/j.tet.2005.06.042
10.1351/pac197749060857
10.1002/anie.201104099
10.1002/chem.201304161
10.1021/ja047436p
10.1039/a704933a
10.1021/ja039511m
10.1021/ja0663529
10.1126/science.183.4127.803
10.1007/BFb0111281
10.1039/B607187B
10.1039/c3cc42349b
10.1002/anie.200500982
10.1021/ar8001393
10.1021/cr900162q
10.1039/b508773b
10.1021/ja00309a067
10.1002/adma201302015
10.5012/bkcs.2009.30.2.482
10.1021/ar010009l
10.1039/b926162c
10.1016/j.tet.2011.10.116
10.1021/ja102794a
10.1021/la8034243
10.1021/ol070492l
10.1021/la302818r
10.1021/ja056509h
10.1039/c3cc38261c
10.1021/ja993830p
10.1002/chem.200700640
10.1021/ma100952h
10.1021/ja8043322
10.1021/cr990125q
10.1039/c1ob06026k
10.1039/C3QO00032J
10.1039/c2cs35091b
10.1038/453171a
10.1021/jo050798a
10.1002/anie.200462898
10.1002/macp.201000259
10.1021/ol2011083
10.1021/ar700266f
10.1039/b819597h
10.1016/j.tet.2009.09.107
10.1021/cr300116k
10.1126/science.1200143
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/ar5000242
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 1970
ExternalDocumentID 10_1021_ar5000242
24673152
a233614766
Genre Journal Article
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
ABJNI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CUPRZ
GGK
IH2
NPM
XSW
ZCA
~02
AAYXX
CITATION
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a348t-8853aa307e9c005a09a77fb34d6e59a7913373e368ed04bc9b811ae87bc88cbb3
IEDL.DBID ACS
ISSN 0001-4842
IngestDate Sat Oct 26 01:37:21 EDT 2024
Sat Oct 26 00:40:32 EDT 2024
Thu Sep 26 19:16:22 EDT 2024
Sat Sep 28 08:02:52 EDT 2024
Thu Aug 27 13:42:11 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-8853aa307e9c005a09a77fb34d6e59a7913373e368ed04bc9b811ae87bc88cbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24673152
PQID 1545419109
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1770370794
proquest_miscellaneous_1545419109
crossref_primary_10_1021_ar5000242
pubmed_primary_24673152
acs_journals_10_1021_ar5000242
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2014-07-15
PublicationDateYYYYMMDD 2014-07-15
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Juwarker H. (ref16/cit16) 2010; 39
Wu C.-F. (ref27/cit27) 2014; 20
Cai W. (ref46/cit46) 2008; 130
Gin M. S. (ref39/cit39) 1999; 121
Ong W. Q. (ref21/cit21) 2011; 13
Naidu V. R. (ref41/cit41) 2009; 30
Nygaard S. (ref59/cit59) 2007; 129
Yan X. (ref7/cit7) 2012; 41
Hua Y. (ref17/cit17) 2010; 39
Zhang K.-D. (ref28/cit28) 2011; 50
Saraogi I. (ref14/cit14) 2009; 38
Gan Q. (ref23/cit23) 2011; 331
Du P. (ref31/cit31) 2009; 52
Zhang D.-W. (ref15/cit15) 2012; 112
Garric J. (ref22/cit22) 2007; 13
Hou J.-L. (ref18/cit18) 2004; 126
Seebach D. (ref9/cit9) 1997
Li C.-Z. (ref50/cit50) 2013; 31
Wu Z.-Q. (ref49/cit49) 2005; 127
Wang L. (ref44/cit44) 2009; 65
Sánchez-García D. (ref61/cit61) 2009; 131
Garric J. (ref37/cit37) 2005; 44
Green M. M. (ref48/cit48) 2001; 34
Prince R. B. (ref30/cit30) 2000; 122
Yamato K. (ref20/cit20) 2012; 48
Sun C. (ref36/cit36) 2013; 49
Li Z.-T. (ref19/cit19) 2008; 41
Yuan L. (ref34/cit34) 2005; 70
Lehn J.-M. (ref3/cit3) 1977; 49
Huc I. (ref12/cit12) 2004
Ferrand Y. (ref38/cit38) 2010; 132
Zhou C. (ref45/cit45) 2010; 211
Yashima E. (ref29/cit29) 2009; 109
Xu Y.-X. (ref52/cit52) 2009; 25
Li C. (ref42/cit42) 2007; 9
Brunsveld L. (ref55/cit55) 2001; 101
Gong B. (ref13/cit13) 2008; 41
De Greef T. F. A. (ref47/cit47) 2008; 453
Yi H.-P. (ref33/cit33) 2005; 29
Cai W. (ref43/cit43) 2008; 130
Fischer E. (ref1/cit1) 1894; 27
Zimmerman S. C. (ref4/cit4) 1993; 165
Shi Z.-M. (ref57/cit57) 2010; 43
Yi H.-P. (ref56/cit56) 2005; 61
Zhang K.-D. (ref60/cit60) 2012; 28
Li X. (ref11/cit11) 2008; 41
Zhang K.-D. (ref58/cit58) 2012; 68
Liu K. (ref8/cit8) 2013; 25
Xu Y.-X. (ref54/cit54) 2014; 1
Saha S. (ref6/cit6) 2007; 36
Xu Y.-X. (ref24/cit24) 2009; 74
Cram D. J. (ref2/cit2) 1974; 183
Rebek J. (ref5/cit5) 1985; 107
Shi Z.-M. (ref25/cit25) 2013; 49
Sun C. (ref26/cit26) 2013; 49
Gellman S. H. (ref10/cit10) 1998; 31
Xiao Z.-Y. (ref51/cit51) 2009; 65
Li C. (ref32/cit32) 2005; 44
Lu Y.-X. (ref35/cit35) 2010; 46
Shi Z.-M. (ref53/cit53) 2011; 9
Jiang H. (ref40/cit40) 2004; 126
References_xml – volume: 121
  start-page: 2643
  year: 1999
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja984017h
  contributor:
    fullname: Gin M. S.
– volume: 27
  start-page: 2985
  year: 1894
  ident: ref1/cit1
  publication-title: Ber. Dtsch. Chem. Ges.
  doi: 10.1002/cber.18940270364
  contributor:
    fullname: Fischer E.
– volume: 46
  start-page: 9019
  year: 2010
  ident: ref35/cit35
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc03689g
  contributor:
    fullname: Lu Y.-X.
– volume: 39
  start-page: 1262
  year: 2010
  ident: ref17/cit17
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b818033b
  contributor:
    fullname: Hua Y.
– volume: 74
  start-page: 7267
  year: 2009
  ident: ref24/cit24
  publication-title: J. Org. Chem.
  doi: 10.1021/jo901293b
  contributor:
    fullname: Xu Y.-X.
– volume: 131
  start-page: 8642
  year: 2009
  ident: ref61/cit61
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9019758
  contributor:
    fullname: Sánchez-García D.
– start-page: 17
  year: 2004
  ident: ref12/cit12
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.200300495
  contributor:
    fullname: Huc I.
– volume: 41
  start-page: 1343
  year: 2008
  ident: ref19/cit19
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700219m
  contributor:
    fullname: Li Z.-T.
– volume: 31
  start-page: 173
  year: 1998
  ident: ref10/cit10
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar960298r
  contributor:
    fullname: Gellman S. H.
– volume: 31
  start-page: 582
  year: 2013
  ident: ref50/cit50
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201300009
  contributor:
    fullname: Li C.-Z.
– volume: 65
  start-page: 10544
  year: 2009
  ident: ref44/cit44
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2009.10.073
  contributor:
    fullname: Wang L.
– volume: 52
  start-page: 489
  year: 2009
  ident: ref31/cit31
  publication-title: Sci. China B
  doi: 10.1007/s11426-008-0142-0
  contributor:
    fullname: Du P.
– volume: 48
  start-page: 12142
  year: 2012
  ident: ref20/cit20
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc36391g
  contributor:
    fullname: Yamato K.
– volume: 130
  start-page: 6936
  year: 2008
  ident: ref43/cit43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801618p
  contributor:
    fullname: Cai W.
– volume: 61
  start-page: 7974
  year: 2005
  ident: ref56/cit56
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2005.06.042
  contributor:
    fullname: Yi H.-P.
– volume: 49
  start-page: 857
  year: 1977
  ident: ref3/cit3
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac197749060857
  contributor:
    fullname: Lehn J.-M.
– volume: 50
  start-page: 9866
  year: 2011
  ident: ref28/cit28
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201104099
  contributor:
    fullname: Zhang K.-D.
– volume: 20
  start-page: 1418
  year: 2014
  ident: ref27/cit27
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201304161
  contributor:
    fullname: Wu C.-F.
– volume: 126
  start-page: 12386
  year: 2004
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047436p
  contributor:
    fullname: Hou J.-L.
– start-page: 2015
  year: 1997
  ident: ref9/cit9
  publication-title: Chem. Commun.
  doi: 10.1039/a704933a
  contributor:
    fullname: Seebach D.
– volume: 126
  start-page: 1034
  year: 2004
  ident: ref40/cit40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja039511m
  contributor:
    fullname: Jiang H.
– volume: 129
  start-page: 960
  year: 2007
  ident: ref59/cit59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0663529
  contributor:
    fullname: Nygaard S.
– volume: 183
  start-page: 803
  year: 1974
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.183.4127.803
  contributor:
    fullname: Cram D. J.
– volume: 165
  start-page: 71
  year: 1993
  ident: ref4/cit4
  publication-title: Top. Curr. Chem.
  doi: 10.1007/BFb0111281
  contributor:
    fullname: Zimmerman S. C.
– volume: 36
  start-page: 77
  year: 2007
  ident: ref6/cit6
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B607187B
  contributor:
    fullname: Saha S.
– volume: 49
  start-page: 5307
  year: 2013
  ident: ref26/cit26
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc42349b
  contributor:
    fullname: Sun C.
– volume: 44
  start-page: 5725
  year: 2005
  ident: ref32/cit32
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200500982
  contributor:
    fullname: Li C.
– volume: 41
  start-page: 1428
  year: 2008
  ident: ref11/cit11
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar8001393
  contributor:
    fullname: Li X.
– volume: 109
  start-page: 6102
  year: 2009
  ident: ref29/cit29
  publication-title: Chem. Rev.
  doi: 10.1021/cr900162q
  contributor:
    fullname: Yashima E.
– volume: 29
  start-page: 1213
  year: 2005
  ident: ref33/cit33
  publication-title: New J. Chem.
  doi: 10.1039/b508773b
  contributor:
    fullname: Yi H.-P.
– volume: 107
  start-page: 6736
  year: 1985
  ident: ref5/cit5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00309a067
  contributor:
    fullname: Rebek J.
– volume: 25
  start-page: 5530
  year: 2013
  ident: ref8/cit8
  publication-title: Adv. Mater.
  doi: 10.1002/adma201302015
  contributor:
    fullname: Liu K.
– volume: 30
  start-page: 482
  year: 2009
  ident: ref41/cit41
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.5012/bkcs.2009.30.2.482
  contributor:
    fullname: Naidu V. R.
– volume: 34
  start-page: 672
  year: 2001
  ident: ref48/cit48
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar010009l
  contributor:
    fullname: Green M. M.
– volume: 39
  start-page: 3664
  year: 2010
  ident: ref16/cit16
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b926162c
  contributor:
    fullname: Juwarker H.
– volume: 68
  start-page: 4517
  year: 2012
  ident: ref58/cit58
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2011.10.116
  contributor:
    fullname: Zhang K.-D.
– volume: 132
  start-page: 7858
  year: 2010
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102794a
  contributor:
    fullname: Ferrand Y.
– volume: 25
  start-page: 2684
  year: 2009
  ident: ref52/cit52
  publication-title: Langmuir
  doi: 10.1021/la8034243
  contributor:
    fullname: Xu Y.-X.
– volume: 9
  start-page: 1797
  year: 2007
  ident: ref42/cit42
  publication-title: Org. Lett.
  doi: 10.1021/ol070492l
  contributor:
    fullname: Li C.
– volume: 28
  start-page: 14839
  year: 2012
  ident: ref60/cit60
  publication-title: Langmuir
  doi: 10.1021/la302818r
  contributor:
    fullname: Zhang K.-D.
– volume: 127
  start-page: 17460
  year: 2005
  ident: ref49/cit49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056509h
  contributor:
    fullname: Wu Z.-Q.
– volume: 49
  start-page: 2673
  year: 2013
  ident: ref25/cit25
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc38261c
  contributor:
    fullname: Shi Z.-M.
– volume: 122
  start-page: 2758
  year: 2000
  ident: ref30/cit30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993830p
  contributor:
    fullname: Prince R. B.
– volume: 13
  start-page: 8454
  year: 2007
  ident: ref22/cit22
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200700640
  contributor:
    fullname: Garric J.
– volume: 49
  start-page: 5307
  year: 2013
  ident: ref36/cit36
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc42349b
  contributor:
    fullname: Sun C.
– volume: 43
  start-page: 6185
  year: 2010
  ident: ref57/cit57
  publication-title: Macromolecules
  doi: 10.1021/ma100952h
  contributor:
    fullname: Shi Z.-M.
– volume: 130
  start-page: 13450
  year: 2008
  ident: ref46/cit46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8043322
  contributor:
    fullname: Cai W.
– volume: 101
  start-page: 4071
  year: 2001
  ident: ref55/cit55
  publication-title: Chem. Rev.
  doi: 10.1021/cr990125q
  contributor:
    fullname: Brunsveld L.
– volume: 9
  start-page: 8122
  year: 2011
  ident: ref53/cit53
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c1ob06026k
  contributor:
    fullname: Shi Z.-M.
– volume: 1
  start-page: 73
  year: 2014
  ident: ref54/cit54
  publication-title: Org. Chem. Front.
  doi: 10.1039/C3QO00032J
  contributor:
    fullname: Xu Y.-X.
– volume: 41
  start-page: 6042
  year: 2012
  ident: ref7/cit7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35091b
  contributor:
    fullname: Yan X.
– volume: 453
  start-page: 171
  year: 2008
  ident: ref47/cit47
  publication-title: Nature
  doi: 10.1038/453171a
  contributor:
    fullname: De Greef T. F. A.
– volume: 70
  start-page: 10660
  year: 2005
  ident: ref34/cit34
  publication-title: J. Org. Chem.
  doi: 10.1021/jo050798a
  contributor:
    fullname: Yuan L.
– volume: 44
  start-page: 1954
  year: 2005
  ident: ref37/cit37
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200462898
  contributor:
    fullname: Garric J.
– volume: 211
  start-page: 2090
  year: 2010
  ident: ref45/cit45
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201000259
  contributor:
    fullname: Zhou C.
– volume: 13
  start-page: 3194
  year: 2011
  ident: ref21/cit21
  publication-title: Org. Lett.
  doi: 10.1021/ol2011083
  contributor:
    fullname: Ong W. Q.
– volume: 41
  start-page: 1376
  year: 2008
  ident: ref13/cit13
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700266f
  contributor:
    fullname: Gong B.
– volume: 38
  start-page: 1726
  year: 2009
  ident: ref14/cit14
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b819597h
  contributor:
    fullname: Saraogi I.
– volume: 65
  start-page: 10182
  year: 2009
  ident: ref51/cit51
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2009.09.107
  contributor:
    fullname: Xiao Z.-Y.
– volume: 112
  start-page: 5271
  year: 2012
  ident: ref15/cit15
  publication-title: Chem. Rev.
  doi: 10.1021/cr300116k
  contributor:
    fullname: Zhang D.-W.
– volume: 331
  start-page: 1172
  year: 2011
  ident: ref23/cit23
  publication-title: Science
  doi: 10.1126/science.1200143
  contributor:
    fullname: Gan Q.
SSID ssj0002467
Score 2.5586596
Snippet Conspectus In host–guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host–guest...
CONSPECTUS: In host-guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host-guest...
Conspectus In host-guest chemistry, a larger host molecule selectively and noncovalently binds to a smaller guest molecule or ion. Early studies of host-guest...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1961
SubjectTerms Amides
Backbone
Chirality
Crown ethers
Design engineering
Helical
Holes
Molecular structure
Title Aromatic Amide and Hydrazide Foldamer-Based Responsive Host–Guest Systems
URI http://dx.doi.org/10.1021/ar5000242
https://www.ncbi.nlm.nih.gov/pubmed/24673152
https://search.proquest.com/docview/1545419109
https://search.proquest.com/docview/1770370794
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB0VOMCFfSmbwnJNSRw3cY6lUCqQOLBIvUXeKiEgQWmKRE_8A3_IlzDOUoGg5RIlkpM49ozfG4_zDHBsOGhAhLCR2mOAQhxuixBjHj8QnpRaIUjnq3yv_e49vew1ezU4mpDBJ-4JT41mPyLJDMyRAJ3C8J_27Xi4JdQvhDExLqaMkko-6PutBnrk4Cf0TOCTOa50luCs-junWE7y2BhmoiFHv8Uap1V5GRZLXmm1CkNYgZqOV2G-XW3ntgZXrTTJ5Vmt1vOD0haPldV9UykfmatO8qT4s07tU0Q1Zd2UK2dftdVNBtnn-8eF-Qir1Ddfh_vO-V27a5c7KdjcoyyzGYIy5-jOOpTodtwJeRD0hUeVr5t4HmKkGnja85lWDhUyFMx1uWaBkIxJIbwNmI2TWG-BpZBg6D4ejEwMkZJ5SOIUbfYdSZjr6zrsY1NHpScMojzJTdxo3CZ1OKx6IXopFDX-KnRQ9U-E7WSSGDzWyRCfh5SPYpDphFPKBDiOGek_WofNonPHrzLm4iFp2f6vnjuwgOSImnlct7kLs1k61HtIQDKxnxvgF69a0SU
link.rule.ids 315,783,787,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8pqENeULE7iHEtFCRQ4sEi9Rd4qISBBSYpET_wDf8iXMM5SFrFdokRynIk99nsTT54R2tMc1Lc5N4DaQ4Bim8zgAcQ8ns8dIZQEkC6yfM-98Jqc9NxeJZOj_4UBIzKoKSsW8d_VBax9lmrpfgCUcTTp-uComga1L0ezrk28Uh8TwmNCiV2rCH28VSOQyD4j0A-0soCXzmy5T1FhWJFVctsc5Lwphl80G_9n-RyaqVgmbpVuMY_GVLyAptr15m6LqNtKk0KsFbfub6TCLJY4fJIpG-qrTnIn2b1KjQPAOIkvqjzaR4XDJMtfn1-O9LvgSu18CV13Dq_aoVHtq2Awh9DcoADRjMHgVoGAQcjMgPl-nztEesqF8wDiVt9RjkeVNAkXAaeWxRT1uaBUcO4so4k4idUqwhLohurDQYvG2EJQByidJG7fFDa1PNVAW9AkUTUusqhY8rataNQmDbRbd0b0UOprfFdop-6mCNpJL2mwWCUDqA8IIIGQ0wx-KePDrKaFAEkDrZR9PHqU9hoHKMzaX3Zuo6nw6uw0Oj0-766jaaBNRH_htdwNNJGnA7UJ1CTnW4VPvgG3ztmF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSMCFfSlLCYhrShYncY6lUMoiQECl3iJvlRCQoCRFghP_wB_yJYzTtALEdokSyXEmtsfvTTx5BtjRHDRwODeR2mOA4ljM5CHGPH7AXSGURJAusnzP_FabHHe8Thko6n9h0IgMa8qKRXzt1Q-yWyoM2Lss1fL9CCqjMO4FtqO3aqg3roYzr0P8vkYmhsiEEmegJPTxVo1CIvuMQj9QywJimjNwPjSuyCy5rfVyXhPPX3Qb_2_9LEyXbNOo94fHHIyoeB4mG4NN3hbgpJ4mhWirUb-_kcpgsTRaTzJlz_qqmdxJdq9Scw-xThqXZT7tozJaSZa_vbwe6vcxStXzRWg3D64bLbPcX8FkLqG5SRGqGUMnV6FAZ2RWyIKgy10ifeXheYjxa-Aq16dKWoSLkFPbZooGXFAqOHeXYCxOYrUChkTaobp40OIxjhDURWonide1hENtX1Wgis0Slf6RRcXSt2NHwzapwPagQ6KHvs7Gd4W2Bl0VYTvppQ0Wq6SH9SERJBh6WuEvZQKc3bQgIKnAcr-fh4_SI8dFKrP6l52bMHGx34xOj85O1mAK2RPRH3ptbx3G8rSnNpCh5LxaDMt36Wfb_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aromatic+Amide+and+Hydrazide+Foldamer-Based+Responsive+Host-Guest+Systems&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhang%2C+Dan-Wei&rft.au=Zhao%2C+Xin&rft.au=Li%2C+Zhan-Ting&rft.date=2014-07-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=47&rft.issue=7&rft.spage=1961&rft.epage=1970-1961-1970&rft_id=info:doi/10.1021%2Far5000242&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon