Metal Halide Superionic Conductors for All-Solid-State Batteries
Conspectus Rechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy s...
Saved in:
Published in | Accounts of chemical research Vol. 54; no. 4; pp. 1023 - 1033 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.02.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Rechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36–6.71 V vs Li/Li+) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li3InCl6 developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices. In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li+/vacancy concentration, and reduced blocking effect can promote fast Li+ migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li–O2 batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes. |
---|---|
AbstractList | ConspectusRechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36-6.71 V vs Li/Li+) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li3InCl6 developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices.In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li+/vacancy concentration, and reduced blocking effect can promote fast Li+ migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li-O2 batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes.ConspectusRechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36-6.71 V vs Li/Li+) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li3InCl6 developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices.In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li+/vacancy concentration, and reduced blocking effect can promote fast Li+ migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li-O2 batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes. ConspectusRechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36-6.71 V vs Li/Li ) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li InCl developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices.In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li /vacancy concentration, and reduced blocking effect can promote fast Li migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li-O batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes. Conspectus Rechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36–6.71 V vs Li/Li+) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li3InCl6 developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices. In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li+/vacancy concentration, and reduced blocking effect can promote fast Li+ migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li–O2 batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes. |
Author | Liang, Jianwen Li, Xiaona Adair, Keegan R Sun, Xueliang |
AuthorAffiliation | Department of Mechanical & Materials Engineering |
AuthorAffiliation_xml | – name: Department of Mechanical & Materials Engineering |
Author_xml | – sequence: 1 givenname: Jianwen surname: Liang fullname: Liang, Jianwen – sequence: 2 givenname: Xiaona surname: Li fullname: Li, Xiaona – sequence: 3 givenname: Keegan R surname: Adair fullname: Adair, Keegan R – sequence: 4 givenname: Xueliang orcidid: 0000-0003-0374-1245 surname: Sun fullname: Sun, Xueliang email: xsun9@uwo.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33508944$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PwzAURS1URD_gHyCUkSXl-aOJw0SpgCIVMRRmy7EdKZUbF9sZ-Pe4arswwPT85HOedO8YDTrXGYSuMUwxEHwnVZhKpVzfxTAFBVAW5AyN8IxAznjFB2gEADi9GRmicQibtBJWlBdoSOkMeMXYCD28mShttpS21SZb9zvjW9e1Klu4TvcqOh-yxvlsbm2-dgnK11FGkz3KGBNqwiU6b6QN5uo4J-jz-eljscxX7y-vi_kql5TxmGOYFbUC3ShCa8JVpVVJG6krrqWqSaVLXpOSklobLmHGGwoVBlOUpTFc0YZO0O3h7s67r96EKLZtUMZa2RnXB0EYpxwTXhQJvTmifb01Wux8u5X-W5xSJ-D-ACjvQvCmEapNqVLw6GVrBQaxr1ikisWpYnGsOMnsl3y6_48GB23_u3G971Jbfys_pwWUlw |
CitedBy_id | crossref_primary_10_1016_j_matt_2022_06_055 crossref_primary_10_1021_acs_jpcc_2c02511 crossref_primary_10_1039_D3TA01787G crossref_primary_10_1016_j_ssi_2024_116549 crossref_primary_10_1021_acsaem_4c00115 crossref_primary_10_1016_j_memsci_2023_121552 crossref_primary_10_1016_j_jpowsour_2022_231660 crossref_primary_10_1002_adfm_202408571 crossref_primary_10_1002_ange_202403331 crossref_primary_10_1016_j_jallcom_2023_172479 crossref_primary_10_1039_D4TA02269F crossref_primary_10_1002_aenm_202400766 crossref_primary_10_1016_j_etran_2022_100224 crossref_primary_10_1002_idm2_12090 crossref_primary_10_1016_j_est_2024_113360 crossref_primary_10_1021_acsami_4c09878 crossref_primary_10_1016_j_matt_2025_102001 crossref_primary_10_1126_science_adk8617 crossref_primary_10_1021_acsami_3c00178 crossref_primary_10_1016_j_esci_2022_01_001 crossref_primary_10_1021_acsenergylett_3c02307 crossref_primary_10_1038_s41467_023_44274_z crossref_primary_10_1016_j_ccr_2024_215776 crossref_primary_10_1016_j_ensm_2024_103444 crossref_primary_10_1021_acs_chemrev_1c00594 crossref_primary_10_1039_D3CC03455K crossref_primary_10_1002_advs_202409668 crossref_primary_10_1039_D1TA04084G crossref_primary_10_1021_acsaem_4c02948 crossref_primary_10_1016_j_jallcom_2022_166873 crossref_primary_10_1021_acs_chemmater_4c01160 crossref_primary_10_1039_D3EE00870C crossref_primary_10_3390_batteries10010029 crossref_primary_10_1039_D4MA00405A crossref_primary_10_1039_D1TA08086E crossref_primary_10_1002_aenm_202203883 crossref_primary_10_1002_ange_202316360 crossref_primary_10_1002_sstr_202200122 crossref_primary_10_1021_acsenergylett_4c00994 crossref_primary_10_1126_sciadv_adc9516 crossref_primary_10_1002_adma_202402324 crossref_primary_10_1002_adfm_202201465 crossref_primary_10_1016_j_cossms_2022_101003 crossref_primary_10_1021_jacs_3c07343 crossref_primary_10_1002_batt_202300434 crossref_primary_10_1002_ange_202401779 crossref_primary_10_1021_acsenergylett_2c01397 crossref_primary_10_1002_adma_202200856 crossref_primary_10_1038_s41524_025_01559_9 crossref_primary_10_1021_jacs_4c06498 crossref_primary_10_1039_D5EB00010F crossref_primary_10_1021_jacs_3c01955 crossref_primary_10_1002_anie_202403331 crossref_primary_10_1002_anie_202217081 crossref_primary_10_1007_s41918_024_00212_1 crossref_primary_10_1016_j_mtcomm_2023_105764 crossref_primary_10_1021_accountsmr_1c00159 crossref_primary_10_1016_j_jechem_2022_05_036 crossref_primary_10_1016_j_jssc_2023_124361 crossref_primary_10_1002_anie_202316360 crossref_primary_10_1016_j_jpowsour_2022_232257 crossref_primary_10_1002_adfm_202416808 crossref_primary_10_1002_cssc_202301262 crossref_primary_10_1002_batt_202200553 crossref_primary_10_1016_j_cclet_2021_12_048 crossref_primary_10_1016_j_est_2025_116030 crossref_primary_10_1149_1945_7111_ac5bad crossref_primary_10_1002_smll_202404614 crossref_primary_10_1088_1361_648X_ad68b4 crossref_primary_10_1016_j_electacta_2025_145896 crossref_primary_10_1021_acsami_1c22104 crossref_primary_10_1016_j_jallcom_2024_174945 crossref_primary_10_1002_aenm_202103921 crossref_primary_10_1038_s41467_024_45864_1 crossref_primary_10_1021_acsenergylett_3c01157 crossref_primary_10_1002_adfm_202413888 crossref_primary_10_1002_anie_202401779 crossref_primary_10_1021_acsenergylett_3c02243 crossref_primary_10_1021_acs_energyfuels_1c01609 crossref_primary_10_1021_acs_chemrev_2c00374 crossref_primary_10_1002_chem_202303884 crossref_primary_10_1039_D4TA05355A crossref_primary_10_1039_D1TA07050A crossref_primary_10_1016_j_nanoen_2024_110435 crossref_primary_10_1002_adfm_202416671 crossref_primary_10_1016_j_ccr_2025_216432 crossref_primary_10_1002_aenm_202202854 crossref_primary_10_1016_j_pmatsci_2023_101182 crossref_primary_10_1021_acs_chemmater_2c01475 crossref_primary_10_1016_j_xcrp_2023_101428 crossref_primary_10_1002_jccs_202200078 crossref_primary_10_1021_accountsmr_1c00137 crossref_primary_10_1021_acsenergylett_4c01472 crossref_primary_10_1021_acs_nanolett_2c00187 crossref_primary_10_1021_acsmaterialslett_4c00315 crossref_primary_10_1002_adfm_202206845 crossref_primary_10_1126_sciadv_abh1896 crossref_primary_10_1021_accountsmr_2c00184 crossref_primary_10_1016_j_ensm_2024_103807 crossref_primary_10_1039_D4TA04553J crossref_primary_10_5796_electrochemistry_23_00063 crossref_primary_10_1002_adfm_202205594 crossref_primary_10_1021_acs_jpcc_1c04771 crossref_primary_10_1002_ange_202315628 crossref_primary_10_1063_5_0097432 crossref_primary_10_1016_j_pmatsci_2023_101193 crossref_primary_10_1108_MMMS_08_2023_0258 crossref_primary_10_1002_ange_202217081 crossref_primary_10_1016_j_jpowsour_2024_234051 crossref_primary_10_1016_j_apsusc_2021_151621 crossref_primary_10_1002_admi_202202363 crossref_primary_10_1557_s43577_023_00649_7 crossref_primary_10_1039_D2TA05158C crossref_primary_10_1002_adem_202201390 crossref_primary_10_1002_ente_202201116 crossref_primary_10_3390_inorganics12020054 crossref_primary_10_1038_s41570_023_00541_7 crossref_primary_10_1016_j_ensm_2022_02_011 crossref_primary_10_1021_acs_inorgchem_4c00229 crossref_primary_10_1002_smll_202307030 crossref_primary_10_1016_j_aichem_2024_100051 crossref_primary_10_1039_D3EE01119D crossref_primary_10_1002_adma_202303730 crossref_primary_10_1002_sstr_202100146 crossref_primary_10_1002_anie_202315628 crossref_primary_10_1002_aenm_202403986 crossref_primary_10_1038_s41467_023_43886_9 crossref_primary_10_1002_adma_202411605 crossref_primary_10_1007_s10854_023_11364_z crossref_primary_10_1038_s41578_024_00715_9 crossref_primary_10_1039_D3SC02093B crossref_primary_10_1007_s11426_022_1506_1 crossref_primary_10_1016_j_gee_2024_02_010 crossref_primary_10_1039_D4EE00750F crossref_primary_10_1002_aenm_202300815 crossref_primary_10_1016_j_jpowsour_2023_232738 crossref_primary_10_1360_TB_2024_0526 crossref_primary_10_1016_j_jallcom_2024_177981 crossref_primary_10_1002_bte2_20220014 crossref_primary_10_1016_j_ensm_2024_103980 crossref_primary_10_1021_acsaem_4c00065 crossref_primary_10_1002_inf2_12606 crossref_primary_10_1002_batt_202400432 crossref_primary_10_1021_acs_energyfuels_4c00633 crossref_primary_10_1038_s41467_022_35667_7 crossref_primary_10_3390_batteries9100510 crossref_primary_10_1002_aenm_202402997 crossref_primary_10_1002_inf2_12563 crossref_primary_10_1021_acsami_2c04160 crossref_primary_10_1007_s10008_023_05612_9 crossref_primary_10_1016_j_ensm_2024_103737 crossref_primary_10_1007_s10008_022_05230_x crossref_primary_10_1021_acsenergylett_2c00438 crossref_primary_10_1002_est2_506 crossref_primary_10_1021_acs_energyfuels_4c03193 crossref_primary_10_1002_cey2_628 |
Cites_doi | 10.1098/rspa.1987.0111 10.1002/zaac.19926130104 10.1016/j.nanoen.2020.105097 10.1039/C9EE02311A 10.1002/anie.201909805 10.1002/anie.202007621 10.1021/acsaem.9b01166 10.1016/0022-4596(72)90121-1 10.1021/acsaem.0c00147 10.1149/1.1837443 10.1016/0167-577X(82)90003-9 10.1016/0025-5408(81)90099-4 10.1021/acs.chemmater.6b00579 10.1002/anie.201901938 10.1002/adma.201803075 10.1002/aenm.201903719 10.1039/C9CS00588A 10.1002/aenm.202000648 10.1149/1.2115611 10.1021/jacs.7b06327 10.1103/PhysRevB.56.11593 10.1016/j.nanoen.2020.105036 10.1016/S0378-7753(99)00144-5 10.1021/ar200329r 10.1107/S0567739476001551 10.1039/C9EE02803J 10.1039/D0EE01017K 10.1021/acs.chemmater.9b02075 10.1021/acs.chemrev.0c00101 10.1038/nmat3066 10.1021/acs.chemrev.5b00563 10.1038/s41578-019-0157-5 10.1021/acs.chemmater.0c02419 10.1246/cl.1998.223 10.1021/jacs.0c00134 10.1016/0167-2738(80)90018-1 10.1016/0025-5408(84)90105-3 10.1021/acsenergylett.9b02599 10.1039/C9EE03828K 10.1002/aenm.202002356 10.1021/acs.nanolett.0c01156 10.1016/j.isci.2019.05.036 10.1039/C8EE01053F 10.1149/1.2069446 10.1016/j.nanoen.2020.105015 10.1038/natrevmats.2016.103 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.0c00762 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 1033 |
ExternalDocumentID | 33508944 10_1021_acs_accounts_0c00762 h04063418 |
Genre | Journal Article |
GroupedDBID | - .K2 02 23M 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 53G 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK XSW ZCA ~02 NPM YIN 7X8 |
ID | FETCH-LOGICAL-a348t-1056bc0dfc23b28c9dc73fad98dacb29d78b2732bde8a058f30910e677ee8c3f3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 11:41:32 EDT 2025 Wed Feb 19 02:28:32 EST 2025 Thu Apr 24 23:12:33 EDT 2025 Tue Jul 01 03:16:06 EDT 2025 Thu Feb 18 05:21:54 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-1056bc0dfc23b28c9dc73fad98dacb29d78b2732bde8a058f30910e677ee8c3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0374-1245 |
PMID | 33508944 |
PQID | 2483812866 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2483812866 pubmed_primary_33508944 crossref_citationtrail_10_1021_acs_accounts_0c00762 crossref_primary_10_1021_acs_accounts_0c00762 acs_journals_10_1021_acs_accounts_0c00762 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210216 2021-02-16 2021-Feb-16 |
PublicationDateYYYYMMDD | 2021-02-16 |
PublicationDate_xml | – month: 02 year: 2021 text: 20210216 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1098/rspa.1987.0111 – ident: ref25/cit25 doi: 10.1002/zaac.19926130104 – ident: ref22/cit22 doi: 10.1016/j.nanoen.2020.105097 – ident: ref16/cit16 doi: 10.1039/C9EE02311A – ident: ref2/cit2 doi: 10.1002/anie.201909805 – ident: ref43/cit43 doi: 10.1002/anie.202007621 – ident: ref20/cit20 doi: 10.1021/acsaem.9b01166 – ident: ref39/cit39 doi: 10.1016/0022-4596(72)90121-1 – ident: ref23/cit23 doi: 10.1021/acsaem.0c00147 – ident: ref29/cit29 doi: 10.1149/1.1837443 – ident: ref12/cit12 doi: 10.1016/0167-577X(82)90003-9 – ident: ref19/cit19 doi: 10.1016/0025-5408(81)90099-4 – ident: ref30/cit30 doi: 10.1021/acs.chemmater.6b00579 – ident: ref9/cit9 doi: 10.1002/anie.201901938 – ident: ref15/cit15 doi: 10.1002/adma.201803075 – ident: ref35/cit35 doi: 10.1016/0022-4596(72)90121-1 – ident: ref24/cit24 doi: 10.1002/aenm.201903719 – ident: ref32/cit32 doi: 10.1039/C9CS00588A – ident: ref8/cit8 doi: 10.1002/aenm.202000648 – ident: ref28/cit28 doi: 10.1149/1.2115611 – ident: ref38/cit38 doi: 10.1021/jacs.7b06327 – ident: ref40/cit40 doi: 10.1103/PhysRevB.56.11593 – ident: ref47/cit47 doi: 10.1016/j.nanoen.2020.105036 – ident: ref26/cit26 doi: 10.1016/S0378-7753(99)00144-5 – ident: ref33/cit33 doi: 10.1021/ar200329r – ident: ref31/cit31 doi: 10.1107/S0567739476001551 – ident: ref42/cit42 doi: 10.1039/C9EE02803J – ident: ref18/cit18 doi: 10.1039/D0EE01017K – ident: ref36/cit36 doi: 10.1021/acs.chemmater.9b02075 – ident: ref5/cit5 doi: 10.1021/acs.chemrev.0c00101 – ident: ref27/cit27 doi: 10.1038/nmat3066 – ident: ref4/cit4 doi: 10.1021/acs.chemrev.5b00563 – ident: ref41/cit41 doi: 10.1038/s41578-019-0157-5 – ident: ref44/cit44 doi: 10.1021/acs.chemmater.0c02419 – ident: ref14/cit14 doi: 10.1246/cl.1998.223 – ident: ref1/cit1 doi: 10.1021/jacs.0c00134 – ident: ref11/cit11 doi: 10.1016/0167-2738(80)90018-1 – ident: ref21/cit21 doi: 10.1016/0025-5408(84)90105-3 – ident: ref17/cit17 doi: 10.1021/acsenergylett.9b02599 – ident: ref7/cit7 doi: 10.1039/C9EE03828K – ident: ref34/cit34 doi: 10.1002/aenm.202002356 – ident: ref3/cit3 doi: 10.1021/acs.nanolett.0c01156 – ident: ref37/cit37 doi: 10.1016/j.isci.2019.05.036 – ident: ref6/cit6 doi: 10.1039/C8EE01053F – ident: ref10/cit10 doi: 10.1149/1.2069446 – ident: ref46/cit46 doi: 10.1016/j.nanoen.2020.105015 – ident: ref45/cit45 doi: 10.1038/natrevmats.2016.103 |
SSID | ssj0002467 |
Score | 2.6586018 |
Snippet | Conspectus Rechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The... ConspectusRechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1023 |
Title | Metal Halide Superionic Conductors for All-Solid-State Batteries |
URI | http://dx.doi.org/10.1021/acs.accounts.0c00762 https://www.ncbi.nlm.nih.gov/pubmed/33508944 https://www.proquest.com/docview/2483812866 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGWDh_SgvBYmFwSXYjuNsVBVVhVQYSqVukV9ZqBLUJAu_nnMeRYCqwhrZJ519uftO5_sOoRtrfd8ANMZcWIYZpz6WgdHYBhExiQgZr9qjx898NGVPs2D2lSj-rOCT-zupcxBdTU7Ie752pSNwuZuEi9AlW_3BZOl5CeM1RyakyEww0rbKrZDiApLOvwekFSizijbDXfTS9uzUj0zeemWhevrjN4XjHxXZQzsN8PT6taXsow2bHqCtQTvv7RA9jC0AcW8EwNxYb1I6CmTHm-sNstSRwmaL3AOE6_XnczzJYBGugKpXM3RCwn2EpsPH18EIN_MVsKRMFOCBA660bxJNqCJCR0aHNJEmEkZqRSITCgXohihjhfQDkVAHLiwPQ2uFpgk9Rp00S-0p8ogKmUkCl_xEDMKuDBThAVVMCxJJ43fRLagfN_9HHlelb3Ifu4_tmcTNmXQRbS8k1g1RuZuXMV-zCy93vddEHWvWX7d3HcNBuzKJTG1W5jFhAmAMEZx30UltBEuJlAKgjRg7-4c-52ibuIcwbooMv0CdYlHaS0AyhbqqzPcT0hTvuA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LTxsxEIdHCA5wgbYUGkrbReqlB4eNX-u9EUVFaSFckiBuK7_2QrRbZZMLfz3jfQQVCUVcLa_l13q-0di_AfjpfRw7RGMileeESxYTLZwlXqTU5Srhsn4ePbmT4zn_-yAedkB0b2GwExW2VNVB_Bd1gcFlKNNNAoWqH9sQQcKTdw95hAafaziabg5gymUjlYmeMlecdi_m3mgl2CVb_W-X3oDN2uhcH8H9prv1XZPH_npl-vbplZLju8fzAQ5bDI2Gzb75CDu--AT7oy772zFcTTxieTRGTHc-mq6DIHJQ0Y1GZREkYstlFSHvRsPFgkxLrERqbI0avU50vz_D_Pr3bDQmbbYFohlXKzyPhTQ2drmlzFBlU2cTlmuXKqetoalLlEHWocZ5pWOhchZQw8sk8V5ZlrMT2C3Kwn-BiJqEu1wEVyjlaIS1MFQKZrhVNNUu7sEvHH7W_i1VVgfC6SALhd2cZO2c9IB165LZVrY8ZM9YbPmKbL7618h2bKl_0S15hhMdgia68OW6yihXCDVUSdmD02YvbFpkDPE25fzsHeP5Afvj2eQ2u_1zd_MVDmi4IhPyy8hz2F0t1_4bMs7KfK939DPhFfgZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SQb34ftTnCl48pG6TbDZ7s1RLfSLUQvGy5LUXy6647cVf72QfRQUpeg3JkJk85hsm-QahM2t93wA0xlxYhhmnPpaB0dgGETGJCBkvvkc_PPL-kN2OgtGXUl8wiRwk5UUS353qN5NUDAPtC9cuyyIKecvXLosEt--iy9y5uKvTHcwuYcJ4SZcJ0TITjNS_5n6R4nyTzr_7pl8AZ-F4emvoZTbl4r3Ja2s6US398YPN8V86raPVCo56nXL_bKAFm26i5W5dBW4LXT5YgOdeH-C6sd5g6oiRHZuu181SRxWbvece4F6vMx7jQQadcAFfvZK3E8LwbTTsXT93-7iquoAlZWIC93LAlfZNoglVROjI6JAm0kTCSK1IZEKhAPMQZayQfiAS6iCH5WFordA0oTuokWap3UMeUSEzSeBCooiBM5aBIjygimlBImn8JjoH9ePq1ORxkRAn7dg11jaJK5s0Ea3XJtYVfbmrojGeMwrPRr2V9B1z-p_Wyx6DoV3yRKY2m-YxYQLADRGcN9FuuR9mEikFmBsxtv8HfU7Q0tNVL76_ebw7QCvEvZRxZWb4IWpM3qf2CKDORB0Xm_oT41v6nA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Halide+Superionic+Conductors+for+All-Solid-State+Batteries&rft.jtitle=Accounts+of+chemical+research&rft.au=Liang%2C+Jianwen&rft.au=Li%2C+Xiaona&rft.au=Adair%2C+Keegan+R&rft.au=Sun%2C+Xueliang&rft.date=2021-02-16&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=54&rft.issue=4&rft.spage=1023&rft_id=info:doi/10.1021%2Facs.accounts.0c00762&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |