Observations of Tunable Resistive Pulse Sensing for Exosome Analysis: Improving System Sensitivity and Stability
Size distribution and concentration measurements of exosomes are essential when investigating their cellular function and uptake. Recently, a particle size distribution and concentration measurement platform known as tunable resistive pulse sensing (TRPS) has seen increased use for the characterizat...
Saved in:
Published in | Langmuir Vol. 31; no. 23; pp. 6577 - 6587 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Size distribution and concentration measurements of exosomes are essential when investigating their cellular function and uptake. Recently, a particle size distribution and concentration measurement platform known as tunable resistive pulse sensing (TRPS) has seen increased use for the characterization of exosome samples. TRPS measures the brief increase in electrical resistance (a resistive pulse) produced by individual submicrometer/nanoscale particles as they translocate through a size-tunable submicrometer/micrometer-sized pore, embedded in an elastic membrane. Unfortunately, TRPS measurements are susceptible to issues surrounding system stability, where the pore can become blocked by particles, and sensitivity issues, where particles are too small to be detected against the background noise of the system. Herein, we provide a comprehensive analysis of the parameters involved in TRPS exosome measurements and demonstrate the ability to improve system sensitivity and stability by the optimization of system parameters. We also provide the first analysis of system noise, sensitivity cutoff limits, and accuracy with respect to exosome measurements and offer an explicit definition of system sensitivity that indicates the smallest particle diameter that can be detected within the noise of the trans-membrane current. A comparison of exosome size measurements from both TRPS and cryo-electron microscopy is also provided, finding that a significant number of smaller exosomes fell below the detection limit of the TRPS platform and offering one potential insight as to why there is such large variability in the exosome size distribution reported in the literature. We believe the observations reported here may assist others in improving TRPS measurements for exosome samples and other submicrometer biological and nonbiological particles. |
---|---|
AbstractList | Size distribution and concentration measurements of exosomes are essential when investigating their cellular function and uptake. Recently, a particle size distribution and concentration measurement platform known as tunable resistive pulse sensing (TRPS) has seen increased use for the characterization of exosome samples. TRPS measures the brief increase in electrical resistance (a resistive pulse) produced by individual submicrometer/nanoscale particles as they translocate through a size-tunable submicrometer/micrometer-sized pore, embedded in an elastic membrane. Unfortunately, TRPS measurements are susceptible to issues surrounding system stability, where the pore can become blocked by particles, and sensitivity issues, where particles are too small to be detected against the background noise of the system. Herein, we provide a comprehensive analysis of the parameters involved in TRPS exosome measurements and demonstrate the ability to improve system sensitivity and stability by the optimization of system parameters. We also provide the first analysis of system noise, sensitivity cutoff limits, and accuracy with respect to exosome measurements and offer an explicit definition of system sensitivity that indicates the smallest particle diameter that can be detected within the noise of the trans-membrane current. A comparison of exosome size measurements from both TRPS and cryo-electron microscopy is also provided, finding that a significant number of smaller exosomes fell below the detection limit of the TRPS platform and offering one potential insight as to why there is such large variability in the exosome size distribution reported in the literature. We believe the observations reported here may assist others in improving TRPS measurements for exosome samples and other submicrometer biological and nonbiological particles. |
Author | Trau, Matt Korbie, Darren Lane, Rebecca Anderson, Will |
AuthorAffiliation | Centre for Personalized NanoMedicine The University of Queensland Australian Institute for Bioengineering and Nanotechnology School of Chemistry and Molecular Biosciences |
AuthorAffiliation_xml | – name: Australian Institute for Bioengineering and Nanotechnology – name: – name: Centre for Personalized NanoMedicine – name: School of Chemistry and Molecular Biosciences – name: The University of Queensland |
Author_xml | – sequence: 1 givenname: Will surname: Anderson fullname: Anderson, Will email: will.anderson@uqconnect.edu.au – sequence: 2 givenname: Rebecca surname: Lane fullname: Lane, Rebecca – sequence: 3 givenname: Darren surname: Korbie fullname: Korbie, Darren – sequence: 4 givenname: Matt surname: Trau fullname: Trau, Matt email: m.trau@uq.edu.au |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25970769$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMFO3DAQhq0KVBboG1SVj71kO3ac2O4NIdoiIVGxcI4c7xgZJfbWTlbs29erXThyskb-_n9G3zk5CTEgIV8ZLBlw9sPYvBxMeB5nn5ZND0wA_0QWrOFQNYrLE7IAKepKirY-I-c5vwCAroX-TM54oyXIVi_I5r7PmLZm8jFkGh19nIPpB6QPmH2e_Bbp33nISFcYsg_P1MVEb15jjiPSq2CGXcF-0ttxk-J2_7_a5QnHA17iftpRE9Z0NZneD2W6JKfOlMIvx_eCPP26ebz-U93d_769vrqrTC3UVElnrJTKcdUY1QqjuFBsrW1tOddGKo7InTVSWwcMrG4RuG6ZXFsLTvWiviDfD73lsH8z5qkbfbY4FGUY59yxVumWg9B1QcUBtSnmnNB1m-RHk3Ydg27vuiuuuzfX3dF1iX07bpj7EdfvoTe5BYADsI-_xDkVXfnjzv8CkJJv |
CitedBy_id | crossref_primary_10_1021_acsnano_0c10887 crossref_primary_10_1186_s40169_018_0192_7 crossref_primary_10_1002_ijc_30179 crossref_primary_10_3402_jev_v5_31242 crossref_primary_10_1016_j_xphs_2022_01_012 crossref_primary_10_3389_fmicb_2016_01500 crossref_primary_10_3389_fchem_2019_00396 crossref_primary_10_1186_s40486_022_00156_5 crossref_primary_10_2217_nnm_2016_0192 crossref_primary_10_3390_bioengineering6010007 crossref_primary_10_1016_j_jhazmat_2023_133014 crossref_primary_10_1021_acs_analchem_7b05106 crossref_primary_10_1016_j_jconrel_2020_10_020 crossref_primary_10_1111_prd_12520 crossref_primary_10_1002_jcp_25387 crossref_primary_10_1039_D0TB01499K crossref_primary_10_1002_jev2_12052 crossref_primary_10_1016_j_biotechadv_2023_108122 crossref_primary_10_1021_acs_analchem_6b01818 crossref_primary_10_1021_acsanm_8b00267 crossref_primary_10_1016_j_bbagen_2016_07_028 crossref_primary_10_1002_advs_202401069 crossref_primary_10_1021_acssensors_9b01869 crossref_primary_10_1080_09537104_2016_1260704 crossref_primary_10_1016_j_chroma_2016_01_017 crossref_primary_10_1021_acs_chemrev_7b00777 crossref_primary_10_3390_nano11061481 crossref_primary_10_3390_ijms222312946 crossref_primary_10_1111_aji_13367 crossref_primary_10_1039_C8AN01270A crossref_primary_10_1002_cbin_11620 crossref_primary_10_1016_j_vetpar_2016_03_008 crossref_primary_10_1063_5_0191456 crossref_primary_10_1007_s13233_016_4045_1 crossref_primary_10_3390_s21227645 crossref_primary_10_3390_bios13010129 crossref_primary_10_1021_acsami_7b18029 crossref_primary_10_1016_j_cytogfr_2023_08_003 crossref_primary_10_1016_j_biopha_2021_112270 crossref_primary_10_1016_j_nanoen_2021_106781 crossref_primary_10_1002_adbi_201700040 crossref_primary_10_1007_s10911_020_09473_0 crossref_primary_10_1021_acssensors_0c02728 crossref_primary_10_3390_vetsci11050187 crossref_primary_10_1155_2016_5741518 crossref_primary_10_1007_s10616_024_00631_4 crossref_primary_10_1016_j_bbagen_2018_07_016 crossref_primary_10_1021_acs_analchem_1c00693 crossref_primary_10_1039_C7NR07576F crossref_primary_10_3390_diagnostics10110943 crossref_primary_10_1016_j_addr_2021_04_027 crossref_primary_10_1021_acsapm_0c01087 crossref_primary_10_1007_s00249_017_1252_4 crossref_primary_10_2217_nnm_2016_0097 crossref_primary_10_1016_j_jconhyd_2018_10_008 crossref_primary_10_1039_C7NR03998K crossref_primary_10_1002_elan_202200091 crossref_primary_10_1016_j_cellsig_2024_111263 crossref_primary_10_1039_D0AY00170H crossref_primary_10_1002_adhm_202202437 crossref_primary_10_3390_cells8040307 crossref_primary_10_1186_s13287_021_02697_9 crossref_primary_10_1016_j_bios_2020_112056 crossref_primary_10_1002_ppsc_202200130 crossref_primary_10_1016_j_sna_2022_113832 crossref_primary_10_1042_CS20220793 crossref_primary_10_1016_j_jchromb_2021_122604 crossref_primary_10_3390_mi9010020 crossref_primary_10_1002_elps_201900323 crossref_primary_10_3389_fimmu_2020_01509 crossref_primary_10_1002_advs_202103222 crossref_primary_10_1002_elps_202100202 crossref_primary_10_2174_1568026620666201019112557 crossref_primary_10_1016_j_ymeth_2020_02_003 crossref_primary_10_1021_acs_analchem_6b00796 crossref_primary_10_1002_elps_201800311 crossref_primary_10_1186_s12943_021_01312_y crossref_primary_10_1109_ACCESS_2019_2907123 crossref_primary_10_1016_j_xphs_2021_07_012 crossref_primary_10_1016_j_ejpb_2021_12_003 crossref_primary_10_1016_j_jhip_2024_06_001 crossref_primary_10_1007_s12033_021_00300_3 crossref_primary_10_1063_5_0203512 crossref_primary_10_1016_j_bbamcr_2018_09_008 crossref_primary_10_1016_j_jddst_2022_103579 crossref_primary_10_1021_acsomega_8b03164 crossref_primary_10_3724_SP_J_1123_2021_07005 |
Cites_doi | 10.1095/biolreprod.113.113266 10.1038/srep07639 10.1111/jth.12254 10.1016/j.jcis.2013.02.030 10.1038/nbt.1807 10.1063/1.3673596 10.1074/mcp.M111.012245 10.1016/j.nano.2011.04.003 10.1063/1.1684724 10.1021/ac200195n 10.1002/smll.201001129 10.1016/j.bbamcr.2013.03.013 10.1038/nm0598-594 10.1016/j.bios.2011.09.040 10.1016/j.colsurfb.2011.05.013 10.1016/j.addr.2012.07.002 10.1371/journal.pone.0082589 10.1002/smll.201200058 10.1002/ppsc.19910080134 10.1021/la2038763 10.1111/j.1538-7836.2010.04074.x 10.1016/j.transproceed.2013.08.079 10.1071/CH11200 10.1371/journal.pone.0067554 10.1097/QAD.0000000000000159 10.1002/cyto.a.20886 10.1016/j.ab.2012.06.004 10.1038/85438 10.1038/nprot.2012.065 10.1016/j.bios.2013.01.044 10.2217/nnm.12.173 10.1007/978-1-61779-068-3_15 10.1016/j.ymeth.2012.01.002 10.1021/la301351k 10.1038/ncb1596 10.1038/mt.2011.164 10.1155/2014/619829 10.3402/jev.v3.23784 |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acs.langmuir.5b01402 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 6587 |
ExternalDocumentID | 10_1021_acs_langmuir_5b01402 25970769 c559883635 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 186 1WB 4.4 53G 55A 5GY 5VS 7~N AABXI ABDEX ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AFFNX AGXLV ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL HR IH9 IHE JG JG~ K2 LG6 OHM RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X AAHBH ABJNI ABQRX ADHLV AHGAQ CGR CUPRZ CUY CVF ECM EIF GGK NPM YQT ~02 AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a348t-7fac778f285a864a82481d9c3c229a782ee2fca79cf010c96e029617dcc0f8b43 |
IEDL.DBID | ACS |
ISSN | 0743-7463 |
IngestDate | Fri Aug 16 21:55:50 EDT 2024 Fri Dec 06 02:11:11 EST 2024 Sat Sep 28 08:13:29 EDT 2024 Thu Aug 27 13:42:35 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-7fac778f285a864a82481d9c3c229a782ee2fca79cf010c96e029617dcc0f8b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25970769 |
PQID | 1689620493 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1689620493 crossref_primary_10_1021_acs_langmuir_5b01402 pubmed_primary_25970769 acs_journals_10_1021_acs_langmuir_5b01402 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ AGXLV VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 1WB BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2015-06-16 |
PublicationDateYYYYMMDD | 2015-06-16 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Duijvesz D. (ref6/cit6) 2013; 8 Alvarez S. (ref5/cit5) 2013; 45 Dragovic R. A. (ref18/cit18) 2011; 7 Sun D. (ref3/cit3) 2013; 65 Anderson W. (ref21/cit21) 2013; 405 Valadi H. (ref2/cit2) 2007; 9 Sokolova V. (ref19/cit19) 2011; 87 Zitvogel L. (ref9/cit9) 1998; 4 Roberts G. S. (ref28/cit28) 2012; 31 van der Vlist E. J. (ref20/cit20) 2012; 7 Skogberg G. (ref41/cit41) 2013; 8 Gercel-Taylor C. (ref4/cit4) 2012; 428 Wolfers J. (ref8/cit8) 2001; 7 Dragovic R. A. (ref22/cit22) 2013; 89 Bell N. C. (ref31/cit31) 2012; 28 Taylor D. D. (ref42/cit42) 2011; 728 Low M. (ref27/cit27) 2011; 64 Vogel R. (ref29/cit29) 2011; 83 De Jaeger N. (ref34/cit34) 1991; 8 Roberts G. S. (ref25/cit25) 2010; 6 Willmott G. (ref23/cit23) 2012; 6 Maas S. L. N. (ref37/cit37) 2014; 92 Inder K. L. (ref40/cit40) 2012; 11 Naslund T. I. (ref7/cit7) 2014; 28 Boing A. N. (ref32/cit32) 2013; 1833 Lane R. E. (ref38/cit38) 2015; 5 Inder K. L. (ref39/cit39) 2014; 3 Roberts G. S. (ref36/cit36) 2012; 31 van der Pol E. (ref16/cit16) 2013; 11 Colombo M. (ref15/cit15) 2013; 126 Booth M. A. (ref24/cit24) 2013; 45 Franzen C. A. (ref30/cit30) 2014; 2014 Tauro B. J. (ref12/cit12) 2012; 56 Orozco A. F. (ref17/cit17) 2010; 77 Sharma S. (ref14/cit14) 2011; 27 van der Pol E. (ref1/cit1) 2010; 8 Platt M. (ref26/cit26) 2012; 8 Théry C. (ref13/cit13) 2001 de Vrij J. (ref33/cit33) 2013; 8 Alvarez-Erviti L. (ref10/cit10) 2011; 29 DeBlois R. W. (ref35/cit35) 1970; 41 Zhuang X. (ref11/cit11) 2011; 19 |
References_xml | – volume: 89 start-page: 151 year: 2013 ident: ref22/cit22 publication-title: Biol. Reprod. doi: 10.1095/biolreprod.113.113266 contributor: fullname: Dragovic R. A. – volume: 5 start-page: 7639 year: 2015 ident: ref38/cit38 publication-title: Sci. Rep. doi: 10.1038/srep07639 contributor: fullname: Lane R. E. – volume: 11 start-page: 36 year: 2013 ident: ref16/cit16 publication-title: J. Thromb. Haemost. doi: 10.1111/jth.12254 contributor: fullname: van der Pol E. – volume: 405 start-page: 322 year: 2013 ident: ref21/cit21 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.02.030 contributor: fullname: Anderson W. – volume: 29 start-page: 341 year: 2011 ident: ref10/cit10 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1807 contributor: fullname: Alvarez-Erviti L. – volume: 6 start-page: 014103 year: 2012 ident: ref23/cit23 publication-title: Biomicrofluidics doi: 10.1063/1.3673596 contributor: fullname: Willmott G. – volume: 11 start-page: M111 012245 year: 2012 ident: ref40/cit40 publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M111.012245 contributor: fullname: Inder K. L. – volume: 7 start-page: 780 year: 2011 ident: ref18/cit18 publication-title: Nanomedicine doi: 10.1016/j.nano.2011.04.003 contributor: fullname: Dragovic R. A. – volume: 41 start-page: 909 year: 1970 ident: ref35/cit35 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1684724 contributor: fullname: DeBlois R. W. – volume: 83 start-page: 3499 year: 2011 ident: ref29/cit29 publication-title: Anal. Chem. doi: 10.1021/ac200195n contributor: fullname: Vogel R. – volume: 126 start-page: 5553 year: 2013 ident: ref15/cit15 publication-title: J. Cell Sci. contributor: fullname: Colombo M. – volume: 6 start-page: 2653 year: 2010 ident: ref25/cit25 publication-title: Small doi: 10.1002/smll.201001129 contributor: fullname: Roberts G. S. – volume: 1833 start-page: 1844 year: 2013 ident: ref32/cit32 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2013.03.013 contributor: fullname: Boing A. N. – volume: 4 start-page: 594 year: 1998 ident: ref9/cit9 publication-title: Nat. Med. doi: 10.1038/nm0598-594 contributor: fullname: Zitvogel L. – volume: 31 start-page: 17 year: 2012 ident: ref28/cit28 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.09.040 contributor: fullname: Roberts G. S. – volume: 87 start-page: 146 year: 2011 ident: ref19/cit19 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2011.05.013 contributor: fullname: Sokolova V. – volume: 65 start-page: 342 year: 2013 ident: ref3/cit3 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2012.07.002 contributor: fullname: Sun D. – volume: 8 start-page: e82589 year: 2013 ident: ref6/cit6 publication-title: PLoS One doi: 10.1371/journal.pone.0082589 contributor: fullname: Duijvesz D. – volume: 8 start-page: 2436 year: 2012 ident: ref26/cit26 publication-title: Small doi: 10.1002/smll.201200058 contributor: fullname: Platt M. – volume-title: Current Protocols in Cell Biology year: 2001 ident: ref13/cit13 contributor: fullname: Théry C. – volume: 8 start-page: 179 year: 1991 ident: ref34/cit34 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.19910080134 contributor: fullname: De Jaeger N. – volume: 27 start-page: 14394 year: 2011 ident: ref14/cit14 publication-title: Langmuir doi: 10.1021/la2038763 contributor: fullname: Sharma S. – volume: 8 start-page: 2596 year: 2010 ident: ref1/cit1 publication-title: J. Thromb. Haemost. doi: 10.1111/j.1538-7836.2010.04074.x contributor: fullname: van der Pol E. – volume: 45 start-page: 3719 year: 2013 ident: ref5/cit5 publication-title: Transplant Proc. doi: 10.1016/j.transproceed.2013.08.079 contributor: fullname: Alvarez S. – volume: 64 start-page: 1229 year: 2011 ident: ref27/cit27 publication-title: Aust. J. Chem. doi: 10.1071/CH11200 contributor: fullname: Low M. – volume: 8 start-page: e67554 year: 2013 ident: ref41/cit41 publication-title: PLoS One doi: 10.1371/journal.pone.0067554 contributor: fullname: Skogberg G. – volume: 28 start-page: 171 year: 2014 ident: ref7/cit7 publication-title: AIDS doi: 10.1097/QAD.0000000000000159 contributor: fullname: Naslund T. I. – volume: 77 start-page: 502 year: 2010 ident: ref17/cit17 publication-title: Cytometry A doi: 10.1002/cyto.a.20886 contributor: fullname: Orozco A. F. – volume: 31 start-page: 17 year: 2012 ident: ref36/cit36 publication-title: Biosen.s Bioelectron. doi: 10.1016/j.bios.2011.09.040 contributor: fullname: Roberts G. S. – volume: 428 start-page: 44 year: 2012 ident: ref4/cit4 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2012.06.004 contributor: fullname: Gercel-Taylor C. – volume: 7 start-page: 297 year: 2001 ident: ref8/cit8 publication-title: Nat. Med. doi: 10.1038/85438 contributor: fullname: Wolfers J. – volume: 92 start-page: e51623 year: 2014 ident: ref37/cit37 publication-title: J. Vis. Exp. contributor: fullname: Maas S. L. N. – volume: 7 start-page: 1311 year: 2012 ident: ref20/cit20 publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.065 contributor: fullname: van der Vlist E. J. – volume: 45 start-page: 136 year: 2013 ident: ref24/cit24 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.01.044 contributor: fullname: Booth M. A. – volume: 8 start-page: 1443 year: 2013 ident: ref33/cit33 publication-title: Nanomedicine doi: 10.2217/nnm.12.173 contributor: fullname: de Vrij J. – volume: 728 start-page: 235 year: 2011 ident: ref42/cit42 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-068-3_15 contributor: fullname: Taylor D. D. – volume: 56 start-page: 293 year: 2012 ident: ref12/cit12 publication-title: Methods doi: 10.1016/j.ymeth.2012.01.002 contributor: fullname: Tauro B. J. – volume: 28 start-page: 10860 year: 2012 ident: ref31/cit31 publication-title: Langmuir doi: 10.1021/la301351k contributor: fullname: Bell N. C. – volume: 9 start-page: 654 year: 2007 ident: ref2/cit2 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1596 contributor: fullname: Valadi H. – volume: 19 start-page: 1769 year: 2011 ident: ref11/cit11 publication-title: Mol. Ther. doi: 10.1038/mt.2011.164 contributor: fullname: Zhuang X. – volume: 2014 start-page: 619829 year: 2014 ident: ref30/cit30 publication-title: Biomed Res. Int. doi: 10.1155/2014/619829 contributor: fullname: Franzen C. A. – volume: 3 year: 2014 ident: ref39/cit39 publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v3.23784 contributor: fullname: Inder K. L. |
SSID | ssj0009349 |
Score | 2.5249913 |
Snippet | Size distribution and concentration measurements of exosomes are essential when investigating their cellular function and uptake. Recently, a particle size... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6577 |
SubjectTerms | Cryoelectron Microscopy Electrochemical Techniques Exosomes - ultrastructure Membranes, Artificial Nanopores Organelle Size Porosity Sensitivity and Specificity |
Title | Observations of Tunable Resistive Pulse Sensing for Exosome Analysis: Improving System Sensitivity and Stability |
URI | http://dx.doi.org/10.1021/acs.langmuir.5b01402 https://www.ncbi.nlm.nih.gov/pubmed/25970769 https://search.proquest.com/docview/1689620493 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yH_TF74_5RQRffOhc0zRtfJOxMQSdqIO9lSRNRGTtWFtR_3ov7TpREfW1hKS9u-Z-l7v7BaETxaXLJLU5dd84gIg17IOaOZQo4-o4IJrbbuSra9Yf0suRP_oIFL9m8Il7JlTWsmd34-Jx2vKljQhgy10kAUTgFgp17j5Idr0K7lrazYAyr26V-2EW65BU9tkh_YAyS2_TW0WDumenKjJ5ahW5bKm37xSOf_yQNbQyA574orKUdbSgkw201Knve9tEk4Gcn9BmODX4vij7qvCtzuxG8KzxTQGOFN_ZmvfkAQPcxd2XNEvHGtfcJud4fkqBKzL0anh1RwUWSYwB3pYFua9baNjr3nf6zuw-Bkd4NMydwAgVBKEhoS9CRkVIKKBdrjxFCBcANbQmRomAKwNRnuJMtwkHhBQr1TahpN42aiRponcRDmjsaSKYjEFZlBopvTYnIcRWvgG98iY6BXFFs_8pi8pUOXEj-7CWYTSTYRM5tQKjSUXR8cv441rLEYjYJkhEotMCVmEht_z83GuinUr98xkhTLQWx_f-8Wb7aBnwlW8ry1x2gBr5tNCHgGFyeVQa7jtSqe8I |
link.rule.ids | 314,780,784,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heoALFMpjgYKReuGQZeM4dsytWu1qebaCBXGLbMdGVbUJIhvU9td3nGwWUQlVXCPLmYwdzzeemW8AvhipQ66Zj6nHLkBEbPEctDxg1LjQZoJa6auRL6_46Jad3cf3CxC3tTAoRIkzlXUQ_4VdIDz2z_wV3qT68dSNtXcM8OT9EPuulR4R9W9euHajBvV69k3BeNRWzL0xi7dLpnxtl94Am7XRGa7C3VzcOtfkZ7ea6q758w-T47u_5yOszGAo-drsmzVYsPk6LPXb7m-f4PGbnt_XlqRwZFzVVVbk2pb-WHi25HuFZpXc-Az4_IEg-CWDX0VZTCxpmU5OyPzOgjTU6M3wpmMFUXlGEOzW6bm_N-B2OBj3R8GsO0OgIpZMA-GUESJxNIlVwplKKEPsK01kKJUKgYe11BklpHHo8xnJbY9KxEuZMT2XaBZtwmJe5HYbiGBZZKniOsM1Y8xpHfUkTdDTil1PcNmBI1RXOvu7yrQOnNMw9Q9bHaYzHXYgaNcxfWwIO_4z_rBd7BRV7MMlKrdFhW_hifRs_TLqwFazC-YzotMovGQ775DsAJZG48uL9OL06nwXlhF5xT7nLOR7sDh9quxnRDdTvV_v5b9fUfd1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSyQxEA6i4Pqyq67HrFeEffGhx-l0Oun4JqODt-IB4kuTpBORZboHe1rUX2-lj3EVRPQ1hHR1jqqvUpWvEPqrhfKZoi6mHloPELEBPWiYR4m2vkk4McK9Rj4-YXtX9OA6vP6v1BcIkcNIeRnEd6d6kNiaYcDfdO3uGq9f3N23Q-WcA9C-EyEoXJfNtd29eOXbDSrk6xg4OWVB82rug1GcbdL5W9v0AeAsDU_vF7oZiVzmm_xrF0PV1s_v2By_9U_T6GcNR_F2tX9m0JhJZ9GPblMF7jcanKrRvW2OM4svi_K1FT43uVMPDwafFWBe8YXLhE9vMYBgvPuY5Vnf4IbxZAuP7i5wRZFeda8qV2CZJhhAb5mm-zSHrnq7l909r67S4MmARkOPW6k5jyyJQhkxKiNCAQMLHWhChAQAYgyxWnKhLfh-WjDTIQJwU6J1x0aKBvNoPM1Ss4gwp0lgiGQqgXWj1CoVdASJwOMKbYcz0UIbMF1xfcryuAygEz92jc0cxvUctpDXrGU8qIg7Pum_3ix4DFPswiYyNVkBX2GRcKz9ImihhWonjEYE55E7yf58QbI1NHm204uP9k8Ol9AUALDQpZ75bBmND-8LswIgZ6hWy-38AlQc-fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observations+of+Tunable+Resistive+Pulse+Sensing+for+Exosome+Analysis%3A+Improving+System+Sensitivity+and+Stability&rft.jtitle=Langmuir&rft.au=Anderson%2C+Will&rft.au=Lane%2C+Rebecca&rft.au=Korbie%2C+Darren&rft.au=Trau%2C+Matt&rft.date=2015-06-16&rft.eissn=1520-5827&rft.volume=31&rft.issue=23&rft.spage=6577&rft_id=info:doi/10.1021%2Facs.langmuir.5b01402&rft_id=info%3Apmid%2F25970769&rft.externalDocID=25970769 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |