Metal Saturated Cumulates from Siberia — Lunar Basalt Analogues?
Abstract It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the pathway seems predictable. So long as Fe metal is a stable liquidus phase and relative oxygen fugacity (fO2) is not subject to major fluctuations,...
Saved in:
Published in | Journal of petrology Vol. 63; no. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the pathway seems predictable. So long as Fe metal is a stable liquidus phase and relative oxygen fugacity (fO2) is not subject to major fluctuations, the activity of FeO (aFeOmelt) is buffered by the iron–wüstite (IW) equilibrium 2Femetal + O2 → 2FeOmelt. Metallic Fe also stabilizes olivine through the equilibrium 2Femetal + O2 + SiO2 melt → Fe2SiO4 olivine. That equilibrium tends to suppress the enrichment in bulk SiO2 when Fe saturated basaltic melts differentiate. We document the differentiation history of tholeiitic cumulates from the Siberian craton that carry up to 30 modal % metallic Fe. Our study is complemented by differentiation experiments at two redox states, one set in Fe metal capsules at 1.6 log units below IW (IW-1.6) and a second set in graphite capsules at IW + 1.5. Iron saturated differentiation pathways do not show enrichments in FeO nor in bulk SiO2 because olivine remains stable along the entire liquid line of descent. By contrast, melts equilibrated at IW + 1.5, that is, outside metallic Fe saturation, crystallize pigeonite as first silicate and follow a normal (terrestrial) differentiation pathway involving marked SiO2 enrichment. The Fe-saturated path duplicates in detail the liquid line of descent we derive for the cumulates. Iron-saturated experiments have limited applicability to the Earth because there are so few terrestrial basalts saturated with metallic Fe; however, they might apply to the Moon. Many lunar basalts appear to have been saturated with an Fe-Ni phase during their emplacement on the lunar surface, and potentially during generation within the lunar mantle. |
---|---|
AbstractList | It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the pathway seems predictable. So long as Fe metal is a stable liquidus phase and relative oxygen fugacity (fO2) is not subject to major fluctuations, the activity of FeO (aFeOmelt) is buffered by the iron–wüstite (IW) equilibrium 2Femetal + O2 → 2FeOmelt. Metallic Fe also stabilizes olivine through the equilibrium 2Femetal + O2 + SiO2 melt → Fe2SiO4 olivine. That equilibrium tends to suppress the enrichment in bulk SiO2 when Fe saturated basaltic melts differentiate. We document the differentiation history of tholeiitic cumulates from the Siberian craton that carry up to 30 modal % metallic Fe. Our study is complemented by differentiation experiments at two redox states, one set in Fe metal capsules at 1.6 log units below IW (IW-1.6) and a second set in graphite capsules at IW + 1.5. Iron saturated differentiation pathways do not show enrichments in FeO nor in bulk SiO2 because olivine remains stable along the entire liquid line of descent. By contrast, melts equilibrated at IW + 1.5, that is, outside metallic Fe saturation, crystallize pigeonite as first silicate and follow a normal (terrestrial) differentiation pathway involving marked SiO2 enrichment. The Fe-saturated path duplicates in detail the liquid line of descent we derive for the cumulates. Iron-saturated experiments have limited applicability to the Earth because there are so few terrestrial basalts saturated with metallic Fe; however, they might apply to the Moon. Many lunar basalts appear to have been saturated with an Fe-Ni phase during their emplacement on the lunar surface, and potentially during generation within the lunar mantle. Abstract It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the pathway seems predictable. So long as Fe metal is a stable liquidus phase and relative oxygen fugacity (fO2) is not subject to major fluctuations, the activity of FeO (aFeOmelt) is buffered by the iron–wüstite (IW) equilibrium 2Femetal + O2 → 2FeOmelt. Metallic Fe also stabilizes olivine through the equilibrium 2Femetal + O2 + SiO2 melt → Fe2SiO4 olivine. That equilibrium tends to suppress the enrichment in bulk SiO2 when Fe saturated basaltic melts differentiate. We document the differentiation history of tholeiitic cumulates from the Siberian craton that carry up to 30 modal % metallic Fe. Our study is complemented by differentiation experiments at two redox states, one set in Fe metal capsules at 1.6 log units below IW (IW-1.6) and a second set in graphite capsules at IW + 1.5. Iron saturated differentiation pathways do not show enrichments in FeO nor in bulk SiO2 because olivine remains stable along the entire liquid line of descent. By contrast, melts equilibrated at IW + 1.5, that is, outside metallic Fe saturation, crystallize pigeonite as first silicate and follow a normal (terrestrial) differentiation pathway involving marked SiO2 enrichment. The Fe-saturated path duplicates in detail the liquid line of descent we derive for the cumulates. Iron-saturated experiments have limited applicability to the Earth because there are so few terrestrial basalts saturated with metallic Fe; however, they might apply to the Moon. Many lunar basalts appear to have been saturated with an Fe-Ni phase during their emplacement on the lunar surface, and potentially during generation within the lunar mantle. |
Author | El Goresy, Ahmed Ballhaus, Chris Fonseca, Raúl O C Kuzmin, Dmitri Nagel, Thorsten Leitzke, Felipe P |
Author_xml | – sequence: 1 givenname: Chris surname: Ballhaus fullname: Ballhaus, Chris email: ballhaus@uni-bonn.de – sequence: 2 givenname: Felipe P surname: Leitzke fullname: Leitzke, Felipe P – sequence: 3 givenname: Raúl O C surname: Fonseca fullname: Fonseca, Raúl O C – sequence: 4 givenname: Thorsten surname: Nagel fullname: Nagel, Thorsten – sequence: 5 givenname: Dmitri surname: Kuzmin fullname: Kuzmin, Dmitri – sequence: 6 givenname: Ahmed surname: El Goresy fullname: El Goresy, Ahmed |
BookMark | eNqNkE1OwzAQhS1UJNrCAdj5AISO7SROVqiN-JOCWBTW0cSxq6A0rmxn0R2H4ISchKBWLFggVm_0pG-e9M3IpLe9JuSSwTWDXCx2Ojjb2c1-oTeoIJUnZMriFCIes2RCpgCcRyIRcEZm3r8BsLGHKVk96YAdXWMYHAbd0GLYDt14eWqc3dJ1W2vXIv18_6Dl0KOjK_TYBbrscZwbtL85J6cGO68vjjknr3e3L8VDVD7fPxbLMkIRZyFKc446NXXWyCw3kGipjEig5k2cCDRK5DLWKRdSJFIwxnPGtORQ17EyqlEg5oQd_ipnvXfaVDvXbtHtKwbVt4TqR0J1lDAy8hej2oChtX1w2HZ_klcH0g67fwx9AcZBeb8 |
CitedBy_id | crossref_primary_10_1029_2023EA002903 |
Cites_doi | 10.1002/2015RG000485 10.1016/j.gca.2006.06.262 10.1007/s11669-005-0055-y 10.1016/0012-821X(70)90015-4 10.1016/j.gca.2009.08.001 10.1016/j.gca.2017.01.003 10.1080/08120091003739056 10.2113/gselements.5.1.29 10.1016/S0009-2541(01)00414-4 10.1130/0016-7606(1973)84<3563:POSCIR>2.0.CO;2 10.1126/science.167.3918.615 10.1016/j.gca.2011.10.043 10.2138/am-2001-2-305 10.1029/2005JE002592 10.1029/RG014i002p00265 10.1007/BF00371350 10.1016/j.epsl.2008.03.038 10.2138/am.2006.1830 10.1016/j.oregeorev.2017.04.027 10.1007/BF00378008 10.1130/L356.1 10.1029/1999JE001220 10.1016/0012-821X(76)90129-1 10.1016/j.gca.2015.07.029 10.1111/maps.12681 10.1029/GL005i006p00443 10.1007/s00410-003-0496-4 10.1038/nature07047 10.2475/ajs.s5-18.105.225 10.1016/0016-7037(70)90042-6 10.1029/JB089iB05p03253 10.1007/BF01080357 10.1016/0016-7037(92)90186-M 10.1111/maps.13370 10.1093/petrology/egm056 10.7185/geochempersp.5.1 10.2475/ajs.272.5.438 10.1130/G21724.1 10.2138/am-2016-5619 10.1007/s00410-018-1533-7 10.1016/0012-821X(71)90113-0 10.1130/G34638.1 10.1016/j.epsl.2012.09.051 10.1007/BF01046533 10.1016/S0009-2541(97)00030-2 10.1111/maps.13123 10.1029/GL005i009p00803 10.1007/BF00402205 10.2138/am-2018-6368 10.1126/science.1192148 10.1007/s00410-012-0723-y 10.1111/j.1945-5100.1997.tb01247.x 10.2138/am-2004-11-1205 10.1016/j.gca.2014.02.025 10.1007/BF00307333 10.1130/G32980.1 10.2138/am-2017-5994 10.1016/j.epsl.2016.12.022 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. 2022 |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. 2022 |
DBID | TOX AAYXX CITATION |
DOI | 10.1093/petrology/egac067 |
DatabaseName | Oxford Journals Open Access Collection CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1460-2415 |
ExternalDocumentID | 10_1093_petrology_egac067 10.1093/petrology/egac067 |
GroupedDBID | -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29L 2WC 4.4 482 48X 5GY 5VS 5WA 5WD 70D 9M8 AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABAZT ABDFA ABDTM ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABLJU ABMNT ABNGD ABNKS ABPIB ABPQP ABPTD ABQLI ABQTQ ABSMQ ABTAH ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACFRR ACGFO ACGFS ACGOD ACIWK ACPQN ACUFI ACUKT ACUTJ ACUXJ ACVCV ACYTK ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEHUL AEJOX AEKKA AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHXPO AI. AIAGR AIJHB AJDVS AJEEA AJEUX AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG ANFBD APIBT APJGH APWMN AQDSO ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQDIO BQUQU BSWAC BTQHN C1A CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K E3Z EBS EE~ EJD ELUNK F9B FA8 FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HF~ HH5 HVGLF HW0 HZ~ H~9 IOX J21 JAVBF JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY OCL ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO S10 TCN TEORI TJP TLC TN5 TOX TR2 UHB UQL VH1 VJK W8F WH7 WHG X7H XJT XOL YAYTL YKOAZ YSK YXANX ZCA ZKB ZKX ZY4 ~02 ~91 AAYXX ABJIA ABVLG ADYJX AGORE AHGBF AJBYB CITATION |
ID | FETCH-LOGICAL-a348t-692ae6fb8d789f05e7cf350b2d453afc3974e62373573112911e720bb4cfcdc03 |
IEDL.DBID | TOX |
ISSN | 0022-3530 |
IngestDate | Tue Jul 01 02:08:10 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Wed Apr 02 07:00:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Dzhaltul complex viscosity chemographic analysis Fe metal saturated melts Siberia chemical differentiation lunar basalts |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-692ae6fb8d789f05e7cf350b2d453afc3974e62373573112911e720bb4cfcdc03 |
OpenAccessLink | https://dx.doi.org/10.1093/petrology/egac067 |
ParticipantIDs | crossref_primary_10_1093_petrology_egac067 crossref_citationtrail_10_1093_petrology_egac067 oup_primary_10_1093_petrology_egac067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of petrology |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Schreiber (2022082216572902600_ref68) 1979 Ballhaus (2022082216572902600_ref3) 2015; 167 El Goresy (2022082216572902600_ref12) 1971; 13 Ni (2022082216572902600_ref48) 2015; 53 Zen (2022082216572902600_ref81) 1984; 1225 Giordano (2022082216572902600_ref17) 2008; 271 Head (2022082216572902600_ref28) 1973 Taylor (2022082216572902600_ref72) 2006; 70 Barnes (2022082216572902600_ref4) 2014; 6 Schaber (2022082216572902600_ref67) 1973 Howarth (2022082216572902600_ref33) 2017; 203 Pedersen (2022082216572902600_ref53) 1985; 152 Veksler (2022082216572902600_ref76) 2007; 48 Walker (2022082216572902600_ref78) 2016; 5 Dymek (2022082216572902600_ref11) 1975 Ariskin (2022082216572902600_ref2) 2014 Iacono-Marziano (2022082216572902600_ref35) 2012; 357–358 Day (2022082216572902600_ref10) 2020; 1–15 Medenbach (2022082216572902600_ref45) 1982; 80 Glotch (2022082216572902600_ref18) 2010; 239 Wiser (2022082216572902600_ref80) 1991; 108 Saal (2022082216572902600_ref65) 2008; 454 Taylor (2022082216572902600_ref71) 2004; 89 Head (2022082216572902600_ref27) 1976; 14 Hagerty (2022082216572902600_ref25) 2006; 111 Reid (2022082216572902600_ref58) 1970; 9 Iacono-Marziano (2022082216572902600_ref36) 2017 Leitzke (2022082216572902600_ref41) 2018; 173 Murase (2022082216572902600_ref47) 1973; 84 Karner (2022082216572902600_ref39) 2006; 91 Simon (2022082216572902600_ref70) 2018; 53 Fagan (2022082216572902600_ref15) 2014; 133 Hess (2022082216572902600_ref30) 1989 Rutherford (2022082216572902600_ref61) 1974; 1 Walder (2022082216572902600_ref77) 2005; 26 Bottinga (2022082216572902600_ref5) 1972; 272 Rutherford (2022082216572902600_ref62) 2017; 102 El Goresy (2022082216572902600_ref14) 1974; 1 Ramdohr (2022082216572902600_ref57) 1970; 167 Grove (2022082216572902600_ref23) 2007 O’Neill (2022082216572902600_ref49) 2002; 186 Gullikson (2022082216572902600_ref24) 2016; 101 Grove (2022082216572902600_ref21) 1978 Kamenetsky (2022082216572902600_ref38) 2013; 41 Longhi (2022082216572902600_ref43) 1992; 56 Ryder (2022082216572902600_ref64) 1976; 29 Hess (2022082216572902600_ref31) 1975 Longhi (2022082216572902600_ref44) 1974; 5 Shearer (2022082216572902600_ref69) 2001; 86 Day (2022082216572902600_ref9) 2018; 103 Ryabov (2022082216572902600_ref63) 2010; 57 Charlier (2022082216572902600_ref7) 2010; 164 O’Neill (2022082216572902600_ref50) 1993; 114 Dasgupta (2022082216572902600_ref8) 2009; 73 Pernet-Fisher (2022082216572902600_ref54) 2017; 460 Hunter (2022082216572902600_ref34) 1987; 95 Philpotts (2022082216572902600_ref55) 1982; 80 Grove (2022082216572902600_ref22) 1973; 1 El Goresy (2022082216572902600_ref13) 1972; 1 Haggerty (2022082216572902600_ref26) 1978; 5 Sato (2022082216572902600_ref66) 1973; 1 Roedder (2022082216572902600_ref59) 1951; 36 Grove (2022082216572902600_ref20) 2009; 5 Holzheid (2022082216572902600_ref32) 1997; 139 Meyer (2022082216572902600_ref46) 2012 Helz (2022082216572902600_ref29) 1987; 49 Valencia (2022082216572902600_ref74) 2019; 54 Ariskin (2022082216572902600_ref1) 1997; 32 Roedder (2022082216572902600_ref60) 1970; 1 VanTongeren (2022082216572902600_ref75) 2012; 40 Williams (2022082216572902600_ref79) 2000; 105 Fenner (2022082216572902600_ref16) 1929; 18 Longhi (2022082216572902600_ref42) 1990 Jakobsen (2022082216572902600_ref37) 2005; 33 Brett (2022082216572902600_ref6) 1975; 6 O’Neill (2022082216572902600_ref51) 2003; 146 Tutthill (2022082216572902600_ref73) 1970; 34 Grove (2022082216572902600_ref19) 1984; 89 Potts (2022082216572902600_ref56) 2016; 51 Krawczynski (2022082216572902600_ref40) 2012; 79 Papike (2022082216572902600_ref52) 1978; 5 |
References_xml | – volume: 1 start-page: 333 year: 1972 ident: 2022082216572902600_ref13 article-title: Fra Mauro crystalline rocks. Mineralogy, geochemistry and subsolidus reduction of the opaque minerals publication-title: Proceedings of the 5th Lunar Conference (Supplement 3, Geochimica et Cosmochimica Acta) – start-page: 895 volume-title: Proceedings of the 6th Lunar Science Conference year: 1975 ident: 2022082216572902600_ref31 – volume: 53 start-page: 715 year: 2015 ident: 2022082216572902600_ref48 article-title: Transport properties of silicate melts publication-title: Reviews of Geophysics doi: 10.1002/2015RG000485 – volume: 70 start-page: 5904 year: 2006 ident: 2022082216572902600_ref72 article-title: The Moon: a Taylor perspective publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2006.06.262 – volume: 26 start-page: 23 year: 2005 ident: 2022082216572902600_ref77 article-title: Thermodynamic modeling of the Fe-S system publication-title: Journal of Phase Equilibria and Diffusion doi: 10.1007/s11669-005-0055-y – volume: 5 start-page: 447 year: 1974 ident: 2022082216572902600_ref44 article-title: The petrology of the Apollo 17 mare basalts publication-title: Proceedings of the Lunar Science Conference – volume: 9 start-page: 1 year: 1970 ident: 2022082216572902600_ref58 article-title: Metal grains in Apollo 12 igneous rocks publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(70)90015-4 – volume: 73 start-page: 6678 year: 2009 ident: 2022082216572902600_ref8 article-title: High-pressure melting relations in Fe–C–S systems: implications for formation, evolution, and structure of metallic cores publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2009.08.001 – volume: 203 start-page: 343 year: 2017 ident: 2022082216572902600_ref33 article-title: Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2017.01.003 – volume: 57 start-page: 707 year: 2010 ident: 2022082216572902600_ref63 article-title: Native iron (platinum) ores from the Siberian platform trap intrusions publication-title: Australian Journal of Earth Sciences doi: 10.1080/08120091003739056 – volume: 5 start-page: 29 year: 2009 ident: 2022082216572902600_ref20 article-title: Lunar mare volcanism: where did the magmas come from? publication-title: Elements doi: 10.2113/gselements.5.1.29 – volume: 186 start-page: 151 year: 2002 ident: 2022082216572902600_ref49 article-title: The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts publication-title: Chemical Geology doi: 10.1016/S0009-2541(01)00414-4 – volume: 84 start-page: 3563 year: 1973 ident: 2022082216572902600_ref47 article-title: Properties of some common igneous rocks and their melts at high temperatures publication-title: Geological Society of America Bulletin doi: 10.1130/0016-7606(1973)84<3563:POSCIR>2.0.CO;2 – volume: 167 start-page: 615 year: 1970 ident: 2022082216572902600_ref57 article-title: Opaque minerals of the lunar rocks and dust from Mare Tranquillitatis publication-title: Science doi: 10.1126/science.167.3918.615 – volume: 79 start-page: 1 year: 2012 ident: 2022082216572902600_ref40 article-title: Experimental investigation of the influence of oxygen fugacity on the source depths for high titanium lunar ultramafic magmas publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2011.10.043 – volume: 86 start-page: 238 year: 2001 ident: 2022082216572902600_ref69 article-title: Trace-element partitioning between immiscible lunar melts: an example from naturally occurring lunar melt inclusions publication-title: American Mineralogist doi: 10.2138/am-2001-2-305 – start-page: 59 volume-title: Problems of Biosphere Origin and Evolution year: 2014 ident: 2022082216572902600_ref2 – volume: 111 start-page: 1 year: 2006 ident: 2022082216572902600_ref25 article-title: Refined thorium abundances for lunar red spots: implications for evolved, nonmare volcanism on the Moon publication-title: Journal of Geophysical Research doi: 10.1029/2005JE002592 – volume: 14 start-page: 265 year: 1976 ident: 2022082216572902600_ref27 article-title: Lunar volcanism in space and time publication-title: Review of Geophysics and Space Physics doi: 10.1029/RG014i002p00265 – volume: 80 start-page: 201 year: 1982 ident: 2022082216572902600_ref55 article-title: Compositions of immiscible liquids in volcanic rocks publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00371350 – volume: 36 start-page: 282 year: 1951 ident: 2022082216572902600_ref59 article-title: Low temperature liquid immiscibility in the system K2O-FeO-Al2O3-SiO2 publication-title: American Mineralogist – volume: 271 start-page: 123 year: 2008 ident: 2022082216572902600_ref17 article-title: Viscosity of magmatic liquids: a model publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2008.03.038 – volume: 91 start-page: 270 year: 2006 ident: 2022082216572902600_ref39 article-title: Application of a new vanadium valence oxybarometer to basaltic glasses from the earth, Moon, and Mars publication-title: American Mineralogist doi: 10.2138/am.2006.1830 – year: 2017 ident: 2022082216572902600_ref36 article-title: Assimilation of sulphate and carbonaceous rocks: experimental study, thermodynamic modeling and application to the Noril’sk-Talnakh region (Russia) publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2017.04.027 – volume: 1 start-page: 569 year: 1974 ident: 2022082216572902600_ref61 article-title: Experimental liquid line of descent and liquid immiscibility for basalt 70 017 publication-title: Proceedings of the 5th Lunar Conference (Supplement 5, Geochimica et Cosmochimica Acta) – volume: 80 start-page: 258 year: 1982 ident: 2022082216572902600_ref45 article-title: Ulvöspinel in native iron-bearing assemblages and the origin of these assemblages in basalts from Ovifak, Greenland, and Bühl, Federal Republic of Germany publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00378008 – volume: 1 start-page: 1061 year: 1973 ident: 2022082216572902600_ref66 article-title: Oxygen fugacity values of Apollo 12, 14 and 15 lunar samples and reduced state of lunar magmas publication-title: Proceedings of the 4th Lunar Science Conference (Supplement 4, Geochimica et Cosmochimica Acta) – volume: 6 start-page: 80 year: 2014 ident: 2022082216572902600_ref4 article-title: Archean andesites in the east Yilgarn craton, Australia: products of plume-crust interaction? publication-title: Lithosphere doi: 10.1130/L356.1 – volume: 105 start-page: 20 189–20 205 year: 2000 ident: 2022082216572902600_ref79 article-title: A reassessment of the emplacement and erosional potential of turbulent, low-viscosity lavas on the Moon publication-title: Journal of Geophysical Research doi: 10.1029/1999JE001220 – start-page: 445 volume-title: Mare Crisium: The View from Luna year: 1978 ident: 2022082216572902600_ref21 – volume: 1225 start-page: 56 year: 1984 ident: 2022082216572902600_ref81 article-title: Construction of pressure–temperature diagrams for multicomponent systems after the method of Schreinemakers - a geometric approach publication-title: Geological Survey Bulletin – volume: 29 start-page: 255 year: 1976 ident: 2022082216572902600_ref64 article-title: Lunar sample 15 404: remnant of a KREEP basalt-granite differentiated pluton publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(76)90129-1 – volume: 167 start-page: 241 year: 2015 ident: 2022082216572902600_ref3 article-title: Spheroidal textures in igneous rocks – textural consequences of H2O saturation in basaltic melts publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2015.07.029 – year: 2012 ident: 2022082216572902600_ref46 – volume: 51 start-page: 1555 year: 2016 ident: 2022082216572902600_ref56 article-title: Characterization of mesostasis regions in lunar basalts: understanding late-stage melt evolution and its influence on apatite formation publication-title: Meteoritics and Planetary Science doi: 10.1111/maps.12681 – volume: 5 start-page: 443 year: 1978 ident: 2022082216572902600_ref26 article-title: The redox state of planetary basalts publication-title: Geophysical Research Letters doi: 10.1029/GL005i006p00443 – volume: 146 start-page: 308 year: 2003 ident: 2022082216572902600_ref51 article-title: The magnesiowüstite:iron equilibrium and its implications for the activity-composition relations of (Mg,Fe)2SiO4 olivine solid solutions publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-003-0496-4 – volume: 454 start-page: 192 year: 2008 ident: 2022082216572902600_ref65 article-title: Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior publication-title: Nature doi: 10.1038/nature07047 – volume: 18 start-page: 225 year: 1929 ident: 2022082216572902600_ref16 article-title: The crystallization of basalts publication-title: American Journal of Science doi: 10.2475/ajs.s5-18.105.225 – volume: 34 start-page: 1293 year: 1970 ident: 2022082216572902600_ref73 article-title: Phase relations of a simulated lunar basalt as a function of oxygen fugacity, and their bearing on the petrogenesis of the Apollo 11 basalts publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(70)90042-6 – volume: 89 start-page: 3253 year: 1984 ident: 2022082216572902600_ref19 article-title: Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends publication-title: Journal of Geophysical Research doi: 10.1029/JB089iB05p03253 – volume: 49 start-page: 651 year: 1987 ident: 2022082216572902600_ref29 article-title: Geothermometry of Kilauea Iki lava lake, Hawaii publication-title: Bulletin of Volcanology doi: 10.1007/BF01080357 – volume: 56 start-page: 2235 year: 1992 ident: 2022082216572902600_ref43 article-title: Experimental petrology and petrogenesis of mare volcanics publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(92)90186-M – volume: 54 start-page: 2083 year: 2019 ident: 2022082216572902600_ref74 article-title: Petrography, relationships, and petrogenesis of the gabbroic lithologies in Northwest Africa 773 clan members Northwest Africa 773, 2727, 3160, 3170, 7007, and 10 656 publication-title: Meteoritics and Planetary Science doi: 10.1111/maps.13370 – volume: 48 start-page: 2187 year: 2007 ident: 2022082216572902600_ref76 article-title: Liquid immiscibility and the evolution of basaltic magma publication-title: Journal of Petrology doi: 10.1093/petrology/egm056 – start-page: 1236 year: 2007 ident: 2022082216572902600_ref23 article-title: Experimental investigation of the depth of origin for the Apollo 15 red glass: evidence for a fO2 control on olivine-opx multiple saturation publication-title: 38th Lunar and Planetary Science Conference, LPI contribution no. 1338 – volume: 5 start-page: 145 year: 2016 ident: 2022082216572902600_ref78 article-title: Siderophile elements in tracing planetary formation and evolution publication-title: Geochemical Perspectives doi: 10.7185/geochempersp.5.1 – volume: 272 start-page: 438 year: 1972 ident: 2022082216572902600_ref5 article-title: The viscosity of magmatic silicate liquids: a model for calculation publication-title: American Journal of Science doi: 10.2475/ajs.272.5.438 – volume: 6 start-page: 89 year: 1975 ident: 2022082216572902600_ref6 article-title: Reduction of mare basalts by Sulphur loss publication-title: Lunar and Planetary Science Conference – volume-title: Apollo 17 Preliminary Scientific Report 4–33 - 4-39 year: 1973 ident: 2022082216572902600_ref28 – volume: 33 start-page: 885 year: 2005 ident: 2022082216572902600_ref37 article-title: Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion publication-title: Geology doi: 10.1130/G21724.1 – volume: 101 start-page: 2312 year: 2016 ident: 2022082216572902600_ref24 article-title: Silicic lunar volcanism: testing the crustal melting model publication-title: American Mineralogist doi: 10.2138/am-2016-5619 – volume: 173 start-page: 1 year: 2018 ident: 2022082216572902600_ref41 article-title: Ti K-edge XANES study on the coordination number and oxidation state of titanium in pyroxene, olivine, armalcolite, ilmenite, and silicate glass during mare basalt petrogenesis publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-018-1533-7 – volume: 13 start-page: 121 year: 1971 ident: 2022082216572902600_ref12 article-title: The geochemistry of the opaque minerals in Apollo 14 crystalline rocks publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(71)90113-0 – volume: 41 start-page: 1091 year: 2013 ident: 2022082216572902600_ref38 article-title: Magma chamber–scale liquid immiscibility in the Siberian traps represented by melt pools in native iron publication-title: Geology doi: 10.1130/G34638.1 – volume: 357–358 start-page: 308 year: 2012 ident: 2022082216572902600_ref35 article-title: Gas emissions due to magma–sediment interactions during flood magmatism at the Siberian traps: gas dispersion and environmental consequences publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2012.09.051 – volume: 114 start-page: 296 year: 1993 ident: 2022082216572902600_ref50 article-title: Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-FeO, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF01046533 – volume: 139 start-page: 21 year: 1997 ident: 2022082216572902600_ref32 article-title: The activities of NiO, CoO and FeO in silicate melts publication-title: Chemical Geology doi: 10.1016/S0009-2541(97)00030-2 – volume: 53 start-page: 2138 year: 2018 ident: 2022082216572902600_ref70 article-title: Valences of Ti, Cr, and V in Apollo 17 high-Ti and very low-Ti basalts and implications for their formation publication-title: Meteoritics and Planetary Science doi: 10.1111/maps.13123 – start-page: 13 volume-title: Proceedings of the 20th Lunar and Planetary Science Conference year: 1990 ident: 2022082216572902600_ref42 – volume: 5 start-page: 803 year: 1978 ident: 2022082216572902600_ref52 article-title: Mare versus terrestrial mid-ocean ridge basalts: planetary constraints on basaltic volcanism publication-title: Geophysical Research Letters doi: 10.1029/GL005i009p00803 – volume: 95 start-page: 451 year: 1987 ident: 2022082216572902600_ref34 article-title: The differentiation of the Skaergaard intrusion publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00402205 – volume: 1 start-page: 627 year: 1974 ident: 2022082216572902600_ref14 article-title: Taurus-Littroff TiO2-rich lunar basalts: opaque mineralogy and geochemistry publication-title: Proceedings of the 5th Lunar Conference (Supplement 5, Geochimica et Cosmochimica Acta) – volume: 103 start-page: 1734 year: 2018 ident: 2022082216572902600_ref9 article-title: Geochemical constraints on residual metal and sulfide in the sources of lunar basalts publication-title: American Mineralogist doi: 10.2138/am-2018-6368 – volume: 239 start-page: 1510 year: 2010 ident: 2022082216572902600_ref18 article-title: Highly silicic compositions on the Moon publication-title: Science doi: 10.1126/science.1192148 – volume: 164 start-page: 27 year: 2010 ident: 2022082216572902600_ref7 article-title: Experiments on liquid immiscibility along tholeiitic liquid lines of descent publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-012-0723-y – start-page: 46 volume-title: Moon in Transition: Apollo 14, KREEP, and Evolved Lunar Rocks year: 1989 ident: 2022082216572902600_ref30 – volume: 1 start-page: 801 year: 1970 ident: 2022082216572902600_ref60 article-title: Lunar petrology of silicate melt inclusions, Apollo 11 rocks publication-title: Proceedings of the Apollo 11, Lunar Science Conference – start-page: 73 year: 1973 ident: 2022082216572902600_ref67 article-title: Lava flows in Mare Imbrium: geological evaluation from Apollo orbital photography publication-title: Proceedings of the 4th Lunar Science Conference (Supplement 4, Geochimica et Cosmochimica Acta 1) – volume: 32 start-page: 123 year: 1997 ident: 2022082216572902600_ref1 article-title: METEOMOD: a numerical model for the calculation of melting-crystallization relationships in meteoritic igneous systems publication-title: Meteoritic and Planetary Science doi: 10.1111/j.1945-5100.1997.tb01247.x – volume: 89 start-page: 1617 year: 2004 ident: 2022082216572902600_ref71 article-title: The most reduced rock from the Moon, Apollo 14 basalt 14 053: its unique features and their origin publication-title: American Mineralogist doi: 10.2138/am-2004-11-1205 – volume: 1–15 year: 2020 ident: 2022082216572902600_ref10 article-title: Metal grains in lunar rocks as indicators of igneous and impact processes publication-title: Meteoritics and Planetary Science – start-page: 301 volume-title: Proceedings of the 6th Lunar Science Conference year: 1975 ident: 2022082216572902600_ref11 – volume: 133 start-page: 97 year: 2014 ident: 2022082216572902600_ref15 article-title: Case study of magmatic differentiation trends on the Moon based on lunar meteorite Northwest Africa 773 and comparison with Apollo 15 quartz monzodiorite publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2014.02.025 – volume: 108 start-page: 146 year: 1991 ident: 2022082216572902600_ref80 article-title: Experimental determination of activities in Fe-Mg olivine at 1400 K publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00307333 – volume: 40 start-page: 491 year: 2012 ident: 2022082216572902600_ref75 article-title: Large-scale liquid immiscibility at the top of the bushveld complex, South Africa publication-title: Geology doi: 10.1130/G32980.1 – volume: 1 start-page: 995 year: 1973 ident: 2022082216572902600_ref22 article-title: Petrology of rock 12 002 and origin of picritic basalts at Oceanus Porcellarum publication-title: Proceedings of the 4th Lunar Science Conference (Supplement 4, Geochimica et Cosmochimica Acta) – volume: 152 start-page: 126 year: 1985 ident: 2022082216572902600_ref53 article-title: Reaction between picrite magma and continental crust: early tertiary silicic basalts and magnesian andesites from Disko publication-title: West Greenland. Grønlands Geologiske Undersøgelse – start-page: 509 volume-title: Proceedings of the 10th Lunar and Planetary Science Conference year: 1979 ident: 2022082216572902600_ref68 – volume: 102 start-page: 2045 year: 2017 ident: 2022082216572902600_ref62 article-title: Model for the origin, ascent, and eruption of lunar picritic magmas publication-title: American Mineralogist doi: 10.2138/am-2017-5994 – volume: 460 start-page: 201 year: 2017 ident: 2022082216572902600_ref54 article-title: Atmospheric outgassing and native-iron formation during carbonaceous sediment–basalt melt interactions publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2016.12.022 |
SSID | ssj0014150 |
Score | 2.385098 |
Snippet | Abstract
It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the... It is not well known which chemical differentiation pathways basaltic melts will take when they are iron metal saturated. Thermodynamically, the pathway seems... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
Title | Metal Saturated Cumulates from Siberia — Lunar Basalt Analogues? |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6lIHgRn1gfJQe9iEt389jHSWyxFrF6aAu9LXmK0K7Sbg_e_BH-Qn-Jk-12URH1GiY5fAkzXzKZbxA60cwIGzDjkYTBBUUK5YkEbilGMKt9EREduOLk_l3YG7GbMR_X0PmqFuZ7Cj-hLWCPs-KJuWUehALvCg4XgrATyh_ej6uUAUQiv5IG57RKYf60wpcg5ArbPsWU7ibaKMkgvlzu3haqmWwbrV0XzXZfdlC7b4Aa44HT3gRKqHFnMXXdtswcu6oQPHC_PR4Ffn99w7eLTMxwW8zFJMdOacQ9ycwvdtGoezXs9Lyy54EnKItzL0yIMKGVsY7ixPrcRMpS7kuiGafCKqAPzABliSiPqONKQWAi4kvJlFVa-XQP1bOnzOwjrJikgnFYC4BXJJLSaqNjIkMJg0o0kL8CIVWlILjrSzFJl4lpmla4pSVuDXRWTXleqmH8ZnwKyP5td_BPu0O0TtzmFr_vjlA9ny3MMTCCXDadP-bN4jx8AGQnuyI |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Saturated+Cumulates+from+Siberia+%E2%80%94+Lunar+Basalt+Analogues%3F&rft.jtitle=Journal+of+petrology&rft.au=Ballhaus%2C+Chris&rft.au=Leitzke%2C+Felipe+P&rft.au=Fonseca%2C+Ra%C3%BAl+O+C&rft.au=Nagel%2C+Thorsten&rft.date=2022-08-01&rft.pub=Oxford+University+Press&rft.issn=0022-3530&rft.eissn=1460-2415&rft.volume=63&rft.issue=8&rft_id=info:doi/10.1093%2Fpetrology%2Fegac067&rft.externalDocID=10.1093%2Fpetrology%2Fegac067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3530&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3530&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3530&client=summon |