Emulating Wildfire Plume Injection Using Machine Learning Trained by Large Eddy Simulation (LES)

Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent in air quality and chemistry-climate models. Wildfire plume rise (injection) is one of those poorly resolved processes and is also a major s...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 58; no. 50; pp. 22204 - 22212
Main Author Wang, Siyuan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent in air quality and chemistry-climate models. Wildfire plume rise (injection) is one of those poorly resolved processes and is also a major source of uncertainty in evaluating the wildfire impacts on air quality. Studies have shown that current plume rise models are subject to large uncertainties, including the Freitas Scheme, a widely used 1-dimensional, cloud-resolving subgrid model. In this work, a new machine learning-based plume rise emulator is presented, trained using a high-resolution, turbulence-resolving large eddy simulation (LES) model coupled with microphysics. The preliminary results show that this machine learning emulator outperforms the benchmark model, the Freitas scheme, in both accuracy and computational efficiency. Furthermore, a bagging ensemble is built to further increase the robustness and to battle internal variability. Efforts have been made to ensure that the machine learning emulator is robust, transparent, and not overtrained, and the results are interpretable and physically sound. Overall, this Plume Rise Emulating System using Machine Learning (PRESML) is a promising solution for regional and global air quality and chemistry-climate models.
AbstractList Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent in air quality and chemistry-climate models. Wildfire plume rise (injection) is one of those poorly resolved processes and is also a major source of uncertainty in evaluating the wildfire impacts on air quality. Studies have shown that current plume rise models are subject to large uncertainties, including the Freitas Scheme, a widely used 1-dimensional, cloud-resolving subgrid model. In this work, a new machine learning-based plume rise emulator is presented, trained using a high-resolution, turbulence-resolving large eddy simulation (LES) model coupled with microphysics. The preliminary results show that this machine learning emulator outperforms the benchmark model, the Freitas scheme, in both accuracy and computational efficiency. Furthermore, a bagging ensemble is built to further increase the robustness and to battle internal variability. Efforts have been made to ensure that the machine learning emulator is robust, transparent, and not overtrained, and the results are interpretable and physically sound. Overall, this Plume Rise Emulating System using Machine Learning (PRESML) is a promising solution for regional and global air quality and chemistry-climate models.
Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent in air quality and chemistry-climate models. Wildfire plume rise (injection) is one of those poorly resolved processes and is also a major source of uncertainty in evaluating the wildfire impacts on air quality. Studies have shown that current plume rise models are subject to large uncertainties, including the Freitas Scheme, a widely used 1-dimensional, cloud-resolving subgrid model. In this work, a new machine learning-based plume rise emulator is presented, trained using a high-resolution, turbulence-resolving large eddy simulation (LES) model coupled with microphysics. The preliminary results show that this machine learning emulator outperforms the benchmark model, the Freitas scheme, in both accuracy and computational efficiency. Furthermore, a bagging ensemble is built to further increase the robustness and to battle internal variability. Efforts have been made to ensure that the machine learning emulator is robust, transparent, and not overtrained, and the results are interpretable and physically sound. Overall, this Plume Rise Emulating System using Machine Learning (PRESML) is a promising solution for regional and global air quality and chemistry-climate models.Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent in air quality and chemistry-climate models. Wildfire plume rise (injection) is one of those poorly resolved processes and is also a major source of uncertainty in evaluating the wildfire impacts on air quality. Studies have shown that current plume rise models are subject to large uncertainties, including the Freitas Scheme, a widely used 1-dimensional, cloud-resolving subgrid model. In this work, a new machine learning-based plume rise emulator is presented, trained using a high-resolution, turbulence-resolving large eddy simulation (LES) model coupled with microphysics. The preliminary results show that this machine learning emulator outperforms the benchmark model, the Freitas scheme, in both accuracy and computational efficiency. Furthermore, a bagging ensemble is built to further increase the robustness and to battle internal variability. Efforts have been made to ensure that the machine learning emulator is robust, transparent, and not overtrained, and the results are interpretable and physically sound. Overall, this Plume Rise Emulating System using Machine Learning (PRESML) is a promising solution for regional and global air quality and chemistry-climate models.
Author Wang, Siyuan
AuthorAffiliation National Oceanic and Atmospheric Administration (NOAA), Chemical Sciences Laboratory (CSL)
AuthorAffiliation_xml – name: National Oceanic and Atmospheric Administration (NOAA), Chemical Sciences Laboratory (CSL)
Author_xml – sequence: 1
  givenname: Siyuan
  orcidid: 0000-0002-8110-5714
  surname: Wang
  fullname: Wang, Siyuan
  email: siyuan.wang@noaa.gov
  organization: National Oceanic and Atmospheric Administration (NOAA), Chemical Sciences Laboratory (CSL)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39625148$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1L7DAUxYP40PFj7e4RcKM8Ot6bNJ10KTJ-QB8KKrqraZL6OrSpJtPF_PemzDwXguDqknt_51xyzx7Zdr2zhBwhTBEYnikdpjYsp6kGAbnYIhMUDBIhBW6TCQDyJOfZ8y7ZC2EBAIyD3CG7PM-YwFROyMu8G1q1bNwrfWpaUzfe0rt26Cy9cQurl03v6GMYx3-V_tc4SwurvBsbD17Ft6HVihbKv1o6N2ZF75u1YdSdFPP70wPyq1ZtsIebuk8eL-cPF9dJcXt1c3FeJIqncpmwmtdgjDQpE0yJikuc2UxCWvGKZZk1FUKOFUONTEkNGhWbGYnAc7BMSr5PTta-b75_H-JNyq4J2ratcrYfQslRROuZzNMfoCnkLMNsRI-_oIt-8C5-ZKTyWRY9MVK_N9RQddaUb77plF-V_88cgbM1oH0fgrf1J4JQjkGWMchytN8EGRV_1opx8LnzO_oDUnWc4A
Cites_doi 10.1175/MWR3406.1
10.5194/acp-10-585-2010
10.5194/acp-10-1491-2010
10.1016/j.atmosenv.2018.11.004
10.1073/pnas.1804353115
10.1016/B978-0-08-051055-2.50029-8
10.5194/acp-7-3385-2007
10.1029/2018JD028271
10.1038/s41612-018-0039-3
10.1029/2012JD018370
10.5194/acp-21-1407-2021
10.1080/00401706.1987.10488205
10.1175/JAS3446.1
10.1029/2006JD007647
10.5194/acp-10-3463-2010
10.1007/BF00058655
10.1029/2021GL092609
10.1029/2021JD035203
10.5194/acp-2021-223
10.1088/1748-9326/abe1f3
10.1214/aos/1013203451
10.1175/WAF-D-21-0151.1
10.5194/acp-12-1995-2012
10.1038/s43247-022-00563-x
10.5194/nhess-14-2829-2014
10.1080/10962247.2020.1749731
10.5194/acp-16-907-2016
10.3390/atmos3010103
10.1023/A:1010933404324
10.1175/BAMS-D-14-00060.1
10.1029/2020GL088101
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright American Chemical Society Dec 17, 2024
Copyright_xml – notice: 2024 American Chemical Society
– notice: Copyright American Chemical Society Dec 17, 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.4c05095
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

Biotechnology Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 22212
ExternalDocumentID 39625148
10_1021_acs_est_4c05095
c842500764
Genre Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
53G
55A
5GY
5VS
6TJ
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
ADUKH
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
XZL
YZZ
ZCA
AAYXX
ABBLG
ABLBI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VQA
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a348t-2f3f0dd8d4252a5b3817e6804b3b266edb1091b21c12a8c0c1a27d810390e2883
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Wed Jul 02 03:12:36 EDT 2025
Fri Jul 11 16:01:58 EDT 2025
Mon Jun 30 13:30:10 EDT 2025
Wed Feb 19 02:03:53 EST 2025
Tue Jul 01 04:58:49 EDT 2025
Fri Apr 25 03:25:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords smoke
plume rise
machine learning
large eddy simulation (LES)
wildfire
plume injection
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-2f3f0dd8d4252a5b3817e6804b3b266edb1091b21c12a8c0c1a27d810390e2883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8110-5714
PMID 39625148
PQID 3149764251
PQPubID 45412
PageCount 9
ParticipantIDs proquest_miscellaneous_3154257894
proquest_miscellaneous_3140926164
proquest_journals_3149764251
pubmed_primary_39625148
crossref_primary_10_1021_acs_est_4c05095
acs_journals_10_1021_acs_est_4c05095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-17
PublicationDateYYYYMMDD 2024-12-17
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
Hinton G. E. (ref32/cit32) 1990
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
Pedregosa F. (ref29/cit29) 2011; 12
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1175/MWR3406.1
– ident: ref15/cit15
  doi: 10.5194/acp-10-585-2010
– ident: ref6/cit6
  doi: 10.5194/acp-10-1491-2010
– ident: ref26/cit26
  doi: 10.1016/j.atmosenv.2018.11.004
– ident: ref3/cit3
  doi: 10.1073/pnas.1804353115
– start-page: 555
  volume-title: Machine Learning
  year: 1990
  ident: ref32/cit32
  doi: 10.1016/B978-0-08-051055-2.50029-8
– ident: ref14/cit14
  doi: 10.5194/acp-7-3385-2007
– ident: ref25/cit25
  doi: 10.1029/2018JD028271
– ident: ref8/cit8
  doi: 10.1038/s41612-018-0039-3
– ident: ref11/cit11
– ident: ref17/cit17
  doi: 10.1029/2012JD018370
– ident: ref21/cit21
  doi: 10.5194/acp-21-1407-2021
– ident: ref27/cit27
  doi: 10.1080/00401706.1987.10488205
– ident: ref24/cit24
  doi: 10.1175/JAS3446.1
– ident: ref33/cit33
  doi: 10.1029/2006JD007647
– ident: ref16/cit16
  doi: 10.5194/acp-10-3463-2010
– ident: ref34/cit34
  doi: 10.1007/BF00058655
– ident: ref10/cit10
  doi: 10.1029/2021GL092609
– ident: ref23/cit23
– ident: ref4/cit4
  doi: 10.1029/2021JD035203
– ident: ref20/cit20
  doi: 10.5194/acp-2021-223
– ident: ref1/cit1
  doi: 10.1088/1748-9326/abe1f3
– ident: ref31/cit31
  doi: 10.1214/aos/1013203451
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref29/cit29
  publication-title: J. Mach. Learn. Res.
– ident: ref28/cit28
  doi: 10.1175/WAF-D-21-0151.1
– ident: ref13/cit13
  doi: 10.5194/acp-12-1995-2012
– ident: ref19/cit19
  doi: 10.1038/s43247-022-00563-x
– ident: ref12/cit12
  doi: 10.5194/nhess-14-2829-2014
– ident: ref2/cit2
  doi: 10.1080/10962247.2020.1749731
– ident: ref5/cit5
  doi: 10.5194/acp-16-907-2016
– ident: ref18/cit18
  doi: 10.3390/atmos3010103
– ident: ref30/cit30
  doi: 10.1023/A:1010933404324
– ident: ref7/cit7
  doi: 10.1175/BAMS-D-14-00060.1
– ident: ref9/cit9
  doi: 10.1029/2020GL088101
SSID ssj0002308
Score 2.4666004
Snippet Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 22204
SubjectTerms Air Pollution
Air quality
Climate models
Data Science
Earth system science
Emulators
Injection
Large eddy simulation
Learning algorithms
Machine Learning
mathematical models
Microphysics
Models, Theoretical
technology
Uncertainty
Wildfires
Title Emulating Wildfire Plume Injection Using Machine Learning Trained by Large Eddy Simulation (LES)
URI http://dx.doi.org/10.1021/acs.est.4c05095
https://www.ncbi.nlm.nih.gov/pubmed/39625148
https://www.proquest.com/docview/3149764251
https://www.proquest.com/docview/3140926164
https://www.proquest.com/docview/3154257894
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4oXvTgghuKZkw86KHYTqfb0ZASNWBMgIRbna1EDcVYOOCv981QQCUu1_ZlOp15yzd5b76H0DnlHqe2kGDfNLBoEHgWlwE4w8B1UgDoSob6cnLr3r_p0rue11uQRX_P4BPniom8Bg6yRoWmKvFW0RrxwYQ1Cqq3504XkHQ4a1YQuX5vzuKzNIAOQyL_GoZ-wJYmxjS2ptVZuaEm1KUlL7XxiNfE-zJx49_T30abBdLE11PV2EErKiujjU_8g2W0Hy-uuYFoYef5LnqMB6atV9bH4DZkCn4RP2g3hm-zZ1O8lWFTbIBbphhT4YKntY87uueEkphPcFNXmeNYygluPw2KPmH4ohm3L_dQtxF36jdW0YvBYi4NRxZJ3dSWMpRg44R5XBP7KT-0KXc5xHgluWYY5cQRDmGhsIXDSCBDnWi2le5ovI9K2TBThwhLTuGM5bJUX7KLQsZTV0S2x2gK3yCCVNA5LFpS2FKemDQ5cRL9EFYyKVaygi5mO5i8Tpk5fhatznZ4MSwoJ0Ax-B2ngs7mr8G4dMaEZWo4NjJ2BGdMn_4m4xm_F4HMwVR75vNxIzhewoHz6H-_dIzWCWAmXS3jBFVUGr2N1QlgnhE_Ndr-ASbR-ck
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAH9qWsRuIAh5TEcZrkiFBQgRaBWqTeQrwEASIg0h7K1zN205RFILg6I8fLbNbMvAHYZ9zjzBYS5Zv5FvN9z-LSR2Xou06KDrqSgS5Obl3WGzfsvOt1J8Ae1cLgInKcKTdB_DG6gHOkx1BP1pjQiCXeJEyhK0I1Tx-ftEvdiw51MOpZELr1bgnm820CbY1E_tka_eBiGlNzOg_X5SJNhsljrd_jNfH2Bb_xP7tYgLnC7yTHQ0ZZhAmVLcHsBzTCJViNxkVvSFpIfb4Mt9GTafKV3RFUIjJFLUmutFIjZ9mDSeXKiEk9IC2TmqlIgdp6Rzq6A4WShA9IU-eck0jKAWnfPxVdw8hBM2ofrsDNadQ5aVhFZwYrcVnQs2jqpraUgUSJp4nHNcyfqgc24y5Hi68k13ijnDrCoUkgbOEk1JeBDjvbSvc3XoVK9pypdSCSM3xxuUmqS-7CIOGpK0LbS1iK_6CCVmEfDy0uJCuPTdCcOrEexJOMi5OswsHoIuOXIU7Hz6Rbo4seT4usio4Zbsepwl75GUVNx0-STD33DY0d4ouzzn6j8YwWDJFmbchE5XrcEB-b-Pzc-NuWdmG60Wk14-bZ5cUmzFD0pnQejeNvQaX32lfb6A31-I4RgHeSzAI5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RkKpy4NUC4dFuJQ704GCv17F9ROAI2oCQQqTcXO_DCBAG4eQAv56Zzca0IFB7XY_W-5jXama-AdgRMpLCVxrlW8SeiOPIkzpGZRiHQYkOutEJFSefnHaOBuLnMBq6ojCqhcFF1DhTbYP4JNV3unQIA8EejaOubAtFqCXRB5ijoB3x9f5Bv9G_6FQn074FadgZNoA-ryYgi6Tqvy3SG26mNTfdRRg0C7VZJtft8Ui21eMLDMf_3ckSLDj_k-1PGGYZZky1AvN_oBKuwGr2XPyGpE7668_wO7uxzb6qC4bKRJeoLdkZKTd2XF3ZlK6K2RQEdmJTNA1z6K0X7Jw6URjN5APrUe45y7R-YP3LG9c9jO32sv6PLzDoZucHR57r0OAVoUhGHi_D0tc60Sj5vIgkwf2ZTuILGUq0_EZLwh2VPFABLxLlq6DgsU4o_Owb6nO8CrPVbWXWgWkp8OUVFiWV3qVJIctQpX5UiBL_wRVvwQ4eWu4krM5t8JwHOQ3iSebuJFuwO73M_G6C1_E26db0sp-nRZZFBw23E7Tge_MZRY7iKEVlbseWxk_x5dkR79FEVhumSLM2YaRmPWGKj058hm7825a-wcezw27eOz79tQmfODpVlE4TxFswO7ofm210ikbyq5WBJwG-BLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emulating+Wildfire+Plume+Injection+Using+Machine+Learning+Trained+by+Large+Eddy+Simulation+%28LES%29&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Siyuan&rft.date=2024-12-17&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=58&rft.issue=50&rft.spage=22204&rft.epage=22212&rft_id=info:doi/10.1021%2Facs.est.4c05095&rft.externalDocID=c842500764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon