Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy
Conspectus Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques...
Saved in:
Published in | Accounts of chemical research Vol. 51; no. 1; pp. 3 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.01.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization (Williamson et al. Nat. Mater. 2003, 2, 532−536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent “windows,” which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation. |
---|---|
AbstractList | Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation. Conspectus Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization (Williamson et al. Nat. Mater. 2003, 2, 532−536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent “windows,” which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation. Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation. |
Author | Park, Chiwoo Proetto, Maria Zerbetto, Francesco Bakalis, Evangelos Gianneschi, Nathan C Li, Yiwen Parent, Lucas R |
AuthorAffiliation | Department of Chemistry Department of Materials Science & Engineering Università di Bologna Dipartimento di Chimica “G. Ciamician” Northwestern University Department of Chemistry & Biochemistry Florida State University Department of Biomedical Engineering College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Department of Industrial and Manufacturing Engineering |
AuthorAffiliation_xml | – name: Department of Chemistry & Biochemistry – name: Department of Chemistry – name: Florida State University – name: Department of Materials Science & Engineering – name: Università di Bologna – name: College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering – name: Northwestern University – name: Department of Biomedical Engineering – name: Department of Industrial and Manufacturing Engineering – name: Dipartimento di Chimica “G. Ciamician” |
Author_xml | – sequence: 1 givenname: Lucas R surname: Parent fullname: Parent, Lucas R organization: Department of Chemistry & Biochemistry – sequence: 2 givenname: Evangelos surname: Bakalis fullname: Bakalis, Evangelos organization: Università di Bologna – sequence: 3 givenname: Maria surname: Proetto fullname: Proetto, Maria organization: College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering – sequence: 4 givenname: Yiwen orcidid: 0000-0002-6874-0350 surname: Li fullname: Li, Yiwen organization: College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering – sequence: 5 givenname: Chiwoo surname: Park fullname: Park, Chiwoo organization: Florida State University – sequence: 6 givenname: Francesco orcidid: 0000-0002-2419-057X surname: Zerbetto fullname: Zerbetto, Francesco organization: Università di Bologna – sequence: 7 givenname: Nathan C orcidid: 0000-0001-9945-5475 surname: Gianneschi fullname: Gianneschi, Nathan C email: nathan.gianneschi@northwestern.edu organization: Department of Chemistry & Biochemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29227618$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLlOAzEQhi0EIge8AUJb0mzwtYfpUAiHFEST1KuJ7Q2GjZ3YuxJ5exwloaCAymP5-z0z3wCdWmc1QlcEjwim5BZkGIGUrrNtGBULjBkjJ6hPMopTXoryFPUxxiTWnPbQIISPeKU8L85RjwpKi5yUfQQzkJ-NscukfdfJ-B2aRtulDomrk4ethZWRyeRrrb1Z6dgomYcdOzWbzqh0rJsmmXmwYWVCMM4mk0bL1sfi1UjvgnTr7QU6q6EJ-vJwDtH8cTIbP6fTt6eX8f00BcbLNi05gTpnUmZMAlOZ4kJxVpdA80VOVK2ZgEwTXhQZKSlnWb6guVJMy5piJRgbopv9v2vvNp0ObRWHknFCsNp1oSKiyITIBCURvT6g3WKlVbWO24HfVkctEeB7YLdE8Lr-QQiudvaraL862q8O9mPs7ldMmhbaKKb1YJr_wngf3r1-uM7baOvvyDeB-aC6 |
CitedBy_id | crossref_primary_10_1002_anie_202309725 crossref_primary_10_1016_j_xcrp_2022_100772 crossref_primary_10_1021_acsmacrolett_0c00595 crossref_primary_10_1016_j_jechem_2022_04_007 crossref_primary_10_1039_D2NR01041K crossref_primary_10_1021_acscentsci_2c01194 crossref_primary_10_1021_acs_jpcb_1c01752 crossref_primary_10_1016_j_physa_2018_08_079 crossref_primary_10_1039_D3LC00190C crossref_primary_10_1002_batt_201800152 crossref_primary_10_1021_acsnano_8b07880 crossref_primary_10_1016_j_ultramic_2023_113865 crossref_primary_10_1021_acs_cgd_4c00031 crossref_primary_10_1039_D0BM01676D crossref_primary_10_3390_geosciences8060193 crossref_primary_10_1002_cphc_202400508 crossref_primary_10_1021_acs_chemrev_3c00352 crossref_primary_10_5006_3369 crossref_primary_10_1017_S1431927619009073 crossref_primary_10_1016_j_physa_2023_128780 crossref_primary_10_1017_S1431927621013647 crossref_primary_10_1021_acsnano_2c00199 crossref_primary_10_1039_C9NR04646A crossref_primary_10_1557_mrs_2020_222 crossref_primary_10_1038_s41557_019_0210_4 crossref_primary_10_2147_IJN_S334012 crossref_primary_10_1021_acs_nanolett_0c04636 crossref_primary_10_1002_adma_202001582 crossref_primary_10_1021_acs_nanolett_8b04962 crossref_primary_10_1021_acs_nanolett_4c02242 crossref_primary_10_1557_mrs_2020_224 crossref_primary_10_1002_adma_201901556 crossref_primary_10_1039_D1CS00789K crossref_primary_10_1021_acs_accounts_3c00211 crossref_primary_10_1021_acsnano_4c12083 crossref_primary_10_3390_cancers14153728 crossref_primary_10_1007_s11705_023_2328_6 crossref_primary_10_1080_23746149_2022_2046157 crossref_primary_10_1038_s41598_022_06308_2 crossref_primary_10_1017_S1431927618016045 crossref_primary_10_1039_D0SC02636K crossref_primary_10_1002_adfm_202204976 crossref_primary_10_1016_j_polymertesting_2023_108232 crossref_primary_10_1146_annurev_chembioeng_092120_034534 crossref_primary_10_1016_j_chempr_2021_02_030 crossref_primary_10_1002_adma_201907619 crossref_primary_10_1021_acs_chemrev_9b00311 crossref_primary_10_1016_j_micron_2018_12_001 crossref_primary_10_1002_cmtd_202300041 crossref_primary_10_1557_s43577_022_00287_5 crossref_primary_10_1002_adsc_202100627 crossref_primary_10_1002_ppsc_202000003 crossref_primary_10_1021_acs_chemrev_1c00189 crossref_primary_10_1021_acs_jpcc_0c03203 crossref_primary_10_1093_micmic_ozad067_323 crossref_primary_10_1039_C8NR02867B crossref_primary_10_1038_s41467_019_12660_1 crossref_primary_10_1021_jacsau_1c00297 crossref_primary_10_1021_acsnano_0c03209 crossref_primary_10_1002_ange_202309725 crossref_primary_10_1021_acs_macromol_0c02710 crossref_primary_10_1016_j_matt_2020_11_017 crossref_primary_10_1021_acs_chemrev_2c00700 crossref_primary_10_1021_acs_nanolett_9b01576 crossref_primary_10_1021_acsnano_3c12590 crossref_primary_10_1017_S1431927622001465 crossref_primary_10_1017_S1431927618015817 crossref_primary_10_1016_j_nxnano_2024_100115 crossref_primary_10_1021_acs_nanolett_0c02352 crossref_primary_10_1017_S1431927618015854 crossref_primary_10_1021_acsnano_0c07883 crossref_primary_10_1016_j_matdes_2020_108973 crossref_primary_10_1073_pnas_2017616118 crossref_primary_10_1073_pnas_2020242119 crossref_primary_10_3390_polym12081656 crossref_primary_10_1038_s41578_018_0071_2 crossref_primary_10_1038_s41467_021_26773_z crossref_primary_10_1016_j_ultramic_2022_113596 crossref_primary_10_1002_adma_202402987 crossref_primary_10_1021_acs_jpcc_2c08530 crossref_primary_10_1002_adma_202102666 crossref_primary_10_1016_j_micron_2018_09_008 |
Cites_doi | 10.1126/science.1254051 10.1039/c3cc46545d 10.1038/natrevmats.2016.35 10.1017/9781316337455 10.1016/j.ultramic.2017.04.012 10.1021/acscentsci.6b00331 10.1038/srep28326 10.1002/adma.201602273 10.1016/S0370-1573(00)00070-3 10.1038/nmat944 10.1016/j.ultramic.2012.07.018 10.1021/acs.chemmater.5b00334 10.1021/acs.nanolett.5b01636 10.1039/C6RA27066B 10.1021/acs.nanolett.6b04383 10.1080/00018738700101072 10.1021/jacs.5b00817 10.1016/j.nanoen.2014.11.004 10.1021/ja408513m 10.1038/ncomms7068 10.1119/1.10903 10.1021/nl404271k 10.1103/PhysRevE.81.020903 10.1063/1.4921891 10.1038/nmeth.2842 10.1039/C4CC06443G 10.1021/acs.langmuir.5b04200 10.1039/a801445k 10.1016/j.bpj.2009.12.4282 10.1021/acs.jpcc.5b07164 10.1021/acs.langmuir.5b00150 10.1021/nl404169a 10.1021/jacs.7b09060 10.1111/jmi.12508 10.1021/jp507400n 10.1021/nl500766j 10.1109/TPAMI.2014.2346202 10.1103/PhysRevLett.82.3835 10.1016/j.cplett.2015.05.042 10.1021/acsmacrolett.5b00479 10.1039/C3CC48479C 10.1021/nn303371y 10.1146/annurev.fluid.29.1.27 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.7b00331 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 11 |
ExternalDocumentID | 29227618 10_1021_acs_accounts_7b00331 c454628557 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: F32 EB021859 |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a348t-841af63cc53ca3d5d49d43f8a26b61dfe39a5e147751824356b26dd3ecf20d933 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 09:28:21 EDT 2025 Thu Apr 03 07:05:26 EDT 2025 Tue Jul 01 03:16:00 EDT 2025 Thu Apr 24 22:54:45 EDT 2025 Thu Aug 27 13:42:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-841af63cc53ca3d5d49d43f8a26b61dfe39a5e147751824356b26dd3ecf20d933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2419-057X 0000-0001-9945-5475 0000-0002-6874-0350 |
PMID | 29227618 |
PQID | 1975995921 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1975995921 pubmed_primary_29227618 crossref_primary_10_1021_acs_accounts_7b00331 crossref_citationtrail_10_1021_acs_accounts_7b00331 acs_journals_10_1021_acs_accounts_7b00331 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-16 |
PublicationDateYYYYMMDD | 2018-01-16 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref23/cit23 Vo G. (ref39/cit39) 2016 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 Ross F. M. (ref3/cit3) 2016 Buxton G. V. (ref16/cit16) 2008 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref22/cit22 doi: 10.1126/science.1254051 – ident: ref31/cit31 doi: 10.1039/c3cc46545d – ident: ref2/cit2 doi: 10.1038/natrevmats.2016.35 – volume-title: Liquid Cell Electron Microscopy year: 2016 ident: ref3/cit3 doi: 10.1017/9781316337455 – ident: ref17/cit17 doi: 10.1016/j.ultramic.2017.04.012 – ident: ref20/cit20 doi: 10.1021/acscentsci.6b00331 – ident: ref33/cit33 doi: 10.1038/srep28326 – ident: ref10/cit10 doi: 10.1002/adma.201602273 – ident: ref35/cit35 doi: 10.1016/S0370-1573(00)00070-3 – ident: ref1/cit1 doi: 10.1038/nmat944 – ident: ref30/cit30 doi: 10.1016/j.ultramic.2012.07.018 – ident: ref32/cit32 doi: 10.1021/acs.chemmater.5b00334 – start-page: 1 year: 2016 ident: ref39/cit39 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: ref26/cit26 doi: 10.1021/acs.nanolett.5b01636 – ident: ref12/cit12 doi: 10.1039/C6RA27066B – ident: ref18/cit18 doi: 10.1021/acs.nanolett.6b04383 – volume-title: Radiation Chemistry from Basics to Applications in Material and Life Sciences year: 2008 ident: ref16/cit16 – ident: ref40/cit40 doi: 10.1080/00018738700101072 – ident: ref21/cit21 doi: 10.1021/jacs.5b00817 – ident: ref24/cit24 doi: 10.1016/j.nanoen.2014.11.004 – ident: ref45/cit45 doi: 10.1021/ja408513m – ident: ref29/cit29 doi: 10.1038/ncomms7068 – ident: ref34/cit34 doi: 10.1119/1.10903 – ident: ref11/cit11 doi: 10.1021/nl404271k – ident: ref37/cit37 doi: 10.1103/PhysRevE.81.020903 – ident: ref36/cit36 doi: 10.1063/1.4921891 – ident: ref19/cit19 doi: 10.1038/nmeth.2842 – ident: ref25/cit25 doi: 10.1039/C4CC06443G – ident: ref14/cit14 doi: 10.1021/acs.langmuir.5b04200 – ident: ref15/cit15 doi: 10.1039/a801445k – ident: ref41/cit41 doi: 10.1016/j.bpj.2009.12.4282 – ident: ref4/cit4 doi: 10.1021/acs.jpcc.5b07164 – ident: ref5/cit5 doi: 10.1021/acs.langmuir.5b00150 – ident: ref27/cit27 doi: 10.1021/nl404169a – ident: ref6/cit6 doi: 10.1021/jacs.7b09060 – ident: ref8/cit8 doi: 10.1111/jmi.12508 – ident: ref7/cit7 doi: 10.1021/jp507400n – ident: ref28/cit28 doi: 10.1021/nl500766j – ident: ref38/cit38 doi: 10.1109/TPAMI.2014.2346202 – ident: ref43/cit43 doi: 10.1103/PhysRevLett.82.3835 – ident: ref44/cit44 doi: 10.1016/j.cplett.2015.05.042 – ident: ref23/cit23 doi: 10.1021/acsmacrolett.5b00479 – ident: ref13/cit13 doi: 10.1039/C3CC48479C – ident: ref9/cit9 doi: 10.1021/nn303371y – ident: ref42/cit42 doi: 10.1146/annurev.fluid.29.1.27 |
SSID | ssj0002467 |
Score | 2.5105975 |
SecondaryResourceType | review_article |
Snippet | Conspectus Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging... Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique.... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3 |
Title | Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy |
URI | http://dx.doi.org/10.1021/acs.accounts.7b00331 https://www.ncbi.nlm.nih.gov/pubmed/29227618 https://www.proquest.com/docview/1975995921 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQPcAFWt59yZW4cPCy9thOcqzCIlSVcmBX4hY5fiDEapc2yYH--trOAwFC0Gtkj-LxOPM58_gQOtSO2Zjnx7VVhMtxSbIUgAhNrSq1SbiJ3T5_ybMZ_3Elrh4uik8j-IweK1150ZE5oRolwQpD2fQ7Jv05DlAovxy-vIzLtkemvyLzlLO-VO4FKcEh6eqxQ3oBZUZvc7qJLvqanTbJ5HbU1OVI_33ewvGNC3mPNjrgib-3lvIBrdjFFlrLe763baSmSgf69mvsMSHOe5KVCi8dPml56_Fk4AOocEw2wD9vfjc3huR2PsfR73lx4QccnnT8Ovg8pPyF4pf7HTQ7nUzzM9IRMBAFPK1JyqlyErQWoBUYYXhmOLhUMVlKapyFTAlLeRJiN8wDL1kyaQxYbwFjkwHsotXFcmH3EdYgnIdCSjhlOWihQIGALNUU3Ji78gAdef0U3QGqihgbZ7QID3ulFZ3SDhD0O1borpN5INSYvzKLDLPu2k4er4z_1htD4VUX4ihqYZeNf7csiW3amB-z11rJIJFljCWSph__Yz2f0LqHYSGnkFD5Ga3Wfxr7xUOduvwa7fsfcZb8pQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQHOilUKDl1WIkLhy8XXtsJzmidNG2XbiwVNwixw-EWO0C2T3Ar8d2HohKCHG17JE9nmS-ZB4fQkfaMRvz_Li2inDZL0mWAhChqVWlNgk3sdvnuRxe8j9X4moJibYWxm-i8pKqGMR_6S5Af4YxVRMoVL0kGGOonl7xeIQFwz7JL7oXMOOybpXpv5R5yllbMfeGlOCXdPXaL70BNqPTOV1D_7rtxlyT295iXvb003-dHD98nnX0uYGh-KS2my9oyU430Gresr9tIjVWOpC5X2OPEHHeUq5UeObwr5rFHg86doAKx9QDPLq5X9wYktvJBEcv6MWF33F40LDt4LOQABhKYR630OXpYJwPSUPHQBTwdE5STpWToLUArcAIwzPDwaWKyVJS4yxkSljKkxDJYR6GyZJJY8B6e-ibDOArWp7OpnYbYQ3CeWCkhFOWgxYKFAjIUk3B9bkrd9Cx10_RPE5VESPljBZhsFVa0ShtB0F7cYVu-poHeo3JO6tIt-qu7uvxzvzD1iYKr7oQVVFTO1v4vWVJbNrG_JxvtbF0ElnGWCJpuvuB8xyg1eH4bFSMfp__3UOfPEAL2YaEyn20PH9Y2O8eBM3LH9HknwHYwAUV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqKrVcaIHyKC0YiUsPXtYe20mOKOyKt5AACfUSOX4gxGoXyO6B_nps56FSCSF6teyRPRlnJpmZ70NoRztmY50f11YRLvslyVIAIjS1qtQm4SaifZ7Jgyt-dC2u_6L68puovKQqJvHDrb43rkEYoLthXNUkClUvCQYZOqg_hsxdMO69_KJ7CTMua7hM_7XMU87arrlXpATfpKuXvumVgDM6nuEX9Lvbcqw3uevNpmVP__kHzfG_zvQVLTThKN6r7WcRfbDjJfQ5b1nglpG6VDqQut9gHynivKVeqfDE4f2azR4POpaACscSBHxy-zC7NSS3oxGO3tCLC7_l8KBh3cGnoRAwtMQ8fUNXw8FlfkAaWgaigKdTknKqnAStBWgFRhieGQ4uVUyWkhpnIVPCUp6EjA7z4ZgsmTQGrLeLvskAVtDceDK2awhrEM4HSEo4ZTlooUCBgCzVFFyfu3Id_fL6KZprVRUxY85oEQZbpRWN0tYRtA-v0A2-eaDZGL2xinSr7mt8jzfmb7d2UXjVheyKGtvJzO8tSyJ4G_NzVmuD6SSyjLFE0vT7O86zhT6d7w-Lk8Oz4w007-O0UHRIqPyB5qaPM_vTx0LTcjNa_TMyAAeY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tackling+the+Challenges+of+Dynamic+Experiments+Using+Liquid-Cell+Transmission+Electron+Microscopy&rft.jtitle=Accounts+of+chemical+research&rft.au=Parent%2C+Lucas+R&rft.au=Bakalis%2C+Evangelos&rft.au=Proetto%2C+Maria&rft.au=Li%2C+Yiwen&rft.date=2018-01-16&rft.eissn=1520-4898&rft.volume=51&rft.issue=1&rft.spage=3&rft_id=info:doi/10.1021%2Facs.accounts.7b00331&rft_id=info%3Apmid%2F29227618&rft.externalDocID=29227618 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |