Quantifying the Mechanical Anisotropy in Poly(3-hexylthiophene) Nanofibers

Correlating the structure with nanomechanical property of semicrystalline conjugated-polymer crystal is of essential importance for the performance improvement and design of flexible electronic devices. Although it is well-known that the semicrystalline conjugated-polymer crystal exhibits anisotropi...

Full description

Saved in:
Bibliographic Details
Published inACS macro letters Vol. 9; no. 1; pp. 108 - 114
Main Authors Jiang, Ke, Xu, Daren, Ma, Ziwen, Yang, Peng, Song, Yu, Zhang, Wenke
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.01.2020
Online AccessGet full text

Cover

Loading…
Abstract Correlating the structure with nanomechanical property of semicrystalline conjugated-polymer crystal is of essential importance for the performance improvement and design of flexible electronic devices. Although it is well-known that the semicrystalline conjugated-polymer crystal exhibits anisotropic structure owing to the π–π and layer stacking of highly coplanar conjugated backbones, the structure–nanomechanical property relationship is missing. Here, we investigated the axial mechanical anisotropy of the P3HT nanofiber by using thermal shape-fluctuation analysis and a three-point bending test based on atomic force microscopy. Our results show that Young’s modulus in the layer-stacking direction (E L) is 1–2 orders of magnitude greater than that in the π-conjugated backbone direction (E B). We attribute this mechanical anisotropy to the π-stacking of the P3HT backbone, but the layer stacking will decrease E L, which weakens the mechanical anisotropy. Moreover, we demonstrated that the P3HT nanofiber shows a loading-rate-independent Young’s modulus and deformation-dependent resilience in the layer-stacking direction.
AbstractList Correlating the structure with nanomechanical property of semicrystalline conjugated-polymer crystal is of essential importance for the performance improvement and design of flexible electronic devices. Although it is well-known that the semicrystalline conjugated-polymer crystal exhibits anisotropic structure owing to the π-π and layer stacking of highly coplanar conjugated backbones, the structure-nanomechanical property relationship is missing. Here, we investigated the axial mechanical anisotropy of the P3HT nanofiber by using thermal shape-fluctuation analysis and a three-point bending test based on atomic force microscopy. Our results show that Young's modulus in the layer-stacking direction ( ) is 1-2 orders of magnitude greater than that in the π-conjugated backbone direction ( ). We attribute this mechanical anisotropy to the π-stacking of the P3HT backbone, but the layer stacking will decrease , which weakens the mechanical anisotropy. Moreover, we demonstrated that the P3HT nanofiber shows a loading-rate-independent Young's modulus and deformation-dependent resilience in the layer-stacking direction.
Correlating the structure with nanomechanical property of semicrystalline conjugated-polymer crystal is of essential importance for the performance improvement and design of flexible electronic devices. Although it is well-known that the semicrystalline conjugated-polymer crystal exhibits anisotropic structure owing to the π–π and layer stacking of highly coplanar conjugated backbones, the structure–nanomechanical property relationship is missing. Here, we investigated the axial mechanical anisotropy of the P3HT nanofiber by using thermal shape-fluctuation analysis and a three-point bending test based on atomic force microscopy. Our results show that Young’s modulus in the layer-stacking direction (E L) is 1–2 orders of magnitude greater than that in the π-conjugated backbone direction (E B). We attribute this mechanical anisotropy to the π-stacking of the P3HT backbone, but the layer stacking will decrease E L, which weakens the mechanical anisotropy. Moreover, we demonstrated that the P3HT nanofiber shows a loading-rate-independent Young’s modulus and deformation-dependent resilience in the layer-stacking direction.
Author Zhang, Wenke
Ma, Ziwen
Yang, Peng
Xu, Daren
Jiang, Ke
Song, Yu
AuthorAffiliation Jilin University
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry
Institute of Theoretical Chemistry, College of Chemistry
AuthorAffiliation_xml – name: Institute of Theoretical Chemistry, College of Chemistry
– name: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry
– name: Jilin University
Author_xml – sequence: 1
  givenname: Ke
  surname: Jiang
  fullname: Jiang, Ke
  organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry
– sequence: 2
  givenname: Daren
  surname: Xu
  fullname: Xu, Daren
  organization: Jilin University
– sequence: 3
  givenname: Ziwen
  surname: Ma
  fullname: Ma, Ziwen
  organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry
– sequence: 4
  givenname: Peng
  surname: Yang
  fullname: Yang, Peng
  organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry
– sequence: 5
  givenname: Yu
  surname: Song
  fullname: Song, Yu
  email: songyu16@jlu.edu.cn
  organization: Jilin University
– sequence: 6
  givenname: Wenke
  orcidid: 0000-0002-4569-6035
  surname: Zhang
  fullname: Zhang, Wenke
  email: zhangwk@jlu.edu.cn
  organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35638666$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtOwzAQRS1UREvpHyCUZVmk2HHiOMuq4qnykmAdufGYuErsECcS-XuMWlBXzGZG1j0z8jlFI2MNIHRO8ILgiFyJwtWiaG0FXbfINhhzxo7QJCKMhIQldHQwj9HMuS32lTDCs_gEjWnCqCfYBD289sJ0Wg3afARdCcEjFKUwuhBVsDTa2a61zRBoE7zYapjTsISvoepKbZsSDFwGT8JYpTfQujN0rETlYLbvU_R-c_22ugvXz7f3q-U6FDTmXZgKKVNIIsIxZIQorJiMIyIl4SAyxWniZw6KCZZGUCSSR1IWlCfYP2NF6RTNd3ub1n724Lq81q6AqhIGbO_yyHM0omka-2i8i3pVzrWg8qbVtWiHnOD8R2R-KDLfi_TYxf5Cv6lB_kG_2nwA7wIez7e2b43_8P87vwGPgoVX
CitedBy_id crossref_primary_10_1021_acs_jpcc_3c07895
crossref_primary_10_1021_acs_macromol_3c02552
crossref_primary_10_1002_marc_202300437
crossref_primary_10_1021_acs_macromol_0c01975
Cites_doi 10.1021/ma500286d
10.1021/acsnano.8b05623
10.1021/ja108022h
10.1021/ma202157h
10.1002/aelm.201500250
10.1126/science.1150057
10.1021/nn5007013
10.1021/nn1018768
10.1021/acsmacrolett.9b00607
10.1103/PhysRevLett.100.048104
10.1021/ma502411n
10.1021/acs.jpclett.8b02027
10.1103/PhysRevLett.101.175502
10.1038/nnano.2016.118
10.1038/nature20102
10.1039/C6NR00863A
10.1021/nl0619397
10.1002/adma.201701251
10.1021/ma801128v
10.1002/adfm.201001471
10.1021/la1013494
10.1021/acs.macromol.8b02258
10.1021/acsnano.5b04939
10.1186/1751-0473-9-16
10.1021/nn503530a
10.1126/science.aah4496
10.1002/adma.201404602
10.1021/cm0513637
10.1002/adfm.201001781
10.1073/pnas.0604035103
10.1021/acs.macromol.5b02680
10.1016/j.solmat.2012.07.013
10.1038/35015519
10.1038/nmat2704
10.1021/cm4020805
10.1021/acs.jpclett.7b01443
10.1021/ja0531475
10.1039/c2nr30768e
10.1021/acs.macromol.8b01544
10.1038/nnano.2011.102
10.1039/C8NR06150E
10.1002/polb.1993.090310614
10.1126/science.1151424
10.1021/acsami.6b16115
10.1021/nl060028u
10.1021/nl501793a
10.1021/ma900137k
10.1002/adma.201601278
10.1002/adfm.201100904
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsmacrolett.9b00866
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2161-1653
EndPage 114
ExternalDocumentID 10_1021_acsmacrolett_9b00866
35638666
a018749706
Genre Journal Article
GroupedDBID 55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
ED
ED~
GNL
IH9
JG
JG~
ROL
UI2
VF5
VG9
W1F
ABQRX
ADHLV
BAANH
CUPRZ
EBS
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a348t-7add7e52180e911f0f6d421dd18ea9f8351dd8ef6a672ec5d82ddc3850dd80f33
IEDL.DBID ACS
ISSN 2161-1653
IngestDate Sat Aug 17 04:23:07 EDT 2024
Fri Aug 23 01:10:24 EDT 2024
Sat Sep 28 08:20:10 EDT 2024
Thu Aug 27 22:10:49 EDT 2020
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-7add7e52180e911f0f6d421dd18ea9f8351dd8ef6a672ec5d82ddc3850dd80f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4569-6035
PMID 35638666
PQID 2672323774
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2672323774
crossref_primary_10_1021_acsmacrolett_9b00866
pubmed_primary_35638666
acs_journals_10_1021_acsmacrolett_9b00866
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2020-01-21
PublicationDateYYYYMMDD 2020-01-21
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS macro letters
PublicationTitleAlternate ACS Macro Lett
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1021/ma500286d
– ident: ref44/cit44
  doi: 10.1021/acsnano.8b05623
– ident: ref16/cit16
  doi: 10.1021/ja108022h
– ident: ref29/cit29
  doi: 10.1021/ma202157h
– ident: ref25/cit25
  doi: 10.1002/aelm.201500250
– ident: ref23/cit23
  doi: 10.1126/science.1150057
– ident: ref27/cit27
  doi: 10.1021/nn5007013
– ident: ref4/cit4
  doi: 10.1021/nn1018768
– ident: ref19/cit19
  doi: 10.1021/acsmacrolett.9b00607
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.100.048104
– ident: ref46/cit46
  doi: 10.1021/ma502411n
– ident: ref20/cit20
  doi: 10.1021/acs.jpclett.8b02027
– ident: ref34/cit34
  doi: 10.1103/PhysRevLett.101.175502
– ident: ref14/cit14
  doi: 10.1038/nnano.2016.118
– ident: ref2/cit2
  doi: 10.1038/nature20102
– ident: ref12/cit12
  doi: 10.1039/C6NR00863A
– ident: ref35/cit35
  doi: 10.1021/nl0619397
– ident: ref11/cit11
  doi: 10.1002/adma.201701251
– ident: ref31/cit31
  doi: 10.1021/ma801128v
– ident: ref33/cit33
  doi: 10.1002/adfm.201001471
– ident: ref47/cit47
  doi: 10.1021/la1013494
– ident: ref13/cit13
  doi: 10.1021/acs.macromol.8b02258
– ident: ref43/cit43
  doi: 10.1021/acsnano.5b04939
– ident: ref28/cit28
  doi: 10.1186/1751-0473-9-16
– ident: ref30/cit30
  doi: 10.1021/nn503530a
– ident: ref3/cit3
  doi: 10.1126/science.aah4496
– ident: ref24/cit24
  doi: 10.1002/adma.201404602
– ident: ref48/cit48
  doi: 10.1021/cm0513637
– ident: ref9/cit9
  doi: 10.1002/adfm.201001781
– ident: ref21/cit21
  doi: 10.1073/pnas.0604035103
– ident: ref10/cit10
  doi: 10.1021/acs.macromol.5b02680
– ident: ref42/cit42
  doi: 10.1016/j.solmat.2012.07.013
– ident: ref22/cit22
  doi: 10.1038/35015519
– ident: ref36/cit36
  doi: 10.1038/nmat2704
– ident: ref5/cit5
  doi: 10.1021/cm4020805
– ident: ref7/cit7
  doi: 10.1021/acs.jpclett.7b01443
– ident: ref15/cit15
  doi: 10.1021/ja0531475
– ident: ref39/cit39
  doi: 10.1039/c2nr30768e
– ident: ref18/cit18
  doi: 10.1021/acs.macromol.8b01544
– ident: ref38/cit38
  doi: 10.1038/nnano.2011.102
– ident: ref17/cit17
  doi: 10.1039/C8NR06150E
– ident: ref26/cit26
  doi: 10.1002/polb.1993.090310614
– ident: ref40/cit40
  doi: 10.1126/science.1151424
– ident: ref49/cit49
  doi: 10.1021/acsami.6b16115
– ident: ref32/cit32
  doi: 10.1021/nl060028u
– ident: ref45/cit45
  doi: 10.1021/nl501793a
– ident: ref41/cit41
  doi: 10.1021/ma900137k
– ident: ref1/cit1
  doi: 10.1002/adma.201601278
– ident: ref8/cit8
  doi: 10.1002/adfm.201100904
SSID ssj0000561894
Score 2.3098469
Snippet Correlating the structure with nanomechanical property of semicrystalline conjugated-polymer crystal is of essential importance for the performance improvement...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 108
Title Quantifying the Mechanical Anisotropy in Poly(3-hexylthiophene) Nanofibers
URI http://dx.doi.org/10.1021/acsmacrolett.9b00866
https://www.ncbi.nlm.nih.gov/pubmed/35638666
https://search.proquest.com/docview/2672323774
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja8JAFB5ae2gv3Re7kUIP9TA2mckyHkUqItiFVvAWJrOg1CZiEqj99X2jxm5I21sIYZi87-W97-Utg9BlEFHTPikwB--OXVdSzLnwMQmYdD1H1Jg23cidW7_Vdds9r_cRKH7P4BPnmov0hQtTa5dlVTPBj_n-Kloj4BpNsFVvPC7-qRg2zKZnHxIgMtjxPVp0yy1ZyPgkkX71SUuI5tThNLfQXdG2M6szea7mWVQVbz-nOP7xXbbR5px7WvWZsuygFRXvovVGceTbHmo_5NwUD5nWJwuYodVRpjHY4GjV40GaZONkNLEGsXWfDCdXFPfV62SY9QdmOEGsKhbYalDWCCjlPuo2b54aLTw_bAFQclmGAzB0gQJnzmwFBlDb2pcAopQOU7ymgajBNVPa535AlPAkI1IKyjwbbtua0gNUipNYHSFLaSCdimkn4NplXsQkcFIVBbLm6hrVqowqIIhw_rGk4TQPTpzws3TCuXTKCBfQhKPZ_I1fnr8o8AtBeCb7wWOV5GlIYN-UUKC7ZXQ4A3axIvXADEEgd_yPnZ2gDWJib9vBxDlFpWycqzMgKFl0PtXKd70F42Y
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8MwDLZgPMAL9zHOIvEADxlt0rTZ4zSBxjEE4hBvVdokYgJaRDuJ8etxunUcEkK8VVFlubZjf2l8AOyFMbPlkwmRGN2J7ytGpEwCQkOhfO4lTWFsNXL3Iujc-qf3_H4CeFULg0zkSCkvL_E_uwt4h7j2LBObclcUDdvITwTBJEzxEAOeRUTt6_GvFQuKRTkCkSKeIV7AWVU09wshG5qS_Hto-gVvlnHneA7uxhyX6SaPjX4RN5L3H80c__1J8zA7QqJOa2g6CzCh00WYblcD4Jbg9KovbSqRLYRyECc6XW3LhK1WnVbay7PiNXsZOL3UucyeBvuMPOi3wVPx0LOtClJ94KDnRtONEWAuw-3x0U27Q0ajF1BnvihIiG4v1BjahavRHRrXBApVqpQntGwahG34LLQJZBBSnXAlqFIJE9zFZdcwtgK1NEv1GjjaIATVwnihNL7gsVCIUHUcqqZvmszoOhygIKLR1smj8lacetFX6UQj6dSBVBqKXobdOP54f7dSY4TCs3chMtVZP48o8s0oQ_Bbh9WhfscUGUenhMe69X9wtgPTnZvueXR-cnG2ATPUnspdj1BvE2rFa19vIXQp4u3SUD8AdKLr0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-wwEB48Ch5fvB51vVbwQR-yNkkv2cdldfGOooL4UtImYRe1XWwXXH-9k253UUHk-FZCCdOZzMyXzg1gN4y5LZ9MiETvTjxPcSJlEhAWCuX5NGkIY6uRLy6D4zvv9N6__zDqC4nIcae8DOJbre4pU3UYoAe4_iwTm3ZXFHXbzE8EwR-Y8kPqWZ1stm7Gv1csMBblGESGmIbQwOejwrlvNrLuKck_u6dvMGfpe9pz8DCmukw5eaz3i7ievH1p6Pirz5qH2QqROs3hEVqACZ0uwt_WaBDcEpxe96VNKbIFUQ7iRedC23JhK12nmXbzrHjJegOnmzpX2dNgj5OOfh08FZ2ubVmQ6n0HLTge4RiB5j-4ax_dto5JNYIBZeeJgoRo_kKNLl64Gs2icU2gULRKUaFlwyB8w2ehTSCDkOnEV4IplXDhu7jsGs6XYTLNUr0KjjYIRbUwNJTGE34sFCJVHYeq4ZkGN7oG-8iIqFKhPCqj44xGH7kTVdypARlJKeoNu3L88P7OSJQRMs_GRGSqs34eMaSbM44guAYrQxmPd-Q-Gie83q39B2XbMH112I7OTy7P1mGG2cu5SwmjGzBZvPT1JiKYIt4qz-o79mruSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+Mechanical+Anisotropy+in+Poly%283-hexylthiophene%29+Nanofibers&rft.jtitle=ACS+macro+letters&rft.au=Jiang%2C+Ke&rft.au=Xu%2C+Daren&rft.au=Ma%2C+Ziwen&rft.au=Yang%2C+Peng&rft.date=2020-01-21&rft.issn=2161-1653&rft.eissn=2161-1653&rft.volume=9&rft.issue=1&rft.spage=108&rft.epage=114&rft_id=info:doi/10.1021%2Facsmacrolett.9b00866&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmacrolett_9b00866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-1653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-1653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-1653&client=summon