Emulating Wildfire Plume Injection Using Machine Learning Trained by Large Eddy Simulation (LES)
Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent in air quality and chemistry-climate models. Wildfire plume rise (injection) is one of those poorly resolved processes and is also a major s...
Saved in:
Published in | Environmental science & technology Vol. 58; no. 50; pp. 22204 - 22212 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent in air quality and chemistry-climate models. Wildfire plume rise (injection) is one of those poorly resolved processes and is also a major source of uncertainty in evaluating the wildfire impacts on air quality. Studies have shown that current plume rise models are subject to large uncertainties, including the Freitas Scheme, a widely used 1-dimensional, cloud-resolving subgrid model. In this work, a new machine learning-based plume rise emulator is presented, trained using a high-resolution, turbulence-resolving large eddy simulation (LES) model coupled with microphysics. The preliminary results show that this machine learning emulator outperforms the benchmark model, the Freitas scheme, in both accuracy and computational efficiency. Furthermore, a bagging ensemble is built to further increase the robustness and to battle internal variability. Efforts have been made to ensure that the machine learning emulator is robust, transparent, and not overtrained, and the results are interpretable and physically sound. Overall, this Plume Rise Emulating System using Machine Learning (PRESML) is a promising solution for regional and global air quality and chemistry-climate models. |
---|---|
AbstractList | Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent in air quality and chemistry-climate models. Wildfire plume rise (injection) is one of those poorly resolved processes and is also a major source of uncertainty in evaluating the wildfire impacts on air quality. Studies have shown that current plume rise models are subject to large uncertainties, including the Freitas Scheme, a widely used 1-dimensional, cloud-resolving subgrid model. In this work, a new machine learning-based plume rise emulator is presented, trained using a high-resolution, turbulence-resolving large eddy simulation (LES) model coupled with microphysics. The preliminary results show that this machine learning emulator outperforms the benchmark model, the Freitas scheme, in both accuracy and computational efficiency. Furthermore, a bagging ensemble is built to further increase the robustness and to battle internal variability. Efforts have been made to ensure that the machine learning emulator is robust, transparent, and not overtrained, and the results are interpretable and physically sound. Overall, this Plume Rise Emulating System using Machine Learning (PRESML) is a promising solution for regional and global air quality and chemistry-climate models. Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent in air quality and chemistry-climate models. Wildfire plume rise (injection) is one of those poorly resolved processes and is also a major source of uncertainty in evaluating the wildfire impacts on air quality. Studies have shown that current plume rise models are subject to large uncertainties, including the Freitas Scheme, a widely used 1-dimensional, cloud-resolving subgrid model. In this work, a new machine learning-based plume rise emulator is presented, trained using a high-resolution, turbulence-resolving large eddy simulation (LES) model coupled with microphysics. The preliminary results show that this machine learning emulator outperforms the benchmark model, the Freitas scheme, in both accuracy and computational efficiency. Furthermore, a bagging ensemble is built to further increase the robustness and to battle internal variability. Efforts have been made to ensure that the machine learning emulator is robust, transparent, and not overtrained, and the results are interpretable and physically sound. Overall, this Plume Rise Emulating System using Machine Learning (PRESML) is a promising solution for regional and global air quality and chemistry-climate models.Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent in air quality and chemistry-climate models. Wildfire plume rise (injection) is one of those poorly resolved processes and is also a major source of uncertainty in evaluating the wildfire impacts on air quality. Studies have shown that current plume rise models are subject to large uncertainties, including the Freitas Scheme, a widely used 1-dimensional, cloud-resolving subgrid model. In this work, a new machine learning-based plume rise emulator is presented, trained using a high-resolution, turbulence-resolving large eddy simulation (LES) model coupled with microphysics. The preliminary results show that this machine learning emulator outperforms the benchmark model, the Freitas scheme, in both accuracy and computational efficiency. Furthermore, a bagging ensemble is built to further increase the robustness and to battle internal variability. Efforts have been made to ensure that the machine learning emulator is robust, transparent, and not overtrained, and the results are interpretable and physically sound. Overall, this Plume Rise Emulating System using Machine Learning (PRESML) is a promising solution for regional and global air quality and chemistry-climate models. |
Author | Wang, Siyuan |
AuthorAffiliation | National Oceanic and Atmospheric Administration (NOAA), Chemical Sciences Laboratory (CSL) |
AuthorAffiliation_xml | – name: National Oceanic and Atmospheric Administration (NOAA), Chemical Sciences Laboratory (CSL) |
Author_xml | – sequence: 1 givenname: Siyuan orcidid: 0000-0002-8110-5714 surname: Wang fullname: Wang, Siyuan email: siyuan.wang@noaa.gov organization: National Oceanic and Atmospheric Administration (NOAA), Chemical Sciences Laboratory (CSL) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39625148$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1L7DAUxYP40PFj7e4RcKM8Ot6bNJ10KTJ-QB8KKrqraZL6OrSpJtPF_PemzDwXguDqknt_51xyzx7Zdr2zhBwhTBEYnikdpjYsp6kGAbnYIhMUDBIhBW6TCQDyJOfZ8y7ZC2EBAIyD3CG7PM-YwFROyMu8G1q1bNwrfWpaUzfe0rt26Cy9cQurl03v6GMYx3-V_tc4SwurvBsbD17Ft6HVihbKv1o6N2ZF75u1YdSdFPP70wPyq1ZtsIebuk8eL-cPF9dJcXt1c3FeJIqncpmwmtdgjDQpE0yJikuc2UxCWvGKZZk1FUKOFUONTEkNGhWbGYnAc7BMSr5PTta-b75_H-JNyq4J2ratcrYfQslRROuZzNMfoCnkLMNsRI-_oIt-8C5-ZKTyWRY9MVK_N9RQddaUb77plF-V_88cgbM1oH0fgrf1J4JQjkGWMchytN8EGRV_1opx8LnzO_oDUnWc4A |
Cites_doi | 10.1175/MWR3406.1 10.5194/acp-10-585-2010 10.5194/acp-10-1491-2010 10.1016/j.atmosenv.2018.11.004 10.1073/pnas.1804353115 10.1016/B978-0-08-051055-2.50029-8 10.5194/acp-7-3385-2007 10.1029/2018JD028271 10.1038/s41612-018-0039-3 10.1029/2012JD018370 10.5194/acp-21-1407-2021 10.1080/00401706.1987.10488205 10.1175/JAS3446.1 10.1029/2006JD007647 10.5194/acp-10-3463-2010 10.1007/BF00058655 10.1029/2021GL092609 10.1029/2021JD035203 10.5194/acp-2021-223 10.1088/1748-9326/abe1f3 10.1214/aos/1013203451 10.1175/WAF-D-21-0151.1 10.5194/acp-12-1995-2012 10.1038/s43247-022-00563-x 10.5194/nhess-14-2829-2014 10.1080/10962247.2020.1749731 10.5194/acp-16-907-2016 10.3390/atmos3010103 10.1023/A:1010933404324 10.1175/BAMS-D-14-00060.1 10.1029/2020GL088101 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society Copyright American Chemical Society Dec 17, 2024 |
Copyright_xml | – notice: 2024 American Chemical Society – notice: Copyright American Chemical Society Dec 17, 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.4c05095 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Biotechnology Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 22212 |
ExternalDocumentID | 39625148 10_1021_acs_est_4c05095 c842500764 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 53G 55A 5GY 5VS 6TJ 7~N 85S AABXI AAHBH ABJNI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV ADUKH AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 W1F WH7 XSW XZL YZZ ZCA AAYXX ABBLG ABLBI CITATION CGR CUY CVF ECM EIF NPM VQA YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a348t-2f3f0dd8d4252a5b3817e6804b3b266edb1091b21c12a8c0c1a27d810390e2883 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Wed Jul 02 03:12:36 EDT 2025 Fri Jul 11 16:01:58 EDT 2025 Mon Jun 30 13:30:10 EDT 2025 Wed Feb 19 02:03:53 EST 2025 Tue Jul 01 04:58:49 EDT 2025 Fri Apr 25 03:25:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | smoke plume rise machine learning large eddy simulation (LES) wildfire plume injection |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-2f3f0dd8d4252a5b3817e6804b3b266edb1091b21c12a8c0c1a27d810390e2883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8110-5714 |
PMID | 39625148 |
PQID | 3149764251 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3154257894 proquest_miscellaneous_3140926164 proquest_journals_3149764251 pubmed_primary_39625148 crossref_primary_10_1021_acs_est_4c05095 acs_journals_10_1021_acs_est_4c05095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-17 |
PublicationDateYYYYMMDD | 2024-12-17 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 Hinton G. E. (ref32/cit32) 1990 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 Pedregosa F. (ref29/cit29) 2011; 12 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref22/cit22 doi: 10.1175/MWR3406.1 – ident: ref15/cit15 doi: 10.5194/acp-10-585-2010 – ident: ref6/cit6 doi: 10.5194/acp-10-1491-2010 – ident: ref26/cit26 doi: 10.1016/j.atmosenv.2018.11.004 – ident: ref3/cit3 doi: 10.1073/pnas.1804353115 – start-page: 555 volume-title: Machine Learning year: 1990 ident: ref32/cit32 doi: 10.1016/B978-0-08-051055-2.50029-8 – ident: ref14/cit14 doi: 10.5194/acp-7-3385-2007 – ident: ref25/cit25 doi: 10.1029/2018JD028271 – ident: ref8/cit8 doi: 10.1038/s41612-018-0039-3 – ident: ref11/cit11 – ident: ref17/cit17 doi: 10.1029/2012JD018370 – ident: ref21/cit21 doi: 10.5194/acp-21-1407-2021 – ident: ref27/cit27 doi: 10.1080/00401706.1987.10488205 – ident: ref24/cit24 doi: 10.1175/JAS3446.1 – ident: ref33/cit33 doi: 10.1029/2006JD007647 – ident: ref16/cit16 doi: 10.5194/acp-10-3463-2010 – ident: ref34/cit34 doi: 10.1007/BF00058655 – ident: ref10/cit10 doi: 10.1029/2021GL092609 – ident: ref23/cit23 – ident: ref4/cit4 doi: 10.1029/2021JD035203 – ident: ref20/cit20 doi: 10.5194/acp-2021-223 – ident: ref1/cit1 doi: 10.1088/1748-9326/abe1f3 – ident: ref31/cit31 doi: 10.1214/aos/1013203451 – volume: 12 start-page: 2825 year: 2011 ident: ref29/cit29 publication-title: J. Mach. Learn. Res. – ident: ref28/cit28 doi: 10.1175/WAF-D-21-0151.1 – ident: ref13/cit13 doi: 10.5194/acp-12-1995-2012 – ident: ref19/cit19 doi: 10.1038/s43247-022-00563-x – ident: ref12/cit12 doi: 10.5194/nhess-14-2829-2014 – ident: ref2/cit2 doi: 10.1080/10962247.2020.1749731 – ident: ref5/cit5 doi: 10.5194/acp-16-907-2016 – ident: ref18/cit18 doi: 10.3390/atmos3010103 – ident: ref30/cit30 doi: 10.1023/A:1010933404324 – ident: ref7/cit7 doi: 10.1175/BAMS-D-14-00060.1 – ident: ref9/cit9 doi: 10.1029/2020GL088101 |
SSID | ssj0002308 |
Score | 2.4666004 |
Snippet | Wildfires have a major influence on the Earth system, with costly impacts on society. Despite decades of research, wildfires are still challenging to represent... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 22204 |
SubjectTerms | Air Pollution Air quality Climate models Data Science Earth system science Emulators Injection Large eddy simulation Learning algorithms Machine Learning mathematical models Microphysics Models, Theoretical technology Uncertainty Wildfires |
Title | Emulating Wildfire Plume Injection Using Machine Learning Trained by Large Eddy Simulation (LES) |
URI | http://dx.doi.org/10.1021/acs.est.4c05095 https://www.ncbi.nlm.nih.gov/pubmed/39625148 https://www.proquest.com/docview/3149764251 https://www.proquest.com/docview/3140926164 https://www.proquest.com/docview/3154257894 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4oXvTgghuKZkw86KHYTqfb0ZASNWBMgIRbna1EDcVYOOCv981QQCUu1_ZlOp15yzd5b76H0DnlHqe2kGDfNLBoEHgWlwE4w8B1UgDoSob6cnLr3r_p0rue11uQRX_P4BPniom8Bg6yRoWmKvFW0RrxwYQ1Cqq3504XkHQ4a1YQuX5vzuKzNIAOQyL_GoZ-wJYmxjS2ptVZuaEm1KUlL7XxiNfE-zJx49_T30abBdLE11PV2EErKiujjU_8g2W0Hy-uuYFoYef5LnqMB6atV9bH4DZkCn4RP2g3hm-zZ1O8lWFTbIBbphhT4YKntY87uueEkphPcFNXmeNYygluPw2KPmH4ohm3L_dQtxF36jdW0YvBYi4NRxZJ3dSWMpRg44R5XBP7KT-0KXc5xHgluWYY5cQRDmGhsIXDSCBDnWi2le5ovI9K2TBThwhLTuGM5bJUX7KLQsZTV0S2x2gK3yCCVNA5LFpS2FKemDQ5cRL9EFYyKVaygi5mO5i8Tpk5fhatznZ4MSwoJ0Ax-B2ngs7mr8G4dMaEZWo4NjJ2BGdMn_4m4xm_F4HMwVR75vNxIzhewoHz6H-_dIzWCWAmXS3jBFVUGr2N1QlgnhE_Ndr-ASbR-ck |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAH9qWsRuIAh5TEcZrkiFBQgRaBWqTeQrwEASIg0h7K1zN205RFILg6I8fLbNbMvAHYZ9zjzBYS5Zv5FvN9z-LSR2Xou06KDrqSgS5Obl3WGzfsvOt1J8Ae1cLgInKcKTdB_DG6gHOkx1BP1pjQiCXeJEyhK0I1Tx-ftEvdiw51MOpZELr1bgnm820CbY1E_tka_eBiGlNzOg_X5SJNhsljrd_jNfH2Bb_xP7tYgLnC7yTHQ0ZZhAmVLcHsBzTCJViNxkVvSFpIfb4Mt9GTafKV3RFUIjJFLUmutFIjZ9mDSeXKiEk9IC2TmqlIgdp6Rzq6A4WShA9IU-eck0jKAWnfPxVdw8hBM2ofrsDNadQ5aVhFZwYrcVnQs2jqpraUgUSJp4nHNcyfqgc24y5Hi68k13ijnDrCoUkgbOEk1JeBDjvbSvc3XoVK9pypdSCSM3xxuUmqS-7CIOGpK0LbS1iK_6CCVmEfDy0uJCuPTdCcOrEexJOMi5OswsHoIuOXIU7Hz6Rbo4seT4usio4Zbsepwl75GUVNx0-STD33DY0d4ouzzn6j8YwWDJFmbchE5XrcEB-b-Pzc-NuWdmG60Wk14-bZ5cUmzFD0pnQejeNvQaX32lfb6A31-I4RgHeSzAI5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RkKpy4NUC4dFuJQ704GCv17F9ROAI2oCQQqTcXO_DCBAG4eQAv56Zzca0IFB7XY_W-5jXama-AdgRMpLCVxrlW8SeiOPIkzpGZRiHQYkOutEJFSefnHaOBuLnMBq6ojCqhcFF1DhTbYP4JNV3unQIA8EejaOubAtFqCXRB5ijoB3x9f5Bv9G_6FQn074FadgZNoA-ryYgi6Tqvy3SG26mNTfdRRg0C7VZJtft8Ui21eMLDMf_3ckSLDj_k-1PGGYZZky1AvN_oBKuwGr2XPyGpE7668_wO7uxzb6qC4bKRJeoLdkZKTd2XF3ZlK6K2RQEdmJTNA1z6K0X7Jw6URjN5APrUe45y7R-YP3LG9c9jO32sv6PLzDoZucHR57r0OAVoUhGHi_D0tc60Sj5vIgkwf2ZTuILGUq0_EZLwh2VPFABLxLlq6DgsU4o_Owb6nO8CrPVbWXWgWkp8OUVFiWV3qVJIctQpX5UiBL_wRVvwQ4eWu4krM5t8JwHOQ3iSebuJFuwO73M_G6C1_E26db0sp-nRZZFBw23E7Tge_MZRY7iKEVlbseWxk_x5dkR79FEVhumSLM2YaRmPWGKj058hm7825a-wcezw27eOz79tQmfODpVlE4TxFswO7ofm210ikbyq5WBJwG-BLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emulating+Wildfire+Plume+Injection+Using+Machine+Learning+Trained+by+Large+Eddy+Simulation+%28LES%29&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Siyuan&rft.date=2024-12-17&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=58&rft.issue=50&rft.spage=22204&rft.epage=22212&rft_id=info:doi/10.1021%2Facs.est.4c05095&rft.externalDocID=c842500764 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |