Metal Saturated Cumulates from Siberia — Lunar Basalt Analogues?

Abstract It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the pathway seems predictable. So long as Fe metal is a stable liquidus phase and relative oxygen fugacity (fO2) is not subject to major fluctuations,...

Full description

Saved in:
Bibliographic Details
Published inJournal of petrology Vol. 63; no. 8
Main Authors Ballhaus, Chris, Leitzke, Felipe P, Fonseca, Raúl O C, Nagel, Thorsten, Kuzmin, Dmitri, El Goresy, Ahmed
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the pathway seems predictable. So long as Fe metal is a stable liquidus phase and relative oxygen fugacity (fO2) is not subject to major fluctuations, the activity of FeO (aFeOmelt) is buffered by the iron–wüstite (IW) equilibrium 2Femetal + O2 → 2FeOmelt. Metallic Fe also stabilizes olivine through the equilibrium 2Femetal + O2 + SiO2 melt → Fe2SiO4 olivine. That equilibrium tends to suppress the enrichment in bulk SiO2 when Fe saturated basaltic melts differentiate. We document the differentiation history of tholeiitic cumulates from the Siberian craton that carry up to 30 modal % metallic Fe. Our study is complemented by differentiation experiments at two redox states, one set in Fe metal capsules at 1.6 log units below IW (IW-1.6) and a second set in graphite capsules at IW + 1.5. Iron saturated differentiation pathways do not show enrichments in FeO nor in bulk SiO2 because olivine remains stable along the entire liquid line of descent. By contrast, melts equilibrated at IW + 1.5, that is, outside metallic Fe saturation, crystallize pigeonite as first silicate and follow a normal (terrestrial) differentiation pathway involving marked SiO2 enrichment. The Fe-saturated path duplicates in detail the liquid line of descent we derive for the cumulates. Iron-saturated experiments have limited applicability to the Earth because there are so few terrestrial basalts saturated with metallic Fe; however, they might apply to the Moon. Many lunar basalts appear to have been saturated with an Fe-Ni phase during their emplacement on the lunar surface, and potentially during generation within the lunar mantle.
AbstractList It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the pathway seems predictable. So long as Fe metal is a stable liquidus phase and relative oxygen fugacity (fO2) is not subject to major fluctuations, the activity of FeO (aFeOmelt) is buffered by the iron–wüstite (IW) equilibrium 2Femetal + O2 → 2FeOmelt. Metallic Fe also stabilizes olivine through the equilibrium 2Femetal + O2 + SiO2 melt → Fe2SiO4 olivine. That equilibrium tends to suppress the enrichment in bulk SiO2 when Fe saturated basaltic melts differentiate. We document the differentiation history of tholeiitic cumulates from the Siberian craton that carry up to 30 modal % metallic Fe. Our study is complemented by differentiation experiments at two redox states, one set in Fe metal capsules at 1.6 log units below IW (IW-1.6) and a second set in graphite capsules at IW + 1.5. Iron saturated differentiation pathways do not show enrichments in FeO nor in bulk SiO2 because olivine remains stable along the entire liquid line of descent. By contrast, melts equilibrated at IW + 1.5, that is, outside metallic Fe saturation, crystallize pigeonite as first silicate and follow a normal (terrestrial) differentiation pathway involving marked SiO2 enrichment. The Fe-saturated path duplicates in detail the liquid line of descent we derive for the cumulates. Iron-saturated experiments have limited applicability to the Earth because there are so few terrestrial basalts saturated with metallic Fe; however, they might apply to the Moon. Many lunar basalts appear to have been saturated with an Fe-Ni phase during their emplacement on the lunar surface, and potentially during generation within the lunar mantle.
Abstract It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the pathway seems predictable. So long as Fe metal is a stable liquidus phase and relative oxygen fugacity (fO2) is not subject to major fluctuations, the activity of FeO (aFeOmelt) is buffered by the iron–wüstite (IW) equilibrium 2Femetal + O2 → 2FeOmelt. Metallic Fe also stabilizes olivine through the equilibrium 2Femetal + O2 + SiO2 melt → Fe2SiO4 olivine. That equilibrium tends to suppress the enrichment in bulk SiO2 when Fe saturated basaltic melts differentiate. We document the differentiation history of tholeiitic cumulates from the Siberian craton that carry up to 30 modal % metallic Fe. Our study is complemented by differentiation experiments at two redox states, one set in Fe metal capsules at 1.6 log units below IW (IW-1.6) and a second set in graphite capsules at IW + 1.5. Iron saturated differentiation pathways do not show enrichments in FeO nor in bulk SiO2 because olivine remains stable along the entire liquid line of descent. By contrast, melts equilibrated at IW + 1.5, that is, outside metallic Fe saturation, crystallize pigeonite as first silicate and follow a normal (terrestrial) differentiation pathway involving marked SiO2 enrichment. The Fe-saturated path duplicates in detail the liquid line of descent we derive for the cumulates. Iron-saturated experiments have limited applicability to the Earth because there are so few terrestrial basalts saturated with metallic Fe; however, they might apply to the Moon. Many lunar basalts appear to have been saturated with an Fe-Ni phase during their emplacement on the lunar surface, and potentially during generation within the lunar mantle.
Author El Goresy, Ahmed
Ballhaus, Chris
Fonseca, Raúl O C
Kuzmin, Dmitri
Nagel, Thorsten
Leitzke, Felipe P
Author_xml – sequence: 1
  givenname: Chris
  surname: Ballhaus
  fullname: Ballhaus, Chris
  email: ballhaus@uni-bonn.de
– sequence: 2
  givenname: Felipe P
  surname: Leitzke
  fullname: Leitzke, Felipe P
– sequence: 3
  givenname: Raúl O C
  surname: Fonseca
  fullname: Fonseca, Raúl O C
– sequence: 4
  givenname: Thorsten
  surname: Nagel
  fullname: Nagel, Thorsten
– sequence: 5
  givenname: Dmitri
  surname: Kuzmin
  fullname: Kuzmin, Dmitri
– sequence: 6
  givenname: Ahmed
  surname: El Goresy
  fullname: El Goresy, Ahmed
BookMark eNqNkE1OwzAQhS1UJNrCAdj5AISO7SROVqiN-JOCWBTW0cSxq6A0rmxn0R2H4ISchKBWLFggVm_0pG-e9M3IpLe9JuSSwTWDXCx2Ojjb2c1-oTeoIJUnZMriFCIes2RCpgCcRyIRcEZm3r8BsLGHKVk96YAdXWMYHAbd0GLYDt14eWqc3dJ1W2vXIv18_6Dl0KOjK_TYBbrscZwbtL85J6cGO68vjjknr3e3L8VDVD7fPxbLMkIRZyFKc446NXXWyCw3kGipjEig5k2cCDRK5DLWKRdSJFIwxnPGtORQ17EyqlEg5oQd_ipnvXfaVDvXbtHtKwbVt4TqR0J1lDAy8hej2oChtX1w2HZ_klcH0g67fwx9AcZBeb8
CitedBy_id crossref_primary_10_1029_2023EA002903
Cites_doi 10.1002/2015RG000485
10.1016/j.gca.2006.06.262
10.1007/s11669-005-0055-y
10.1016/0012-821X(70)90015-4
10.1016/j.gca.2009.08.001
10.1016/j.gca.2017.01.003
10.1080/08120091003739056
10.2113/gselements.5.1.29
10.1016/S0009-2541(01)00414-4
10.1130/0016-7606(1973)84<3563:POSCIR>2.0.CO;2
10.1126/science.167.3918.615
10.1016/j.gca.2011.10.043
10.2138/am-2001-2-305
10.1029/2005JE002592
10.1029/RG014i002p00265
10.1007/BF00371350
10.1016/j.epsl.2008.03.038
10.2138/am.2006.1830
10.1016/j.oregeorev.2017.04.027
10.1007/BF00378008
10.1130/L356.1
10.1029/1999JE001220
10.1016/0012-821X(76)90129-1
10.1016/j.gca.2015.07.029
10.1111/maps.12681
10.1029/GL005i006p00443
10.1007/s00410-003-0496-4
10.1038/nature07047
10.2475/ajs.s5-18.105.225
10.1016/0016-7037(70)90042-6
10.1029/JB089iB05p03253
10.1007/BF01080357
10.1016/0016-7037(92)90186-M
10.1111/maps.13370
10.1093/petrology/egm056
10.7185/geochempersp.5.1
10.2475/ajs.272.5.438
10.1130/G21724.1
10.2138/am-2016-5619
10.1007/s00410-018-1533-7
10.1016/0012-821X(71)90113-0
10.1130/G34638.1
10.1016/j.epsl.2012.09.051
10.1007/BF01046533
10.1016/S0009-2541(97)00030-2
10.1111/maps.13123
10.1029/GL005i009p00803
10.1007/BF00402205
10.2138/am-2018-6368
10.1126/science.1192148
10.1007/s00410-012-0723-y
10.1111/j.1945-5100.1997.tb01247.x
10.2138/am-2004-11-1205
10.1016/j.gca.2014.02.025
10.1007/BF00307333
10.1130/G32980.1
10.2138/am-2017-5994
10.1016/j.epsl.2016.12.022
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
DBID TOX
AAYXX
CITATION
DOI 10.1093/petrology/egac067
DatabaseName Oxford Journals Open Access Collection
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1460-2415
ExternalDocumentID 10_1093_petrology_egac067
10.1093/petrology/egac067
GroupedDBID -DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29L
2WC
4.4
482
48X
5GY
5VS
5WA
5WD
70D
9M8
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABAZT
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABLJU
ABMNT
ABNGD
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQTQ
ABSMQ
ABTAH
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACPQN
ACUFI
ACUKT
ACUTJ
ACUXJ
ACVCV
ACYTK
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEHUL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHXPO
AI.
AIAGR
AIJHB
AJDVS
AJEEA
AJEUX
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
ANFBD
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQDIO
BQUQU
BSWAC
BTQHN
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
ELUNK
F9B
FA8
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HF~
HH5
HVGLF
HW0
HZ~
H~9
IOX
J21
JAVBF
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
OCL
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
S10
TCN
TEORI
TJP
TLC
TN5
TOX
TR2
UHB
UQL
VH1
VJK
W8F
WH7
WHG
X7H
XJT
XOL
YAYTL
YKOAZ
YSK
YXANX
ZCA
ZKB
ZKX
ZY4
~02
~91
AAYXX
ABJIA
ABVLG
ADYJX
AGORE
AHGBF
AJBYB
CITATION
ID FETCH-LOGICAL-a348t-692ae6fb8d789f05e7cf350b2d453afc3974e62373573112911e720bb4cfcdc03
IEDL.DBID TOX
ISSN 0022-3530
IngestDate Tue Jul 01 02:08:10 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Wed Apr 02 07:00:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Dzhaltul complex
viscosity
chemographic analysis
Fe metal saturated melts
Siberia
chemical differentiation
lunar basalts
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-692ae6fb8d789f05e7cf350b2d453afc3974e62373573112911e720bb4cfcdc03
OpenAccessLink https://dx.doi.org/10.1093/petrology/egac067
ParticipantIDs crossref_primary_10_1093_petrology_egac067
crossref_citationtrail_10_1093_petrology_egac067
oup_primary_10_1093_petrology_egac067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of petrology
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Schreiber (2022082216572902600_ref68) 1979
Ballhaus (2022082216572902600_ref3) 2015; 167
El Goresy (2022082216572902600_ref12) 1971; 13
Ni (2022082216572902600_ref48) 2015; 53
Zen (2022082216572902600_ref81) 1984; 1225
Giordano (2022082216572902600_ref17) 2008; 271
Head (2022082216572902600_ref28) 1973
Taylor (2022082216572902600_ref72) 2006; 70
Barnes (2022082216572902600_ref4) 2014; 6
Schaber (2022082216572902600_ref67) 1973
Howarth (2022082216572902600_ref33) 2017; 203
Pedersen (2022082216572902600_ref53) 1985; 152
Veksler (2022082216572902600_ref76) 2007; 48
Walker (2022082216572902600_ref78) 2016; 5
Dymek (2022082216572902600_ref11) 1975
Ariskin (2022082216572902600_ref2) 2014
Iacono-Marziano (2022082216572902600_ref35) 2012; 357–358
Day (2022082216572902600_ref10) 2020; 1–15
Medenbach (2022082216572902600_ref45) 1982; 80
Glotch (2022082216572902600_ref18) 2010; 239
Wiser (2022082216572902600_ref80) 1991; 108
Saal (2022082216572902600_ref65) 2008; 454
Taylor (2022082216572902600_ref71) 2004; 89
Head (2022082216572902600_ref27) 1976; 14
Hagerty (2022082216572902600_ref25) 2006; 111
Reid (2022082216572902600_ref58) 1970; 9
Iacono-Marziano (2022082216572902600_ref36) 2017
Leitzke (2022082216572902600_ref41) 2018; 173
Murase (2022082216572902600_ref47) 1973; 84
Karner (2022082216572902600_ref39) 2006; 91
Simon (2022082216572902600_ref70) 2018; 53
Fagan (2022082216572902600_ref15) 2014; 133
Hess (2022082216572902600_ref30) 1989
Rutherford (2022082216572902600_ref61) 1974; 1
Walder (2022082216572902600_ref77) 2005; 26
Bottinga (2022082216572902600_ref5) 1972; 272
Rutherford (2022082216572902600_ref62) 2017; 102
El Goresy (2022082216572902600_ref14) 1974; 1
Ramdohr (2022082216572902600_ref57) 1970; 167
Grove (2022082216572902600_ref23) 2007
O’Neill (2022082216572902600_ref49) 2002; 186
Gullikson (2022082216572902600_ref24) 2016; 101
Grove (2022082216572902600_ref21) 1978
Kamenetsky (2022082216572902600_ref38) 2013; 41
Longhi (2022082216572902600_ref43) 1992; 56
Ryder (2022082216572902600_ref64) 1976; 29
Hess (2022082216572902600_ref31) 1975
Longhi (2022082216572902600_ref44) 1974; 5
Shearer (2022082216572902600_ref69) 2001; 86
Day (2022082216572902600_ref9) 2018; 103
Ryabov (2022082216572902600_ref63) 2010; 57
Charlier (2022082216572902600_ref7) 2010; 164
O’Neill (2022082216572902600_ref50) 1993; 114
Dasgupta (2022082216572902600_ref8) 2009; 73
Pernet-Fisher (2022082216572902600_ref54) 2017; 460
Hunter (2022082216572902600_ref34) 1987; 95
Philpotts (2022082216572902600_ref55) 1982; 80
Grove (2022082216572902600_ref22) 1973; 1
El Goresy (2022082216572902600_ref13) 1972; 1
Haggerty (2022082216572902600_ref26) 1978; 5
Sato (2022082216572902600_ref66) 1973; 1
Roedder (2022082216572902600_ref59) 1951; 36
Grove (2022082216572902600_ref20) 2009; 5
Holzheid (2022082216572902600_ref32) 1997; 139
Meyer (2022082216572902600_ref46) 2012
Helz (2022082216572902600_ref29) 1987; 49
Valencia (2022082216572902600_ref74) 2019; 54
Ariskin (2022082216572902600_ref1) 1997; 32
Roedder (2022082216572902600_ref60) 1970; 1
VanTongeren (2022082216572902600_ref75) 2012; 40
Williams (2022082216572902600_ref79) 2000; 105
Fenner (2022082216572902600_ref16) 1929; 18
Longhi (2022082216572902600_ref42) 1990
Jakobsen (2022082216572902600_ref37) 2005; 33
Brett (2022082216572902600_ref6) 1975; 6
O’Neill (2022082216572902600_ref51) 2003; 146
Tutthill (2022082216572902600_ref73) 1970; 34
Grove (2022082216572902600_ref19) 1984; 89
Potts (2022082216572902600_ref56) 2016; 51
Krawczynski (2022082216572902600_ref40) 2012; 79
Papike (2022082216572902600_ref52) 1978; 5
References_xml – volume: 1
  start-page: 333
  year: 1972
  ident: 2022082216572902600_ref13
  article-title: Fra Mauro crystalline rocks. Mineralogy, geochemistry and subsolidus reduction of the opaque minerals
  publication-title: Proceedings of the 5th Lunar Conference (Supplement 3, Geochimica et Cosmochimica Acta)
– start-page: 895
  volume-title: Proceedings of the 6th Lunar Science Conference
  year: 1975
  ident: 2022082216572902600_ref31
– volume: 53
  start-page: 715
  year: 2015
  ident: 2022082216572902600_ref48
  article-title: Transport properties of silicate melts
  publication-title: Reviews of Geophysics
  doi: 10.1002/2015RG000485
– volume: 70
  start-page: 5904
  year: 2006
  ident: 2022082216572902600_ref72
  article-title: The Moon: a Taylor perspective
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2006.06.262
– volume: 26
  start-page: 23
  year: 2005
  ident: 2022082216572902600_ref77
  article-title: Thermodynamic modeling of the Fe-S system
  publication-title: Journal of Phase Equilibria and Diffusion
  doi: 10.1007/s11669-005-0055-y
– volume: 5
  start-page: 447
  year: 1974
  ident: 2022082216572902600_ref44
  article-title: The petrology of the Apollo 17 mare basalts
  publication-title: Proceedings of the Lunar Science Conference
– volume: 9
  start-page: 1
  year: 1970
  ident: 2022082216572902600_ref58
  article-title: Metal grains in Apollo 12 igneous rocks
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(70)90015-4
– volume: 73
  start-page: 6678
  year: 2009
  ident: 2022082216572902600_ref8
  article-title: High-pressure melting relations in Fe–C–S systems: implications for formation, evolution, and structure of metallic cores
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2009.08.001
– volume: 203
  start-page: 343
  year: 2017
  ident: 2022082216572902600_ref33
  article-title: Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2017.01.003
– volume: 57
  start-page: 707
  year: 2010
  ident: 2022082216572902600_ref63
  article-title: Native iron (platinum) ores from the Siberian platform trap intrusions
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1080/08120091003739056
– volume: 5
  start-page: 29
  year: 2009
  ident: 2022082216572902600_ref20
  article-title: Lunar mare volcanism: where did the magmas come from?
  publication-title: Elements
  doi: 10.2113/gselements.5.1.29
– volume: 186
  start-page: 151
  year: 2002
  ident: 2022082216572902600_ref49
  article-title: The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts
  publication-title: Chemical Geology
  doi: 10.1016/S0009-2541(01)00414-4
– volume: 84
  start-page: 3563
  year: 1973
  ident: 2022082216572902600_ref47
  article-title: Properties of some common igneous rocks and their melts at high temperatures
  publication-title: Geological Society of America Bulletin
  doi: 10.1130/0016-7606(1973)84<3563:POSCIR>2.0.CO;2
– volume: 167
  start-page: 615
  year: 1970
  ident: 2022082216572902600_ref57
  article-title: Opaque minerals of the lunar rocks and dust from Mare Tranquillitatis
  publication-title: Science
  doi: 10.1126/science.167.3918.615
– volume: 79
  start-page: 1
  year: 2012
  ident: 2022082216572902600_ref40
  article-title: Experimental investigation of the influence of oxygen fugacity on the source depths for high titanium lunar ultramafic magmas
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2011.10.043
– volume: 86
  start-page: 238
  year: 2001
  ident: 2022082216572902600_ref69
  article-title: Trace-element partitioning between immiscible lunar melts: an example from naturally occurring lunar melt inclusions
  publication-title: American Mineralogist
  doi: 10.2138/am-2001-2-305
– start-page: 59
  volume-title: Problems of Biosphere Origin and Evolution
  year: 2014
  ident: 2022082216572902600_ref2
– volume: 111
  start-page: 1
  year: 2006
  ident: 2022082216572902600_ref25
  article-title: Refined thorium abundances for lunar red spots: implications for evolved, nonmare volcanism on the Moon
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2005JE002592
– volume: 14
  start-page: 265
  year: 1976
  ident: 2022082216572902600_ref27
  article-title: Lunar volcanism in space and time
  publication-title: Review of Geophysics and Space Physics
  doi: 10.1029/RG014i002p00265
– volume: 80
  start-page: 201
  year: 1982
  ident: 2022082216572902600_ref55
  article-title: Compositions of immiscible liquids in volcanic rocks
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00371350
– volume: 36
  start-page: 282
  year: 1951
  ident: 2022082216572902600_ref59
  article-title: Low temperature liquid immiscibility in the system K2O-FeO-Al2O3-SiO2
  publication-title: American Mineralogist
– volume: 271
  start-page: 123
  year: 2008
  ident: 2022082216572902600_ref17
  article-title: Viscosity of magmatic liquids: a model
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2008.03.038
– volume: 91
  start-page: 270
  year: 2006
  ident: 2022082216572902600_ref39
  article-title: Application of a new vanadium valence oxybarometer to basaltic glasses from the earth, Moon, and Mars
  publication-title: American Mineralogist
  doi: 10.2138/am.2006.1830
– year: 2017
  ident: 2022082216572902600_ref36
  article-title: Assimilation of sulphate and carbonaceous rocks: experimental study, thermodynamic modeling and application to the Noril’sk-Talnakh region (Russia)
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2017.04.027
– volume: 1
  start-page: 569
  year: 1974
  ident: 2022082216572902600_ref61
  article-title: Experimental liquid line of descent and liquid immiscibility for basalt 70 017
  publication-title: Proceedings of the 5th Lunar Conference (Supplement 5, Geochimica et Cosmochimica Acta)
– volume: 80
  start-page: 258
  year: 1982
  ident: 2022082216572902600_ref45
  article-title: Ulvöspinel in native iron-bearing assemblages and the origin of these assemblages in basalts from Ovifak, Greenland, and Bühl, Federal Republic of Germany
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00378008
– volume: 1
  start-page: 1061
  year: 1973
  ident: 2022082216572902600_ref66
  article-title: Oxygen fugacity values of Apollo 12, 14 and 15 lunar samples and reduced state of lunar magmas
  publication-title: Proceedings of the 4th Lunar Science Conference (Supplement 4, Geochimica et Cosmochimica Acta)
– volume: 6
  start-page: 80
  year: 2014
  ident: 2022082216572902600_ref4
  article-title: Archean andesites in the east Yilgarn craton, Australia: products of plume-crust interaction?
  publication-title: Lithosphere
  doi: 10.1130/L356.1
– volume: 105
  start-page: 20 189–20 205
  year: 2000
  ident: 2022082216572902600_ref79
  article-title: A reassessment of the emplacement and erosional potential of turbulent, low-viscosity lavas on the Moon
  publication-title: Journal of Geophysical Research
  doi: 10.1029/1999JE001220
– start-page: 445
  volume-title: Mare Crisium: The View from Luna
  year: 1978
  ident: 2022082216572902600_ref21
– volume: 1225
  start-page: 56
  year: 1984
  ident: 2022082216572902600_ref81
  article-title: Construction of pressure–temperature diagrams for multicomponent systems after the method of Schreinemakers - a geometric approach
  publication-title: Geological Survey Bulletin
– volume: 29
  start-page: 255
  year: 1976
  ident: 2022082216572902600_ref64
  article-title: Lunar sample 15 404: remnant of a KREEP basalt-granite differentiated pluton
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(76)90129-1
– volume: 167
  start-page: 241
  year: 2015
  ident: 2022082216572902600_ref3
  article-title: Spheroidal textures in igneous rocks – textural consequences of H2O saturation in basaltic melts
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2015.07.029
– year: 2012
  ident: 2022082216572902600_ref46
– volume: 51
  start-page: 1555
  year: 2016
  ident: 2022082216572902600_ref56
  article-title: Characterization of mesostasis regions in lunar basalts: understanding late-stage melt evolution and its influence on apatite formation
  publication-title: Meteoritics and Planetary Science
  doi: 10.1111/maps.12681
– volume: 5
  start-page: 443
  year: 1978
  ident: 2022082216572902600_ref26
  article-title: The redox state of planetary basalts
  publication-title: Geophysical Research Letters
  doi: 10.1029/GL005i006p00443
– volume: 146
  start-page: 308
  year: 2003
  ident: 2022082216572902600_ref51
  article-title: The magnesiowüstite:iron equilibrium and its implications for the activity-composition relations of (Mg,Fe)2SiO4 olivine solid solutions
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-003-0496-4
– volume: 454
  start-page: 192
  year: 2008
  ident: 2022082216572902600_ref65
  article-title: Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior
  publication-title: Nature
  doi: 10.1038/nature07047
– volume: 18
  start-page: 225
  year: 1929
  ident: 2022082216572902600_ref16
  article-title: The crystallization of basalts
  publication-title: American Journal of Science
  doi: 10.2475/ajs.s5-18.105.225
– volume: 34
  start-page: 1293
  year: 1970
  ident: 2022082216572902600_ref73
  article-title: Phase relations of a simulated lunar basalt as a function of oxygen fugacity, and their bearing on the petrogenesis of the Apollo 11 basalts
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(70)90042-6
– volume: 89
  start-page: 3253
  year: 1984
  ident: 2022082216572902600_ref19
  article-title: Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends
  publication-title: Journal of Geophysical Research
  doi: 10.1029/JB089iB05p03253
– volume: 49
  start-page: 651
  year: 1987
  ident: 2022082216572902600_ref29
  article-title: Geothermometry of Kilauea Iki lava lake, Hawaii
  publication-title: Bulletin of Volcanology
  doi: 10.1007/BF01080357
– volume: 56
  start-page: 2235
  year: 1992
  ident: 2022082216572902600_ref43
  article-title: Experimental petrology and petrogenesis of mare volcanics
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(92)90186-M
– volume: 54
  start-page: 2083
  year: 2019
  ident: 2022082216572902600_ref74
  article-title: Petrography, relationships, and petrogenesis of the gabbroic lithologies in Northwest Africa 773 clan members Northwest Africa 773, 2727, 3160, 3170, 7007, and 10 656
  publication-title: Meteoritics and Planetary Science
  doi: 10.1111/maps.13370
– volume: 48
  start-page: 2187
  year: 2007
  ident: 2022082216572902600_ref76
  article-title: Liquid immiscibility and the evolution of basaltic magma
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egm056
– start-page: 1236
  year: 2007
  ident: 2022082216572902600_ref23
  article-title: Experimental investigation of the depth of origin for the Apollo 15 red glass: evidence for a fO2 control on olivine-opx multiple saturation
  publication-title: 38th Lunar and Planetary Science Conference, LPI contribution no. 1338
– volume: 5
  start-page: 145
  year: 2016
  ident: 2022082216572902600_ref78
  article-title: Siderophile elements in tracing planetary formation and evolution
  publication-title: Geochemical Perspectives
  doi: 10.7185/geochempersp.5.1
– volume: 272
  start-page: 438
  year: 1972
  ident: 2022082216572902600_ref5
  article-title: The viscosity of magmatic silicate liquids: a model for calculation
  publication-title: American Journal of Science
  doi: 10.2475/ajs.272.5.438
– volume: 6
  start-page: 89
  year: 1975
  ident: 2022082216572902600_ref6
  article-title: Reduction of mare basalts by Sulphur loss
  publication-title: Lunar and Planetary Science Conference
– volume-title: Apollo 17 Preliminary Scientific Report 4–33 - 4-39
  year: 1973
  ident: 2022082216572902600_ref28
– volume: 33
  start-page: 885
  year: 2005
  ident: 2022082216572902600_ref37
  article-title: Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion
  publication-title: Geology
  doi: 10.1130/G21724.1
– volume: 101
  start-page: 2312
  year: 2016
  ident: 2022082216572902600_ref24
  article-title: Silicic lunar volcanism: testing the crustal melting model
  publication-title: American Mineralogist
  doi: 10.2138/am-2016-5619
– volume: 173
  start-page: 1
  year: 2018
  ident: 2022082216572902600_ref41
  article-title: Ti K-edge XANES study on the coordination number and oxidation state of titanium in pyroxene, olivine, armalcolite, ilmenite, and silicate glass during mare basalt petrogenesis
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-018-1533-7
– volume: 13
  start-page: 121
  year: 1971
  ident: 2022082216572902600_ref12
  article-title: The geochemistry of the opaque minerals in Apollo 14 crystalline rocks
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(71)90113-0
– volume: 41
  start-page: 1091
  year: 2013
  ident: 2022082216572902600_ref38
  article-title: Magma chamber–scale liquid immiscibility in the Siberian traps represented by melt pools in native iron
  publication-title: Geology
  doi: 10.1130/G34638.1
– volume: 357–358
  start-page: 308
  year: 2012
  ident: 2022082216572902600_ref35
  article-title: Gas emissions due to magma–sediment interactions during flood magmatism at the Siberian traps: gas dispersion and environmental consequences
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2012.09.051
– volume: 114
  start-page: 296
  year: 1993
  ident: 2022082216572902600_ref50
  article-title: Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-FeO, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF01046533
– volume: 139
  start-page: 21
  year: 1997
  ident: 2022082216572902600_ref32
  article-title: The activities of NiO, CoO and FeO in silicate melts
  publication-title: Chemical Geology
  doi: 10.1016/S0009-2541(97)00030-2
– volume: 53
  start-page: 2138
  year: 2018
  ident: 2022082216572902600_ref70
  article-title: Valences of Ti, Cr, and V in Apollo 17 high-Ti and very low-Ti basalts and implications for their formation
  publication-title: Meteoritics and Planetary Science
  doi: 10.1111/maps.13123
– start-page: 13
  volume-title: Proceedings of the 20th Lunar and Planetary Science Conference
  year: 1990
  ident: 2022082216572902600_ref42
– volume: 5
  start-page: 803
  year: 1978
  ident: 2022082216572902600_ref52
  article-title: Mare versus terrestrial mid-ocean ridge basalts: planetary constraints on basaltic volcanism
  publication-title: Geophysical Research Letters
  doi: 10.1029/GL005i009p00803
– volume: 95
  start-page: 451
  year: 1987
  ident: 2022082216572902600_ref34
  article-title: The differentiation of the Skaergaard intrusion
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00402205
– volume: 1
  start-page: 627
  year: 1974
  ident: 2022082216572902600_ref14
  article-title: Taurus-Littroff TiO2-rich lunar basalts: opaque mineralogy and geochemistry
  publication-title: Proceedings of the 5th Lunar Conference (Supplement 5, Geochimica et Cosmochimica Acta)
– volume: 103
  start-page: 1734
  year: 2018
  ident: 2022082216572902600_ref9
  article-title: Geochemical constraints on residual metal and sulfide in the sources of lunar basalts
  publication-title: American Mineralogist
  doi: 10.2138/am-2018-6368
– volume: 239
  start-page: 1510
  year: 2010
  ident: 2022082216572902600_ref18
  article-title: Highly silicic compositions on the Moon
  publication-title: Science
  doi: 10.1126/science.1192148
– volume: 164
  start-page: 27
  year: 2010
  ident: 2022082216572902600_ref7
  article-title: Experiments on liquid immiscibility along tholeiitic liquid lines of descent
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-012-0723-y
– start-page: 46
  volume-title: Moon in Transition: Apollo 14, KREEP, and Evolved Lunar Rocks
  year: 1989
  ident: 2022082216572902600_ref30
– volume: 1
  start-page: 801
  year: 1970
  ident: 2022082216572902600_ref60
  article-title: Lunar petrology of silicate melt inclusions, Apollo 11 rocks
  publication-title: Proceedings of the Apollo 11, Lunar Science Conference
– start-page: 73
  year: 1973
  ident: 2022082216572902600_ref67
  article-title: Lava flows in Mare Imbrium: geological evaluation from Apollo orbital photography
  publication-title: Proceedings of the 4th Lunar Science Conference (Supplement 4, Geochimica et Cosmochimica Acta 1)
– volume: 32
  start-page: 123
  year: 1997
  ident: 2022082216572902600_ref1
  article-title: METEOMOD: a numerical model for the calculation of melting-crystallization relationships in meteoritic igneous systems
  publication-title: Meteoritic and Planetary Science
  doi: 10.1111/j.1945-5100.1997.tb01247.x
– volume: 89
  start-page: 1617
  year: 2004
  ident: 2022082216572902600_ref71
  article-title: The most reduced rock from the Moon, Apollo 14 basalt 14 053: its unique features and their origin
  publication-title: American Mineralogist
  doi: 10.2138/am-2004-11-1205
– volume: 1–15
  year: 2020
  ident: 2022082216572902600_ref10
  article-title: Metal grains in lunar rocks as indicators of igneous and impact processes
  publication-title: Meteoritics and Planetary Science
– start-page: 301
  volume-title: Proceedings of the 6th Lunar Science Conference
  year: 1975
  ident: 2022082216572902600_ref11
– volume: 133
  start-page: 97
  year: 2014
  ident: 2022082216572902600_ref15
  article-title: Case study of magmatic differentiation trends on the Moon based on lunar meteorite Northwest Africa 773 and comparison with Apollo 15 quartz monzodiorite
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2014.02.025
– volume: 108
  start-page: 146
  year: 1991
  ident: 2022082216572902600_ref80
  article-title: Experimental determination of activities in Fe-Mg olivine at 1400 K
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00307333
– volume: 40
  start-page: 491
  year: 2012
  ident: 2022082216572902600_ref75
  article-title: Large-scale liquid immiscibility at the top of the bushveld complex, South Africa
  publication-title: Geology
  doi: 10.1130/G32980.1
– volume: 1
  start-page: 995
  year: 1973
  ident: 2022082216572902600_ref22
  article-title: Petrology of rock 12 002 and origin of picritic basalts at Oceanus Porcellarum
  publication-title: Proceedings of the 4th Lunar Science Conference (Supplement 4, Geochimica et Cosmochimica Acta)
– volume: 152
  start-page: 126
  year: 1985
  ident: 2022082216572902600_ref53
  article-title: Reaction between picrite magma and continental crust: early tertiary silicic basalts and magnesian andesites from Disko
  publication-title: West Greenland. Grønlands Geologiske Undersøgelse
– start-page: 509
  volume-title: Proceedings of the 10th Lunar and Planetary Science Conference
  year: 1979
  ident: 2022082216572902600_ref68
– volume: 102
  start-page: 2045
  year: 2017
  ident: 2022082216572902600_ref62
  article-title: Model for the origin, ascent, and eruption of lunar picritic magmas
  publication-title: American Mineralogist
  doi: 10.2138/am-2017-5994
– volume: 460
  start-page: 201
  year: 2017
  ident: 2022082216572902600_ref54
  article-title: Atmospheric outgassing and native-iron formation during carbonaceous sediment–basalt melt interactions
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2016.12.022
SSID ssj0014150
Score 2.385098
Snippet Abstract It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the...
It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the pathway seems...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
Title Metal Saturated Cumulates from Siberia — Lunar Basalt Analogues?
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6lIHgRn1gfJQe9iEt389jHSWyxFrF6aAu9LXmK0K7Sbg_e_BH-Qn-Jk-12URH1GiY5fAkzXzKZbxA60cwIGzDjkYTBBUUK5YkEbilGMKt9EREduOLk_l3YG7GbMR_X0PmqFuZ7Cj-hLWCPs-KJuWUehALvCg4XgrATyh_ej6uUAUQiv5IG57RKYf60wpcg5ArbPsWU7ibaKMkgvlzu3haqmWwbrV0XzXZfdlC7b4Aa44HT3gRKqHFnMXXdtswcu6oQPHC_PR4Ffn99w7eLTMxwW8zFJMdOacQ9ycwvdtGoezXs9Lyy54EnKItzL0yIMKGVsY7ixPrcRMpS7kuiGafCKqAPzABliSiPqONKQWAi4kvJlFVa-XQP1bOnzOwjrJikgnFYC4BXJJLSaqNjIkMJg0o0kL8CIVWlILjrSzFJl4lpmla4pSVuDXRWTXleqmH8ZnwKyP5td_BPu0O0TtzmFr_vjlA9ny3MMTCCXDadP-bN4jx8AGQnuyI
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Saturated+Cumulates+from+Siberia+%E2%80%94+Lunar+Basalt+Analogues%3F&rft.jtitle=Journal+of+petrology&rft.au=Ballhaus%2C+Chris&rft.au=Leitzke%2C+Felipe+P&rft.au=Fonseca%2C+Ra%C3%BAl+O+C&rft.au=Nagel%2C+Thorsten&rft.date=2022-08-01&rft.pub=Oxford+University+Press&rft.issn=0022-3530&rft.eissn=1460-2415&rft.volume=63&rft.issue=8&rft_id=info:doi/10.1093%2Fpetrology%2Fegac067&rft.externalDocID=10.1093%2Fpetrology%2Fegac067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3530&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3530&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3530&client=summon