Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy

Conspectus Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 51; no. 1; pp. 3 - 11
Main Authors Parent, Lucas R, Bakalis, Evangelos, Proetto, Maria, Li, Yiwen, Park, Chiwoo, Zerbetto, Francesco, Gianneschi, Nathan C
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.01.2018
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization (Williamson et al. Nat. Mater. 2003, 2, 532−536 ) of liquid-cell (scanning) transmission electron microscopy, LC­(S)­TEM, where picoliters of solution are hermetically sealed between electron-transparent “windows,” which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.
AbstractList Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.
Conspectus Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization (Williamson et al. Nat. Mater. 2003, 2, 532−536 ) of liquid-cell (scanning) transmission electron microscopy, LC­(S)­TEM, where picoliters of solution are hermetically sealed between electron-transparent “windows,” which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.
Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.
Author Park, Chiwoo
Proetto, Maria
Zerbetto, Francesco
Bakalis, Evangelos
Gianneschi, Nathan C
Li, Yiwen
Parent, Lucas R
AuthorAffiliation Department of Chemistry
Department of Materials Science & Engineering
Università di Bologna
Dipartimento di Chimica “G. Ciamician”
Northwestern University
Department of Chemistry & Biochemistry
Florida State University
Department of Biomedical Engineering
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering
Department of Industrial and Manufacturing Engineering
AuthorAffiliation_xml – name: Department of Chemistry & Biochemistry
– name: Department of Chemistry
– name: Florida State University
– name: Department of Materials Science & Engineering
– name: Università di Bologna
– name: College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering
– name: Northwestern University
– name: Department of Biomedical Engineering
– name: Department of Industrial and Manufacturing Engineering
– name: Dipartimento di Chimica “G. Ciamician”
Author_xml – sequence: 1
  givenname: Lucas R
  surname: Parent
  fullname: Parent, Lucas R
  organization: Department of Chemistry & Biochemistry
– sequence: 2
  givenname: Evangelos
  surname: Bakalis
  fullname: Bakalis, Evangelos
  organization: Università di Bologna
– sequence: 3
  givenname: Maria
  surname: Proetto
  fullname: Proetto, Maria
  organization: College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering
– sequence: 4
  givenname: Yiwen
  orcidid: 0000-0002-6874-0350
  surname: Li
  fullname: Li, Yiwen
  organization: College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering
– sequence: 5
  givenname: Chiwoo
  surname: Park
  fullname: Park, Chiwoo
  organization: Florida State University
– sequence: 6
  givenname: Francesco
  orcidid: 0000-0002-2419-057X
  surname: Zerbetto
  fullname: Zerbetto, Francesco
  organization: Università di Bologna
– sequence: 7
  givenname: Nathan C
  orcidid: 0000-0001-9945-5475
  surname: Gianneschi
  fullname: Gianneschi, Nathan C
  email: nathan.gianneschi@northwestern.edu
  organization: Department of Chemistry & Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29227618$$D View this record in MEDLINE/PubMed
BookMark eNqFkLlOAzEQhi0EIge8AUJb0mzwtYfpUAiHFEST1KuJ7Q2GjZ3YuxJ5exwloaCAymP5-z0z3wCdWmc1QlcEjwim5BZkGIGUrrNtGBULjBkjJ6hPMopTXoryFPUxxiTWnPbQIISPeKU8L85RjwpKi5yUfQQzkJ-NscukfdfJ-B2aRtulDomrk4ethZWRyeRrrb1Z6dgomYcdOzWbzqh0rJsmmXmwYWVCMM4mk0bL1sfi1UjvgnTr7QU6q6EJ-vJwDtH8cTIbP6fTt6eX8f00BcbLNi05gTpnUmZMAlOZ4kJxVpdA80VOVK2ZgEwTXhQZKSlnWb6guVJMy5piJRgbopv9v2vvNp0ObRWHknFCsNp1oSKiyITIBCURvT6g3WKlVbWO24HfVkctEeB7YLdE8Lr-QQiudvaraL862q8O9mPs7ldMmhbaKKb1YJr_wngf3r1-uM7baOvvyDeB-aC6
CitedBy_id crossref_primary_10_1002_anie_202309725
crossref_primary_10_1016_j_xcrp_2022_100772
crossref_primary_10_1021_acsmacrolett_0c00595
crossref_primary_10_1016_j_jechem_2022_04_007
crossref_primary_10_1039_D2NR01041K
crossref_primary_10_1021_acscentsci_2c01194
crossref_primary_10_1021_acs_jpcb_1c01752
crossref_primary_10_1016_j_physa_2018_08_079
crossref_primary_10_1039_D3LC00190C
crossref_primary_10_1002_batt_201800152
crossref_primary_10_1021_acsnano_8b07880
crossref_primary_10_1016_j_ultramic_2023_113865
crossref_primary_10_1021_acs_cgd_4c00031
crossref_primary_10_1039_D0BM01676D
crossref_primary_10_3390_geosciences8060193
crossref_primary_10_1002_cphc_202400508
crossref_primary_10_1021_acs_chemrev_3c00352
crossref_primary_10_5006_3369
crossref_primary_10_1017_S1431927619009073
crossref_primary_10_1016_j_physa_2023_128780
crossref_primary_10_1017_S1431927621013647
crossref_primary_10_1021_acsnano_2c00199
crossref_primary_10_1039_C9NR04646A
crossref_primary_10_1557_mrs_2020_222
crossref_primary_10_1038_s41557_019_0210_4
crossref_primary_10_2147_IJN_S334012
crossref_primary_10_1021_acs_nanolett_0c04636
crossref_primary_10_1002_adma_202001582
crossref_primary_10_1021_acs_nanolett_8b04962
crossref_primary_10_1021_acs_nanolett_4c02242
crossref_primary_10_1557_mrs_2020_224
crossref_primary_10_1002_adma_201901556
crossref_primary_10_1039_D1CS00789K
crossref_primary_10_1021_acs_accounts_3c00211
crossref_primary_10_1021_acsnano_4c12083
crossref_primary_10_3390_cancers14153728
crossref_primary_10_1007_s11705_023_2328_6
crossref_primary_10_1080_23746149_2022_2046157
crossref_primary_10_1038_s41598_022_06308_2
crossref_primary_10_1017_S1431927618016045
crossref_primary_10_1039_D0SC02636K
crossref_primary_10_1002_adfm_202204976
crossref_primary_10_1016_j_polymertesting_2023_108232
crossref_primary_10_1146_annurev_chembioeng_092120_034534
crossref_primary_10_1016_j_chempr_2021_02_030
crossref_primary_10_1002_adma_201907619
crossref_primary_10_1021_acs_chemrev_9b00311
crossref_primary_10_1016_j_micron_2018_12_001
crossref_primary_10_1002_cmtd_202300041
crossref_primary_10_1557_s43577_022_00287_5
crossref_primary_10_1002_adsc_202100627
crossref_primary_10_1002_ppsc_202000003
crossref_primary_10_1021_acs_chemrev_1c00189
crossref_primary_10_1021_acs_jpcc_0c03203
crossref_primary_10_1093_micmic_ozad067_323
crossref_primary_10_1039_C8NR02867B
crossref_primary_10_1038_s41467_019_12660_1
crossref_primary_10_1021_jacsau_1c00297
crossref_primary_10_1021_acsnano_0c03209
crossref_primary_10_1002_ange_202309725
crossref_primary_10_1021_acs_macromol_0c02710
crossref_primary_10_1016_j_matt_2020_11_017
crossref_primary_10_1021_acs_chemrev_2c00700
crossref_primary_10_1021_acs_nanolett_9b01576
crossref_primary_10_1021_acsnano_3c12590
crossref_primary_10_1017_S1431927622001465
crossref_primary_10_1017_S1431927618015817
crossref_primary_10_1016_j_nxnano_2024_100115
crossref_primary_10_1021_acs_nanolett_0c02352
crossref_primary_10_1017_S1431927618015854
crossref_primary_10_1021_acsnano_0c07883
crossref_primary_10_1016_j_matdes_2020_108973
crossref_primary_10_1073_pnas_2017616118
crossref_primary_10_1073_pnas_2020242119
crossref_primary_10_3390_polym12081656
crossref_primary_10_1038_s41578_018_0071_2
crossref_primary_10_1038_s41467_021_26773_z
crossref_primary_10_1016_j_ultramic_2022_113596
crossref_primary_10_1002_adma_202402987
crossref_primary_10_1021_acs_jpcc_2c08530
crossref_primary_10_1002_adma_202102666
crossref_primary_10_1016_j_micron_2018_09_008
Cites_doi 10.1126/science.1254051
10.1039/c3cc46545d
10.1038/natrevmats.2016.35
10.1017/9781316337455
10.1016/j.ultramic.2017.04.012
10.1021/acscentsci.6b00331
10.1038/srep28326
10.1002/adma.201602273
10.1016/S0370-1573(00)00070-3
10.1038/nmat944
10.1016/j.ultramic.2012.07.018
10.1021/acs.chemmater.5b00334
10.1021/acs.nanolett.5b01636
10.1039/C6RA27066B
10.1021/acs.nanolett.6b04383
10.1080/00018738700101072
10.1021/jacs.5b00817
10.1016/j.nanoen.2014.11.004
10.1021/ja408513m
10.1038/ncomms7068
10.1119/1.10903
10.1021/nl404271k
10.1103/PhysRevE.81.020903
10.1063/1.4921891
10.1038/nmeth.2842
10.1039/C4CC06443G
10.1021/acs.langmuir.5b04200
10.1039/a801445k
10.1016/j.bpj.2009.12.4282
10.1021/acs.jpcc.5b07164
10.1021/acs.langmuir.5b00150
10.1021/nl404169a
10.1021/jacs.7b09060
10.1111/jmi.12508
10.1021/jp507400n
10.1021/nl500766j
10.1109/TPAMI.2014.2346202
10.1103/PhysRevLett.82.3835
10.1016/j.cplett.2015.05.042
10.1021/acsmacrolett.5b00479
10.1039/C3CC48479C
10.1021/nn303371y
10.1146/annurev.fluid.29.1.27
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.7b00331
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 11
ExternalDocumentID 29227618
10_1021_acs_accounts_7b00331
c454628557
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: F32 EB021859
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
7X8
ID FETCH-LOGICAL-a348t-841af63cc53ca3d5d49d43f8a26b61dfe39a5e147751824356b26dd3ecf20d933
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 09:28:21 EDT 2025
Thu Apr 03 07:05:26 EDT 2025
Tue Jul 01 03:16:00 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Thu Aug 27 13:42:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-841af63cc53ca3d5d49d43f8a26b61dfe39a5e147751824356b26dd3ecf20d933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2419-057X
0000-0001-9945-5475
0000-0002-6874-0350
PMID 29227618
PQID 1975995921
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1975995921
pubmed_primary_29227618
crossref_primary_10_1021_acs_accounts_7b00331
crossref_citationtrail_10_1021_acs_accounts_7b00331
acs_journals_10_1021_acs_accounts_7b00331
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-16
PublicationDateYYYYMMDD 2018-01-16
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref23/cit23
Vo G. (ref39/cit39) 2016
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
Ross F. M. (ref3/cit3) 2016
Buxton G. V. (ref16/cit16) 2008
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1126/science.1254051
– ident: ref31/cit31
  doi: 10.1039/c3cc46545d
– ident: ref2/cit2
  doi: 10.1038/natrevmats.2016.35
– volume-title: Liquid Cell Electron Microscopy
  year: 2016
  ident: ref3/cit3
  doi: 10.1017/9781316337455
– ident: ref17/cit17
  doi: 10.1016/j.ultramic.2017.04.012
– ident: ref20/cit20
  doi: 10.1021/acscentsci.6b00331
– ident: ref33/cit33
  doi: 10.1038/srep28326
– ident: ref10/cit10
  doi: 10.1002/adma.201602273
– ident: ref35/cit35
  doi: 10.1016/S0370-1573(00)00070-3
– ident: ref1/cit1
  doi: 10.1038/nmat944
– ident: ref30/cit30
  doi: 10.1016/j.ultramic.2012.07.018
– ident: ref32/cit32
  doi: 10.1021/acs.chemmater.5b00334
– start-page: 1
  year: 2016
  ident: ref39/cit39
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref26/cit26
  doi: 10.1021/acs.nanolett.5b01636
– ident: ref12/cit12
  doi: 10.1039/C6RA27066B
– ident: ref18/cit18
  doi: 10.1021/acs.nanolett.6b04383
– volume-title: Radiation Chemistry from Basics to Applications in Material and Life Sciences
  year: 2008
  ident: ref16/cit16
– ident: ref40/cit40
  doi: 10.1080/00018738700101072
– ident: ref21/cit21
  doi: 10.1021/jacs.5b00817
– ident: ref24/cit24
  doi: 10.1016/j.nanoen.2014.11.004
– ident: ref45/cit45
  doi: 10.1021/ja408513m
– ident: ref29/cit29
  doi: 10.1038/ncomms7068
– ident: ref34/cit34
  doi: 10.1119/1.10903
– ident: ref11/cit11
  doi: 10.1021/nl404271k
– ident: ref37/cit37
  doi: 10.1103/PhysRevE.81.020903
– ident: ref36/cit36
  doi: 10.1063/1.4921891
– ident: ref19/cit19
  doi: 10.1038/nmeth.2842
– ident: ref25/cit25
  doi: 10.1039/C4CC06443G
– ident: ref14/cit14
  doi: 10.1021/acs.langmuir.5b04200
– ident: ref15/cit15
  doi: 10.1039/a801445k
– ident: ref41/cit41
  doi: 10.1016/j.bpj.2009.12.4282
– ident: ref4/cit4
  doi: 10.1021/acs.jpcc.5b07164
– ident: ref5/cit5
  doi: 10.1021/acs.langmuir.5b00150
– ident: ref27/cit27
  doi: 10.1021/nl404169a
– ident: ref6/cit6
  doi: 10.1021/jacs.7b09060
– ident: ref8/cit8
  doi: 10.1111/jmi.12508
– ident: ref7/cit7
  doi: 10.1021/jp507400n
– ident: ref28/cit28
  doi: 10.1021/nl500766j
– ident: ref38/cit38
  doi: 10.1109/TPAMI.2014.2346202
– ident: ref43/cit43
  doi: 10.1103/PhysRevLett.82.3835
– ident: ref44/cit44
  doi: 10.1016/j.cplett.2015.05.042
– ident: ref23/cit23
  doi: 10.1021/acsmacrolett.5b00479
– ident: ref13/cit13
  doi: 10.1039/C3CC48479C
– ident: ref9/cit9
  doi: 10.1021/nn303371y
– ident: ref42/cit42
  doi: 10.1146/annurev.fluid.29.1.27
SSID ssj0002467
Score 2.5105975
SecondaryResourceType review_article
Snippet Conspectus Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging...
Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3
Title Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy
URI http://dx.doi.org/10.1021/acs.accounts.7b00331
https://www.ncbi.nlm.nih.gov/pubmed/29227618
https://www.proquest.com/docview/1975995921
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQPcAFWt59yZW4cPCy9thOcqzCIlSVcmBX4hY5fiDEapc2yYH--trOAwFC0Gtkj-LxOPM58_gQOtSO2Zjnx7VVhMtxSbIUgAhNrSq1SbiJ3T5_ybMZ_3Elrh4uik8j-IweK1150ZE5oRolwQpD2fQ7Jv05DlAovxy-vIzLtkemvyLzlLO-VO4FKcEh6eqxQ3oBZUZvc7qJLvqanTbJ5HbU1OVI_33ewvGNC3mPNjrgib-3lvIBrdjFFlrLe763baSmSgf69mvsMSHOe5KVCi8dPml56_Fk4AOocEw2wD9vfjc3huR2PsfR73lx4QccnnT8Ovg8pPyF4pf7HTQ7nUzzM9IRMBAFPK1JyqlyErQWoBUYYXhmOLhUMVlKapyFTAlLeRJiN8wDL1kyaQxYbwFjkwHsotXFcmH3EdYgnIdCSjhlOWihQIGALNUU3Ji78gAdef0U3QGqihgbZ7QID3ulFZ3SDhD0O1borpN5INSYvzKLDLPu2k4er4z_1htD4VUX4ihqYZeNf7csiW3amB-z11rJIJFljCWSph__Yz2f0LqHYSGnkFD5Ga3Wfxr7xUOduvwa7fsfcZb8pQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQHOilUKDl1WIkLhy8XXtsJzmidNG2XbiwVNwixw-EWO0C2T3Ar8d2HohKCHG17JE9nmS-ZB4fQkfaMRvz_Li2inDZL0mWAhChqVWlNgk3sdvnuRxe8j9X4moJibYWxm-i8pKqGMR_6S5Af4YxVRMoVL0kGGOonl7xeIQFwz7JL7oXMOOybpXpv5R5yllbMfeGlOCXdPXaL70BNqPTOV1D_7rtxlyT295iXvb003-dHD98nnX0uYGh-KS2my9oyU430Gresr9tIjVWOpC5X2OPEHHeUq5UeObwr5rFHg86doAKx9QDPLq5X9wYktvJBEcv6MWF33F40LDt4LOQABhKYR630OXpYJwPSUPHQBTwdE5STpWToLUArcAIwzPDwaWKyVJS4yxkSljKkxDJYR6GyZJJY8B6e-ibDOArWp7OpnYbYQ3CeWCkhFOWgxYKFAjIUk3B9bkrd9Cx10_RPE5VESPljBZhsFVa0ShtB0F7cYVu-poHeo3JO6tIt-qu7uvxzvzD1iYKr7oQVVFTO1v4vWVJbNrG_JxvtbF0ElnGWCJpuvuB8xyg1eH4bFSMfp__3UOfPEAL2YaEyn20PH9Y2O8eBM3LH9HknwHYwAUV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqKrVcaIHyKC0YiUsPXtYe20mOKOyKt5AACfUSOX4gxGoXyO6B_nps56FSCSF6teyRPRlnJpmZ70NoRztmY50f11YRLvslyVIAIjS1qtQm4SaifZ7Jgyt-dC2u_6L68puovKQqJvHDrb43rkEYoLthXNUkClUvCQYZOqg_hsxdMO69_KJ7CTMua7hM_7XMU87arrlXpATfpKuXvumVgDM6nuEX9Lvbcqw3uevNpmVP__kHzfG_zvQVLTThKN6r7WcRfbDjJfQ5b1nglpG6VDqQut9gHynivKVeqfDE4f2azR4POpaACscSBHxy-zC7NSS3oxGO3tCLC7_l8KBh3cGnoRAwtMQ8fUNXw8FlfkAaWgaigKdTknKqnAStBWgFRhieGQ4uVUyWkhpnIVPCUp6EjA7z4ZgsmTQGrLeLvskAVtDceDK2awhrEM4HSEo4ZTlooUCBgCzVFFyfu3Id_fL6KZprVRUxY85oEQZbpRWN0tYRtA-v0A2-eaDZGL2xinSr7mt8jzfmb7d2UXjVheyKGtvJzO8tSyJ4G_NzVmuD6SSyjLFE0vT7O86zhT6d7w-Lk8Oz4w007-O0UHRIqPyB5qaPM_vTx0LTcjNa_TMyAAeY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tackling+the+Challenges+of+Dynamic+Experiments+Using+Liquid-Cell+Transmission+Electron+Microscopy&rft.jtitle=Accounts+of+chemical+research&rft.au=Parent%2C+Lucas+R&rft.au=Bakalis%2C+Evangelos&rft.au=Proetto%2C+Maria&rft.au=Li%2C+Yiwen&rft.date=2018-01-16&rft.eissn=1520-4898&rft.volume=51&rft.issue=1&rft.spage=3&rft_id=info:doi/10.1021%2Facs.accounts.7b00331&rft_id=info%3Apmid%2F29227618&rft.externalDocID=29227618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon