An Intelligent DNA Nanorobot with in Vitro Enhanced Protein Lysosomal Degradation of HER2
DNA nanorobots have emerged as new tools for nanomedicine with the potential to ameliorate the delivery and anticancer efficacy of various drugs. DNA nanostructures have been considered one of the most promising nanocarriers. In the present study, we report a DNA framework-based intelligent DNA nano...
Saved in:
Published in | Nano letters Vol. 19; no. 7; pp. 4505 - 4517 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA nanorobots have emerged as new tools for nanomedicine with the potential to ameliorate the delivery and anticancer efficacy of various drugs. DNA nanostructures have been considered one of the most promising nanocarriers. In the present study, we report a DNA framework-based intelligent DNA nanorobot for selective lysosomal degradation of tumor-specific proteins on cancer cells. We site-specifically anchored an anti-HER2 aptamer (HApt) on a tetrahedral framework nucleic acid (tFNA). This DNA nanorobot (HApt-tFNA) could target HER2-positive breast cancer cells and specifically induce the lysosomal degradation of the membrane protein HER2. An injection of the DNA nanorobot into a mouse model revealed that the presence of tFNA enhanced the stability and prolonged the blood circulation time of HApt, and HApt-tFNA could therefore drive HER2 into lysosomal degradation with a higher efficiency. The formation of the HER2-HApt-tFNA complexes resulted in the HER2-mediated endocytosis and digestion in lysosomes, which effectively reduced the amount of HER2 on the cell surfaces. An increased HER2 digestion through HApt-tFNA further induced cell apoptosis and arrested cell growth. Hence, this novel DNA nanorobot sheds new light on targeted protein degradation for precision breast cancer therapy. |
---|---|
AbstractList | DNA nanorobots have emerged as new tools for nanomedicine with the potential to ameliorate the delivery and anticancer efficacy of various drugs. DNA nanostructures have been considered one of the most promising nanocarriers. In the present study, we report a DNA framework-based intelligent DNA nanorobot for selective lysosomal degradation of tumor-specific proteins on cancer cells. We site-specifically anchored an anti-HER2 aptamer (HApt) on a tetrahedral framework nucleic acid (tFNA). This DNA nanorobot (HApt-tFNA) could target HER2-positive breast cancer cells and specifically induce the lysosomal degradation of the membrane protein HER2. An injection of the DNA nanorobot into a mouse model revealed that the presence of tFNA enhanced the stability and prolonged the blood circulation time of HApt, and HApt-tFNA could therefore drive HER2 into lysosomal degradation with a higher efficiency. The formation of the HER2-HApt-tFNA complexes resulted in the HER2-mediated endocytosis and digestion in lysosomes, which effectively reduced the amount of HER2 on the cell surfaces. An increased HER2 digestion through HApt-tFNA further induced cell apoptosis and arrested cell growth. Hence, this novel DNA nanorobot sheds new light on targeted protein degradation for precision breast cancer therapy.DNA nanorobots have emerged as new tools for nanomedicine with the potential to ameliorate the delivery and anticancer efficacy of various drugs. DNA nanostructures have been considered one of the most promising nanocarriers. In the present study, we report a DNA framework-based intelligent DNA nanorobot for selective lysosomal degradation of tumor-specific proteins on cancer cells. We site-specifically anchored an anti-HER2 aptamer (HApt) on a tetrahedral framework nucleic acid (tFNA). This DNA nanorobot (HApt-tFNA) could target HER2-positive breast cancer cells and specifically induce the lysosomal degradation of the membrane protein HER2. An injection of the DNA nanorobot into a mouse model revealed that the presence of tFNA enhanced the stability and prolonged the blood circulation time of HApt, and HApt-tFNA could therefore drive HER2 into lysosomal degradation with a higher efficiency. The formation of the HER2-HApt-tFNA complexes resulted in the HER2-mediated endocytosis and digestion in lysosomes, which effectively reduced the amount of HER2 on the cell surfaces. An increased HER2 digestion through HApt-tFNA further induced cell apoptosis and arrested cell growth. Hence, this novel DNA nanorobot sheds new light on targeted protein degradation for precision breast cancer therapy. DNA nanorobots have emerged as new tools for nanomedicine with the potential to ameliorate the delivery and anticancer efficacy of various drugs. DNA nanostructures have been considered one of the most promising nanocarriers. In the present study, we report a DNA framework-based intelligent DNA nanorobot for selective lysosomal degradation of tumor-specific proteins on cancer cells. We site-specifically anchored an anti-HER2 aptamer (HApt) on a tetrahedral framework nucleic acid (tFNA). This DNA nanorobot (HApt-tFNA) could target HER2-positive breast cancer cells and specifically induce the lysosomal degradation of the membrane protein HER2. An injection of the DNA nanorobot into a mouse model revealed that the presence of tFNA enhanced the stability and prolonged the blood circulation time of HApt, and HApt-tFNA could therefore drive HER2 into lysosomal degradation with a higher efficiency. The formation of the HER2-HApt-tFNA complexes resulted in the HER2-mediated endocytosis and digestion in lysosomes, which effectively reduced the amount of HER2 on the cell surfaces. An increased HER2 digestion through HApt-tFNA further induced cell apoptosis and arrested cell growth. Hence, this novel DNA nanorobot sheds new light on targeted protein degradation for precision breast cancer therapy. |
Author | Li, Qian Shi, Jiye Lin, Yunfeng Shao, Xiaoru Cui, Weitong Mao, Chenchen Li, Jiang Zhang, Yuxin Fan, Chunhai Zhan, Yuxi Ma, Wenjuan Xie, Xueping |
AuthorAffiliation | Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Shanghai Jiao Tong University |
AuthorAffiliation_xml | – name: Shanghai Jiao Tong University – name: Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology – name: School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine – name: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology |
Author_xml | – sequence: 1 givenname: Wenjuan surname: Ma fullname: Ma, Wenjuan organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology – sequence: 2 givenname: Yuxi surname: Zhan fullname: Zhan, Yuxi organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology – sequence: 3 givenname: Yuxin surname: Zhang fullname: Zhang, Yuxin organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology – sequence: 4 givenname: Xiaoru surname: Shao fullname: Shao, Xiaoru organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology – sequence: 5 givenname: Xueping surname: Xie fullname: Xie, Xueping organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology – sequence: 6 givenname: Chenchen surname: Mao fullname: Mao, Chenchen organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology – sequence: 7 givenname: Weitong surname: Cui fullname: Cui, Weitong organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology – sequence: 8 givenname: Qian surname: Li fullname: Li, Qian organization: Shanghai Jiao Tong University – sequence: 9 givenname: Jiye surname: Shi fullname: Shi, Jiye organization: Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology – sequence: 10 givenname: Jiang orcidid: 0000-0003-2372-6624 surname: Li fullname: Li, Jiang organization: Shanghai Jiao Tong University – sequence: 11 givenname: Chunhai surname: Fan fullname: Fan, Chunhai organization: Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology – sequence: 12 givenname: Yunfeng orcidid: 0000-0003-1224-6561 surname: Lin fullname: Lin, Yunfeng email: yunfenglin@scu.edu.cn organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31185573$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtOAjEUhhuDkYu-gTFdugF7mzLjjgAKCUFj1MTVpEw7UDK02JYY3t4il4UL3bTN6fefnPM1Qc1YowC4xqiDEcF3ovAdI4ytVAidbIYwJegMNHBCUZtnGamd3imrg6b3S4RQRhN0AeoU4zRJurQBPnoGjk1QVaXnygQ4mPbgNHZ1dmYD_NJhAbWB7zo4C4dmIUyhJHx2NqhYnmy99XYlKjhQcyekCNoaaEs4Gr6QS3Beisqrq8PdAm8Pw9f-qD15ehz3e5O2oCwNbSp5KRlL4kEZThDloiyTjKsZ53FMxRGVTKacqW4qU1QUnESEkUxQ2aVpSlvgdt937eznRvmQr7Qv4kLCKLvxOSGM4KRLMh7RmwO6ma2UzNdOr4Tb5kcdEWB7oHDWe6fKE4JRvrOeR-v50Xp-sB5j979ihQ4_MoITuvovjPbh3e_SbpyJtv6OfAPg35uO |
CitedBy_id | crossref_primary_10_1002_anie_202007962 crossref_primary_10_1021_acs_nanolett_0c00529 crossref_primary_10_1016_j_talanta_2021_122547 crossref_primary_10_1063_5_0025211 crossref_primary_10_1016_j_colsurfb_2022_113122 crossref_primary_10_1016_j_nantod_2022_101665 crossref_primary_10_1002_adma_202109609 crossref_primary_10_3390_cancers14102424 crossref_primary_10_1039_D1TB01978C crossref_primary_10_1002_adma_202107820 crossref_primary_10_1002_smll_202007355 crossref_primary_10_1016_j_snb_2024_135566 crossref_primary_10_1016_j_aca_2024_343549 crossref_primary_10_1016_j_jddst_2020_101729 crossref_primary_10_1021_jacsau_4c01170 crossref_primary_10_2174_1389200224666230202155414 crossref_primary_10_1021_acs_analchem_3c01957 crossref_primary_10_1186_s12951_024_02365_z crossref_primary_10_1002_adma_202201731 crossref_primary_10_1039_D3QM00395G crossref_primary_10_1021_acs_analchem_2c02419 crossref_primary_10_1007_s41061_020_0283_y crossref_primary_10_1021_acsanm_4c02182 crossref_primary_10_1002_advs_202308316 crossref_primary_10_1007_s12032_025_02602_x crossref_primary_10_1007_s10876_024_02691_0 crossref_primary_10_3389_fphar_2022_807498 crossref_primary_10_3389_fmats_2023_1152378 crossref_primary_10_1021_acsami_1c08565 crossref_primary_10_1002_agt2_359 crossref_primary_10_2217_nnm_2021_0473 crossref_primary_10_1515_ntrev_2023_0135 crossref_primary_10_1002_adma_202306248 crossref_primary_10_1038_s41467_024_48149_9 crossref_primary_10_1016_j_trac_2020_115844 crossref_primary_10_1080_17425247_2023_2276285 crossref_primary_10_1002_anie_202410744 crossref_primary_10_1021_acsami_9b23608 crossref_primary_10_1021_acsbiomaterials_1c01352 crossref_primary_10_1021_acsami_0c11249 crossref_primary_10_1021_acsptsci_3c00190 crossref_primary_10_1002_anie_202204291 crossref_primary_10_1002_cmdc_201900697 crossref_primary_10_1016_j_biomaterials_2022_121532 crossref_primary_10_1016_j_biosx_2022_100126 crossref_primary_10_1039_D1NR00197C crossref_primary_10_1016_j_apmt_2020_100725 crossref_primary_10_1016_j_cej_2022_140399 crossref_primary_10_1039_D0QM00329H crossref_primary_10_1186_s13045_023_01463_z crossref_primary_10_1002_ange_202007962 crossref_primary_10_1021_acsabm_1c00413 crossref_primary_10_1021_acsabm_9b01197 crossref_primary_10_1007_s40242_020_9070_0 crossref_primary_10_1002_adma_202405253 crossref_primary_10_2174_1574888X15666200422103415 crossref_primary_10_1021_acsami_9b19079 crossref_primary_10_1038_s41427_022_00427_y crossref_primary_10_1166_jbn_2021_3135 crossref_primary_10_1016_j_aca_2023_341642 crossref_primary_10_1016_j_bioactmat_2022_12_027 crossref_primary_10_1002_adhm_202402102 crossref_primary_10_1021_acsami_3c07344 crossref_primary_10_1021_acsbiomaterials_0c01125 crossref_primary_10_1002_wnan_1729 crossref_primary_10_1016_j_cclet_2022_07_023 crossref_primary_10_1021_acsami_1c22620 crossref_primary_10_1038_s41596_022_00791_7 crossref_primary_10_1002_smtd_202200318 crossref_primary_10_3390_ijms23084153 crossref_primary_10_1021_acsami_0c13806 crossref_primary_10_1002_adfm_202104141 crossref_primary_10_1016_j_apsb_2021_05_022 crossref_primary_10_1021_acs_nanolett_9b03606 crossref_primary_10_1038_s41392_020_0173_3 crossref_primary_10_1016_j_btre_2024_e00843 crossref_primary_10_1016_j_jconrel_2022_07_005 crossref_primary_10_1021_acsami_2c13624 crossref_primary_10_1016_j_apmt_2024_102162 crossref_primary_10_1016_j_chempr_2019_12_028 crossref_primary_10_1039_D4CC00479E crossref_primary_10_1021_acsnano_1c06117 crossref_primary_10_1038_s41368_022_00199_9 crossref_primary_10_1002_adfm_202101435 crossref_primary_10_1002_advs_202001669 crossref_primary_10_1016_j_ijbiomac_2024_133134 crossref_primary_10_1016_j_biopha_2020_111103 crossref_primary_10_1021_acsami_0c17887 crossref_primary_10_3390_mi13020315 crossref_primary_10_1016_j_drudis_2020_11_006 crossref_primary_10_1007_s12033_020_00296_2 crossref_primary_10_1039_D1AN01046H crossref_primary_10_15406_iratj_2020_06_00205 crossref_primary_10_1021_acsami_9b10308 crossref_primary_10_1021_acsami_1c23869 crossref_primary_10_1016_j_jddst_2025_106817 crossref_primary_10_1021_acsnano_0c03824 crossref_primary_10_1002_ange_202410744 crossref_primary_10_1016_j_ccr_2022_214648 crossref_primary_10_1038_s41578_021_00315_x crossref_primary_10_1111_cpr_13020 crossref_primary_10_1002_chem_202002242 crossref_primary_10_1002_agt2_389 crossref_primary_10_1021_acs_analchem_1c02668 crossref_primary_10_1021_acs_analchem_9b05304 crossref_primary_10_1016_j_ijpharm_2019_118483 crossref_primary_10_1039_D2ME00247G crossref_primary_10_1021_acsnano_3c13189 crossref_primary_10_1016_j_ijbiomac_2024_133244 crossref_primary_10_1016_j_ijpharm_2023_123448 crossref_primary_10_1007_s00449_022_02785_x crossref_primary_10_3390_cancers15072151 crossref_primary_10_1002_adtp_202000041 crossref_primary_10_1002_advs_202203698 crossref_primary_10_3390_nano11082003 crossref_primary_10_2174_1389200224666230413082047 crossref_primary_10_1021_acsami_9b13829 crossref_primary_10_1039_D1SC04229G crossref_primary_10_1016_j_cej_2024_153249 crossref_primary_10_2174_1389200224666230601091346 crossref_primary_10_1002_cbic_202100347 crossref_primary_10_3390_ijms222312911 crossref_primary_10_1002_ange_202204291 crossref_primary_10_1021_acsanm_1c01682 crossref_primary_10_1016_j_jddst_2023_104173 crossref_primary_10_1016_j_actbio_2024_06_029 crossref_primary_10_1111_cpr_12713 crossref_primary_10_1111_cpr_13643 crossref_primary_10_1021_acsami_5c00725 crossref_primary_10_1039_D0NR03731A crossref_primary_10_1016_j_ccr_2024_215801 crossref_primary_10_3390_ijms25094981 crossref_primary_10_3390_pharmaceutics15030868 crossref_primary_10_1016_j_cclet_2024_109591 crossref_primary_10_1016_j_apmt_2021_101010 crossref_primary_10_1021_acs_jpcb_0c06732 crossref_primary_10_1016_j_biomaterials_2020_120163 crossref_primary_10_1016_j_biomaterials_2020_120560 crossref_primary_10_1002_adfm_202007342 crossref_primary_10_1002_adma_202100616 crossref_primary_10_1016_j_nano_2023_102722 crossref_primary_10_1039_D3NA00692A crossref_primary_10_1039_C9NR07171G crossref_primary_10_1021_acsami_1c04442 crossref_primary_10_1021_acsami_2c14626 crossref_primary_10_1038_s41596_020_0355_z crossref_primary_10_1016_j_bbadis_2024_167486 crossref_primary_10_1016_j_cej_2023_145951 crossref_primary_10_1038_s41392_021_00727_9 crossref_primary_10_1002_biot_201900094 crossref_primary_10_1002_smll_202204108 crossref_primary_10_1016_j_semcancer_2022_09_003 crossref_primary_10_1021_acsami_1c16151 crossref_primary_10_1080_03639045_2023_2199075 crossref_primary_10_2147_IJN_S403882 crossref_primary_10_1134_S1068162021030067 crossref_primary_10_1080_17425247_2022_2083603 crossref_primary_10_3389_fphar_2023_1101320 crossref_primary_10_1111_cpr_12662 crossref_primary_10_1039_D3RA04081J crossref_primary_10_1186_s12951_022_01701_5 crossref_primary_10_1016_j_ijbiomac_2023_125551 |
Cites_doi | 10.1126/sciadv.aau1157 10.1158/1078-0432.CCR-07-1595 10.1515/hsz-2016-0130 10.1021/acschembio.8b00653 10.1021/acsami.8b07827 10.3892/or.2015.4450 10.1016/S1369-7021(11)70039-6 10.1021/acsami.6b06528 10.1021/acsami.8b00833 10.1002/adma.201770056 10.1007/978-1-4939-2727-2_1 10.1159/000448802 10.1073/pnas.1200105109 10.1021/acsami.6b11001 10.1186/s13046-015-0231-9 10.1039/C7NR07130B 10.1016/j.omtn.2017.12.015 10.1038/nprot.2016.071 10.1007/s10120-011-0118-1 10.1016/j.molmed.2018.05.001 10.1021/acsnano.5b05138 10.1016/j.matpr.2017.10.029 10.1016/j.ccell.2015.12.008 10.1111/cpr.12511 10.1016/S0140-6736(16)32417-5 10.1016/S0140-6736(10)61121-X 10.1038/s41586-018-0332-7 10.1002/adma.201300875 10.1021/acsnano.6b05910 10.1038/mt.2015.178 10.1016/j.pharmthera.2017.02.037 10.1159/000438666 10.1038/nbt.4071 10.1021/acsnano.6b03759 10.1021/acsami.7b05981 10.1039/c3cc38693g 10.1002/smll.201400245 10.1002/ijc.30383 10.1073/pnas.1302594110 10.7150/thno.23852 10.1002/smll.201603991 10.1039/C7CC09397G 10.1038/s41563-018-0205-3 10.1021/acsami.7b05662 10.1002/adma.201504733 10.1111/cpr.12554 10.1159/000055396 10.1021/nn507035g 10.1039/C4AN01665C 10.1021/acs.nanolett.8b02166 10.1038/ncomms13567 10.1007/s10120-017-0725-6 10.1039/C7NR09692E 10.1038/nature24655 10.1007/s10120-013-0252-z |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acs.nanolett.9b01320 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 4517 |
ExternalDocumentID | 31185573 10_1021_acs_nanolett_9b01320 c313495378 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a348t-3d6fd445fd43415036aff596eb66311e603d4d864e78d80cc6236a429a3d73883 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 05:13:09 EDT 2025 Thu Jan 02 22:59:01 EST 2025 Tue Jul 01 03:14:06 EDT 2025 Thu Apr 24 23:07:21 EDT 2025 Thu Aug 27 13:44:20 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | breast cancer DNA nanorobot HER2 framework nucleic acids aptamer lysosome |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-3d6fd445fd43415036aff596eb66311e603d4d864e78d80cc6236a429a3d73883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1224-6561 0000-0003-2372-6624 |
PMID | 31185573 |
PQID | 2242157296 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2242157296 pubmed_primary_31185573 crossref_primary_10_1021_acs_nanolett_9b01320 crossref_citationtrail_10_1021_acs_nanolett_9b01320 acs_journals_10_1021_acs_nanolett_9b01320 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-10 |
PublicationDateYYYYMMDD | 2019-07-10 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1126/sciadv.aau1157 – ident: ref52/cit52 doi: 10.1158/1078-0432.CCR-07-1595 – ident: ref6/cit6 doi: 10.1515/hsz-2016-0130 – ident: ref22/cit22 doi: 10.1021/acschembio.8b00653 – ident: ref48/cit48 doi: 10.1021/acsami.8b07827 – ident: ref7/cit7 doi: 10.3892/or.2015.4450 – ident: ref38/cit38 doi: 10.1016/S1369-7021(11)70039-6 – ident: ref49/cit49 doi: 10.1021/acsami.6b06528 – ident: ref50/cit50 doi: 10.1021/acsami.8b00833 – ident: ref37/cit37 doi: 10.1002/adma.201770056 – ident: ref17/cit17 doi: 10.1007/978-1-4939-2727-2_1 – ident: ref54/cit54 doi: 10.1159/000448802 – ident: ref8/cit8 doi: 10.1073/pnas.1200105109 – ident: ref25/cit25 doi: 10.1021/acsami.6b11001 – ident: ref20/cit20 doi: 10.1186/s13046-015-0231-9 – ident: ref47/cit47 doi: 10.1039/C7NR07130B – ident: ref18/cit18 doi: 10.1016/j.omtn.2017.12.015 – ident: ref31/cit31 doi: 10.1038/nprot.2016.071 – ident: ref10/cit10 doi: 10.1007/s10120-011-0118-1 – ident: ref35/cit35 doi: 10.1016/j.molmed.2018.05.001 – ident: ref11/cit11 doi: 10.1021/acsnano.5b05138 – ident: ref33/cit33 doi: 10.1016/j.matpr.2017.10.029 – ident: ref13/cit13 doi: 10.1016/j.ccell.2015.12.008 – ident: ref40/cit40 doi: 10.1111/cpr.12511 – ident: ref1/cit1 doi: 10.1016/S0140-6736(16)32417-5 – ident: ref9/cit9 doi: 10.1016/S0140-6736(10)61121-X – ident: ref30/cit30 doi: 10.1038/s41586-018-0332-7 – ident: ref39/cit39 doi: 10.1002/adma.201300875 – ident: ref3/cit3 doi: 10.1021/acsnano.6b05910 – ident: ref14/cit14 doi: 10.1038/mt.2015.178 – ident: ref4/cit4 doi: 10.1016/j.pharmthera.2017.02.037 – ident: ref53/cit53 doi: 10.1159/000438666 – ident: ref34/cit34 doi: 10.1038/nbt.4071 – ident: ref27/cit27 doi: 10.1021/acsnano.6b03759 – ident: ref43/cit43 doi: 10.1021/acsami.7b05981 – ident: ref41/cit41 doi: 10.1039/c3cc38693g – ident: ref36/cit36 doi: 10.1002/smll.201400245 – ident: ref16/cit16 doi: 10.1002/ijc.30383 – ident: ref12/cit12 doi: 10.1073/pnas.1302594110 – ident: ref44/cit44 doi: 10.7150/thno.23852 – ident: ref23/cit23 doi: 10.1002/smll.201603991 – ident: ref46/cit46 doi: 10.1039/C7CC09397G – ident: ref32/cit32 doi: 10.1038/s41563-018-0205-3 – ident: ref55/cit55 doi: 10.1021/acsami.7b05662 – ident: ref24/cit24 doi: 10.1002/adma.201504733 – ident: ref51/cit51 doi: 10.1111/cpr.12554 – ident: ref2/cit2 doi: 10.1159/000055396 – ident: ref28/cit28 doi: 10.1021/nn507035g – ident: ref21/cit21 doi: 10.1039/C4AN01665C – ident: ref45/cit45 doi: 10.1021/acs.nanolett.8b02166 – ident: ref5/cit5 doi: 10.1038/ncomms13567 – ident: ref15/cit15 doi: 10.1007/s10120-017-0725-6 – ident: ref42/cit42 doi: 10.1039/C7NR09692E – ident: ref26/cit26 doi: 10.1038/nature24655 – ident: ref19/cit19 doi: 10.1007/s10120-013-0252-z |
SSID | ssj0009350 |
Score | 2.629698 |
Snippet | DNA nanorobots have emerged as new tools for nanomedicine with the potential to ameliorate the delivery and anticancer efficacy of various drugs. DNA... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4505 |
SubjectTerms | Animals Aptamers, Nucleotide - chemistry Aptamers, Nucleotide - pharmacology Breast Neoplasms - drug therapy Breast Neoplasms - metabolism Breast Neoplasms - pathology DNA - chemistry DNA - pharmacology Drug Delivery Systems Endocytosis - drug effects Female Humans Lysosomes - metabolism Lysosomes - pathology MCF-7 Cells Mice Mice, Nude Proteolysis - drug effects Receptor, ErbB-2 - metabolism Robotics Xenograft Model Antitumor Assays |
Title | An Intelligent DNA Nanorobot with in Vitro Enhanced Protein Lysosomal Degradation of HER2 |
URI | http://dx.doi.org/10.1021/acs.nanolett.9b01320 https://www.ncbi.nlm.nih.gov/pubmed/31185573 https://www.proquest.com/docview/2242157296 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQXODAvpRNRuLCIaWJHcc5Vl1UEBTEJjhFdhZRATZq0gN8PeMsLYtQ4ZKDZTvyeMYz4_G8QehQmJKLAiQtcszVjRQNOAddbnk8kZQkTIo8Q-68z3q39PTevZ84it8j-I59LMK0roTSsIys7ptrOwdc9DmHcc84W83W9QRkl-QVWUGIwSXyOa1S5X6ZxSikMP2qkH6xMnNt011CF1XOTvHI5Kk-ymQ9fP8J4fjHhSyjxdLwxM2CU1bQTKxW0cInOMI19NBU-GQM0Znhdr-J4fTVQy11hs2NLR4ofDfIhhp31GP-dgBfGqAHaD57S3WqX-AXbYM_UZRqwjrBvc6Vs45uu52bVs8qSy9YglCeWSRiSUSpCx9Qcy6oOZEkrs9iCRaKbcesQSIacUZjj0e8EYZgRTEBuk2QyCOckw00q7SKtxD2Yl-GPg9twhPKHMk9wU33HApMyKiGjoAyQSk6aZBHxR07MI0VuYKSXDVEqr0KwhLD3JTSeJ4yyhqPei0wPKb0P6jYIABhMxEUoWI9SgPHBNBd8EdYDW0W_DGeEcjCXdcj2_9Yzw6aBwPMZJGBOtxFs9lwFO-BkZPJ_ZyzPwDa0vdA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvB_L00hw4JBlYzuOc-Cw6m61S7crBC1qT8FOHFEBNtpkhcr_4a_wuxh7ky0gVRWHSlxysGzH9oznYY-_AXimfMpFhTutpP7oRqsBysFERqmsNGeV0Cq8kNudi8k-f32QHGzAj-4tDA6ixp7qcIl_gi4Qv_RlVlmHs2n6mT-9o4M2lnLHHH9DT61-NR0hWZ9Tuj3e25pEbTKBSDEum4iVoio5T_CDgjtBwa2qKsmE0ahz49iIASt5KQU3qSzloCjQLhAKpbViZcqkZNjvBbiI9g_1Pt5w690Jti8LiWBRdqAnlknevdA7ZdReDxb1n3rwFOM2KLnta_BzvTwhtuVTf9nofvH9L-TI_379rsPV1swmw9W-uAEbxt6EK7-BL96Cw6El0zUgaUNG8yFBXeMWTruG-PNpcmTJ-6Nm4cjYfgyREuSNh7XA4tlx7Wr3BX8x8mgbq8RUxFVkMn5Lb8P-ucztDmxaZ809IKnJdJHJImay4oJqmSrpqwfgM6XLHrxASuStoKjzEANA49wXduTJW_L0gHUskhctYrtPHPL5jFbRutXXFWLJGfWfdtyXo2jx90XKGresc-rDBRL0vkQP7q7Yct0jLotMkpTd_4f5PIFLk73dWT6bzncewGU0Pf37OTQEHsJms1iaR2jeNfpx2FwEPpw3N_4CbsBXhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qRUJwYF-G1Uhw4JBhEjuOc-Aw6sxohpZRBRSVU7BjR60KdjXJCJV_xF_hV_HsSYZFqioOPXDJwbIdb2-z3_sewDPpUy5KpDSd-KsbJQfIB1MRZaJSjFZcyRAh92bOp3vs9X66vwHfu1gYHESNPdXhEd9T9bGuWoSB-KUvt9I6nFHTz_0NXjJo_Sm3zclXtNbqV7MRbu3zJJmM329NozahQCQpE01ENa80Yyl-kHmnyLxlVaU5NwrlbhwbPqCaacGZyYQWg7JE3YBL5NiS6owKQbHfC3DRvxR6O2-49e4Xvi8NyWCRf6A1lgvWRemdMmovC8v6T1l4ioIbBN3kGvxYL1HwbznqLxvVL7_9hR75X6zhdbjaqttkuKKPG7Bh7E248hsI4y34OLRktgYmbchoPiQoc9zCKdcQf09NDi35cNgsHBnbg-AxQXY9vAUW75zUrnZf8Bcjj7qxSlBFXEWm47fJbdg7l7ndgU3rrLkHJDO5KnNRxlRUjCdKZFL46gEATSrdgxe4E0XLMOoi-AIkceELu-0p2u3pAe2OSVG2yO0-gcjnM1pF61bHK-SSM-o_7U5ggSzGvxtJa9yyLhLvNpCiFcZ7cHd1NNc94rKINM3o_X-YzxO4tDuaFDuz-fYDuIwaqA-jQ33gIWw2i6V5hFpeox4H-iLw6bwP40_TEVoK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+DNA+Nanorobot+with+in+Vitro+Enhanced+Protein+Lysosomal+Degradation+of+HER2&rft.jtitle=Nano+letters&rft.au=Ma%2C+Wenjuan&rft.au=Zhan%2C+Yuxi&rft.au=Zhang%2C+Yuxin&rft.au=Shao%2C+Xiaoru&rft.date=2019-07-10&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=19&rft.issue=7&rft.spage=4505&rft_id=info:doi/10.1021%2Facs.nanolett.9b01320&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |