Metal Halide Superionic Conductors for All-Solid-State Batteries

Conspectus Rechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy s...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 54; no. 4; pp. 1023 - 1033
Main Authors Liang, Jianwen, Li, Xiaona, Adair, Keegan R, Sun, Xueliang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.02.2021
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Rechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36–6.71 V vs Li/Li+) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li3InCl6 developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices. In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li+/vacancy concentration, and reduced blocking effect can promote fast Li+ migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li–O2 batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes.
AbstractList ConspectusRechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36-6.71 V vs Li/Li+) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li3InCl6 developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices.In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li+/vacancy concentration, and reduced blocking effect can promote fast Li+ migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li-O2 batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes.ConspectusRechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36-6.71 V vs Li/Li+) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li3InCl6 developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices.In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li+/vacancy concentration, and reduced blocking effect can promote fast Li+ migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li-O2 batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes.
ConspectusRechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36-6.71 V vs Li/Li ) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li InCl developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices.In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li /vacancy concentration, and reduced blocking effect can promote fast Li migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li-O batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes.
Conspectus Rechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36–6.71 V vs Li/Li+) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li3InCl6 developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices. In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li+/vacancy concentration, and reduced blocking effect can promote fast Li+ migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li–O2 batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes.
Author Liang, Jianwen
Li, Xiaona
Adair, Keegan R
Sun, Xueliang
AuthorAffiliation Department of Mechanical & Materials Engineering
AuthorAffiliation_xml – name: Department of Mechanical & Materials Engineering
Author_xml – sequence: 1
  givenname: Jianwen
  surname: Liang
  fullname: Liang, Jianwen
– sequence: 2
  givenname: Xiaona
  surname: Li
  fullname: Li, Xiaona
– sequence: 3
  givenname: Keegan R
  surname: Adair
  fullname: Adair, Keegan R
– sequence: 4
  givenname: Xueliang
  orcidid: 0000-0003-0374-1245
  surname: Sun
  fullname: Sun, Xueliang
  email: xsun9@uwo.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33508944$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAURS1URD_gHyCUkSXl-aOJw0SpgCIVMRRmy7EdKZUbF9sZ-Pe4arswwPT85HOedO8YDTrXGYSuMUwxEHwnVZhKpVzfxTAFBVAW5AyN8IxAznjFB2gEADi9GRmicQibtBJWlBdoSOkMeMXYCD28mShttpS21SZb9zvjW9e1Klu4TvcqOh-yxvlsbm2-dgnK11FGkz3KGBNqwiU6b6QN5uo4J-jz-eljscxX7y-vi_kql5TxmGOYFbUC3ShCa8JVpVVJG6krrqWqSaVLXpOSklobLmHGGwoVBlOUpTFc0YZO0O3h7s67r96EKLZtUMZa2RnXB0EYpxwTXhQJvTmifb01Wux8u5X-W5xSJ-D-ACjvQvCmEapNqVLw6GVrBQaxr1ikisWpYnGsOMnsl3y6_48GB23_u3G971Jbfys_pwWUlw
CitedBy_id crossref_primary_10_1016_j_matt_2022_06_055
crossref_primary_10_1021_acs_jpcc_2c02511
crossref_primary_10_1039_D3TA01787G
crossref_primary_10_1016_j_ssi_2024_116549
crossref_primary_10_1021_acsaem_4c00115
crossref_primary_10_1016_j_memsci_2023_121552
crossref_primary_10_1016_j_jpowsour_2022_231660
crossref_primary_10_1002_adfm_202408571
crossref_primary_10_1002_ange_202403331
crossref_primary_10_1016_j_jallcom_2023_172479
crossref_primary_10_1039_D4TA02269F
crossref_primary_10_1002_aenm_202400766
crossref_primary_10_1016_j_etran_2022_100224
crossref_primary_10_1002_idm2_12090
crossref_primary_10_1016_j_est_2024_113360
crossref_primary_10_1021_acsami_4c09878
crossref_primary_10_1016_j_matt_2025_102001
crossref_primary_10_1126_science_adk8617
crossref_primary_10_1021_acsami_3c00178
crossref_primary_10_1016_j_esci_2022_01_001
crossref_primary_10_1021_acsenergylett_3c02307
crossref_primary_10_1038_s41467_023_44274_z
crossref_primary_10_1016_j_ccr_2024_215776
crossref_primary_10_1016_j_ensm_2024_103444
crossref_primary_10_1021_acs_chemrev_1c00594
crossref_primary_10_1039_D3CC03455K
crossref_primary_10_1002_advs_202409668
crossref_primary_10_1039_D1TA04084G
crossref_primary_10_1021_acsaem_4c02948
crossref_primary_10_1016_j_jallcom_2022_166873
crossref_primary_10_1021_acs_chemmater_4c01160
crossref_primary_10_1039_D3EE00870C
crossref_primary_10_3390_batteries10010029
crossref_primary_10_1039_D4MA00405A
crossref_primary_10_1039_D1TA08086E
crossref_primary_10_1002_aenm_202203883
crossref_primary_10_1002_ange_202316360
crossref_primary_10_1002_sstr_202200122
crossref_primary_10_1021_acsenergylett_4c00994
crossref_primary_10_1126_sciadv_adc9516
crossref_primary_10_1002_adma_202402324
crossref_primary_10_1002_adfm_202201465
crossref_primary_10_1016_j_cossms_2022_101003
crossref_primary_10_1021_jacs_3c07343
crossref_primary_10_1002_batt_202300434
crossref_primary_10_1002_ange_202401779
crossref_primary_10_1021_acsenergylett_2c01397
crossref_primary_10_1002_adma_202200856
crossref_primary_10_1038_s41524_025_01559_9
crossref_primary_10_1021_jacs_4c06498
crossref_primary_10_1039_D5EB00010F
crossref_primary_10_1021_jacs_3c01955
crossref_primary_10_1002_anie_202403331
crossref_primary_10_1002_anie_202217081
crossref_primary_10_1007_s41918_024_00212_1
crossref_primary_10_1016_j_mtcomm_2023_105764
crossref_primary_10_1021_accountsmr_1c00159
crossref_primary_10_1016_j_jechem_2022_05_036
crossref_primary_10_1016_j_jssc_2023_124361
crossref_primary_10_1002_anie_202316360
crossref_primary_10_1016_j_jpowsour_2022_232257
crossref_primary_10_1002_adfm_202416808
crossref_primary_10_1002_cssc_202301262
crossref_primary_10_1002_batt_202200553
crossref_primary_10_1016_j_cclet_2021_12_048
crossref_primary_10_1016_j_est_2025_116030
crossref_primary_10_1149_1945_7111_ac5bad
crossref_primary_10_1002_smll_202404614
crossref_primary_10_1088_1361_648X_ad68b4
crossref_primary_10_1016_j_electacta_2025_145896
crossref_primary_10_1021_acsami_1c22104
crossref_primary_10_1016_j_jallcom_2024_174945
crossref_primary_10_1002_aenm_202103921
crossref_primary_10_1038_s41467_024_45864_1
crossref_primary_10_1021_acsenergylett_3c01157
crossref_primary_10_1002_adfm_202413888
crossref_primary_10_1002_anie_202401779
crossref_primary_10_1021_acsenergylett_3c02243
crossref_primary_10_1021_acs_energyfuels_1c01609
crossref_primary_10_1021_acs_chemrev_2c00374
crossref_primary_10_1002_chem_202303884
crossref_primary_10_1039_D4TA05355A
crossref_primary_10_1039_D1TA07050A
crossref_primary_10_1016_j_nanoen_2024_110435
crossref_primary_10_1002_adfm_202416671
crossref_primary_10_1016_j_ccr_2025_216432
crossref_primary_10_1002_aenm_202202854
crossref_primary_10_1016_j_pmatsci_2023_101182
crossref_primary_10_1021_acs_chemmater_2c01475
crossref_primary_10_1016_j_xcrp_2023_101428
crossref_primary_10_1002_jccs_202200078
crossref_primary_10_1021_accountsmr_1c00137
crossref_primary_10_1021_acsenergylett_4c01472
crossref_primary_10_1021_acs_nanolett_2c00187
crossref_primary_10_1021_acsmaterialslett_4c00315
crossref_primary_10_1002_adfm_202206845
crossref_primary_10_1126_sciadv_abh1896
crossref_primary_10_1021_accountsmr_2c00184
crossref_primary_10_1016_j_ensm_2024_103807
crossref_primary_10_1039_D4TA04553J
crossref_primary_10_5796_electrochemistry_23_00063
crossref_primary_10_1002_adfm_202205594
crossref_primary_10_1021_acs_jpcc_1c04771
crossref_primary_10_1002_ange_202315628
crossref_primary_10_1063_5_0097432
crossref_primary_10_1016_j_pmatsci_2023_101193
crossref_primary_10_1108_MMMS_08_2023_0258
crossref_primary_10_1002_ange_202217081
crossref_primary_10_1016_j_jpowsour_2024_234051
crossref_primary_10_1016_j_apsusc_2021_151621
crossref_primary_10_1002_admi_202202363
crossref_primary_10_1557_s43577_023_00649_7
crossref_primary_10_1039_D2TA05158C
crossref_primary_10_1002_adem_202201390
crossref_primary_10_1002_ente_202201116
crossref_primary_10_3390_inorganics12020054
crossref_primary_10_1038_s41570_023_00541_7
crossref_primary_10_1016_j_ensm_2022_02_011
crossref_primary_10_1021_acs_inorgchem_4c00229
crossref_primary_10_1002_smll_202307030
crossref_primary_10_1016_j_aichem_2024_100051
crossref_primary_10_1039_D3EE01119D
crossref_primary_10_1002_adma_202303730
crossref_primary_10_1002_sstr_202100146
crossref_primary_10_1002_anie_202315628
crossref_primary_10_1002_aenm_202403986
crossref_primary_10_1038_s41467_023_43886_9
crossref_primary_10_1002_adma_202411605
crossref_primary_10_1007_s10854_023_11364_z
crossref_primary_10_1038_s41578_024_00715_9
crossref_primary_10_1039_D3SC02093B
crossref_primary_10_1007_s11426_022_1506_1
crossref_primary_10_1016_j_gee_2024_02_010
crossref_primary_10_1039_D4EE00750F
crossref_primary_10_1002_aenm_202300815
crossref_primary_10_1016_j_jpowsour_2023_232738
crossref_primary_10_1360_TB_2024_0526
crossref_primary_10_1016_j_jallcom_2024_177981
crossref_primary_10_1002_bte2_20220014
crossref_primary_10_1016_j_ensm_2024_103980
crossref_primary_10_1021_acsaem_4c00065
crossref_primary_10_1002_inf2_12606
crossref_primary_10_1002_batt_202400432
crossref_primary_10_1021_acs_energyfuels_4c00633
crossref_primary_10_1038_s41467_022_35667_7
crossref_primary_10_3390_batteries9100510
crossref_primary_10_1002_aenm_202402997
crossref_primary_10_1002_inf2_12563
crossref_primary_10_1021_acsami_2c04160
crossref_primary_10_1007_s10008_023_05612_9
crossref_primary_10_1016_j_ensm_2024_103737
crossref_primary_10_1007_s10008_022_05230_x
crossref_primary_10_1021_acsenergylett_2c00438
crossref_primary_10_1002_est2_506
crossref_primary_10_1021_acs_energyfuels_4c03193
crossref_primary_10_1002_cey2_628
Cites_doi 10.1098/rspa.1987.0111
10.1002/zaac.19926130104
10.1016/j.nanoen.2020.105097
10.1039/C9EE02311A
10.1002/anie.201909805
10.1002/anie.202007621
10.1021/acsaem.9b01166
10.1016/0022-4596(72)90121-1
10.1021/acsaem.0c00147
10.1149/1.1837443
10.1016/0167-577X(82)90003-9
10.1016/0025-5408(81)90099-4
10.1021/acs.chemmater.6b00579
10.1002/anie.201901938
10.1002/adma.201803075
10.1002/aenm.201903719
10.1039/C9CS00588A
10.1002/aenm.202000648
10.1149/1.2115611
10.1021/jacs.7b06327
10.1103/PhysRevB.56.11593
10.1016/j.nanoen.2020.105036
10.1016/S0378-7753(99)00144-5
10.1021/ar200329r
10.1107/S0567739476001551
10.1039/C9EE02803J
10.1039/D0EE01017K
10.1021/acs.chemmater.9b02075
10.1021/acs.chemrev.0c00101
10.1038/nmat3066
10.1021/acs.chemrev.5b00563
10.1038/s41578-019-0157-5
10.1021/acs.chemmater.0c02419
10.1246/cl.1998.223
10.1021/jacs.0c00134
10.1016/0167-2738(80)90018-1
10.1016/0025-5408(84)90105-3
10.1021/acsenergylett.9b02599
10.1039/C9EE03828K
10.1002/aenm.202002356
10.1021/acs.nanolett.0c01156
10.1016/j.isci.2019.05.036
10.1039/C8EE01053F
10.1149/1.2069446
10.1016/j.nanoen.2020.105015
10.1038/natrevmats.2016.103
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.0c00762
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 1033
ExternalDocumentID 33508944
10_1021_acs_accounts_0c00762
h04063418
Genre Journal Article
GroupedDBID -
.K2
02
23M
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
53G
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
NPM
YIN
7X8
ID FETCH-LOGICAL-a348t-1056bc0dfc23b28c9dc73fad98dacb29d78b2732bde8a058f30910e677ee8c3f3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 11:41:32 EDT 2025
Wed Feb 19 02:28:32 EST 2025
Thu Apr 24 23:12:33 EDT 2025
Tue Jul 01 03:16:06 EDT 2025
Thu Feb 18 05:21:54 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-1056bc0dfc23b28c9dc73fad98dacb29d78b2732bde8a058f30910e677ee8c3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0374-1245
PMID 33508944
PQID 2483812866
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2483812866
pubmed_primary_33508944
crossref_citationtrail_10_1021_acs_accounts_0c00762
crossref_primary_10_1021_acs_accounts_0c00762
acs_journals_10_1021_acs_accounts_0c00762
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210216
2021-02-16
2021-Feb-16
PublicationDateYYYYMMDD 2021-02-16
PublicationDate_xml – month: 02
  year: 2021
  text: 20210216
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1098/rspa.1987.0111
– ident: ref25/cit25
  doi: 10.1002/zaac.19926130104
– ident: ref22/cit22
  doi: 10.1016/j.nanoen.2020.105097
– ident: ref16/cit16
  doi: 10.1039/C9EE02311A
– ident: ref2/cit2
  doi: 10.1002/anie.201909805
– ident: ref43/cit43
  doi: 10.1002/anie.202007621
– ident: ref20/cit20
  doi: 10.1021/acsaem.9b01166
– ident: ref39/cit39
  doi: 10.1016/0022-4596(72)90121-1
– ident: ref23/cit23
  doi: 10.1021/acsaem.0c00147
– ident: ref29/cit29
  doi: 10.1149/1.1837443
– ident: ref12/cit12
  doi: 10.1016/0167-577X(82)90003-9
– ident: ref19/cit19
  doi: 10.1016/0025-5408(81)90099-4
– ident: ref30/cit30
  doi: 10.1021/acs.chemmater.6b00579
– ident: ref9/cit9
  doi: 10.1002/anie.201901938
– ident: ref15/cit15
  doi: 10.1002/adma.201803075
– ident: ref35/cit35
  doi: 10.1016/0022-4596(72)90121-1
– ident: ref24/cit24
  doi: 10.1002/aenm.201903719
– ident: ref32/cit32
  doi: 10.1039/C9CS00588A
– ident: ref8/cit8
  doi: 10.1002/aenm.202000648
– ident: ref28/cit28
  doi: 10.1149/1.2115611
– ident: ref38/cit38
  doi: 10.1021/jacs.7b06327
– ident: ref40/cit40
  doi: 10.1103/PhysRevB.56.11593
– ident: ref47/cit47
  doi: 10.1016/j.nanoen.2020.105036
– ident: ref26/cit26
  doi: 10.1016/S0378-7753(99)00144-5
– ident: ref33/cit33
  doi: 10.1021/ar200329r
– ident: ref31/cit31
  doi: 10.1107/S0567739476001551
– ident: ref42/cit42
  doi: 10.1039/C9EE02803J
– ident: ref18/cit18
  doi: 10.1039/D0EE01017K
– ident: ref36/cit36
  doi: 10.1021/acs.chemmater.9b02075
– ident: ref5/cit5
  doi: 10.1021/acs.chemrev.0c00101
– ident: ref27/cit27
  doi: 10.1038/nmat3066
– ident: ref4/cit4
  doi: 10.1021/acs.chemrev.5b00563
– ident: ref41/cit41
  doi: 10.1038/s41578-019-0157-5
– ident: ref44/cit44
  doi: 10.1021/acs.chemmater.0c02419
– ident: ref14/cit14
  doi: 10.1246/cl.1998.223
– ident: ref1/cit1
  doi: 10.1021/jacs.0c00134
– ident: ref11/cit11
  doi: 10.1016/0167-2738(80)90018-1
– ident: ref21/cit21
  doi: 10.1016/0025-5408(84)90105-3
– ident: ref17/cit17
  doi: 10.1021/acsenergylett.9b02599
– ident: ref7/cit7
  doi: 10.1039/C9EE03828K
– ident: ref34/cit34
  doi: 10.1002/aenm.202002356
– ident: ref3/cit3
  doi: 10.1021/acs.nanolett.0c01156
– ident: ref37/cit37
  doi: 10.1016/j.isci.2019.05.036
– ident: ref6/cit6
  doi: 10.1039/C8EE01053F
– ident: ref10/cit10
  doi: 10.1149/1.2069446
– ident: ref46/cit46
  doi: 10.1016/j.nanoen.2020.105015
– ident: ref45/cit45
  doi: 10.1038/natrevmats.2016.103
SSID ssj0002467
Score 2.6586018
Snippet Conspectus Rechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The...
ConspectusRechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1023
Title Metal Halide Superionic Conductors for All-Solid-State Batteries
URI http://dx.doi.org/10.1021/acs.accounts.0c00762
https://www.ncbi.nlm.nih.gov/pubmed/33508944
https://www.proquest.com/docview/2483812866
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGWDh_SgvBYmFwSXYjuNsVBVVhVQYSqVukV9ZqBLUJAu_nnMeRYCqwhrZJ519uftO5_sOoRtrfd8ANMZcWIYZpz6WgdHYBhExiQgZr9qjx898NGVPs2D2lSj-rOCT-zupcxBdTU7Ie752pSNwuZuEi9AlW_3BZOl5CeM1RyakyEww0rbKrZDiApLOvwekFSizijbDXfTS9uzUj0zeemWhevrjN4XjHxXZQzsN8PT6taXsow2bHqCtQTvv7RA9jC0AcW8EwNxYb1I6CmTHm-sNstSRwmaL3AOE6_XnczzJYBGugKpXM3RCwn2EpsPH18EIN_MVsKRMFOCBA660bxJNqCJCR0aHNJEmEkZqRSITCgXohihjhfQDkVAHLiwPQ2uFpgk9Rp00S-0p8ogKmUkCl_xEDMKuDBThAVVMCxJJ43fRLagfN_9HHlelb3Ifu4_tmcTNmXQRbS8k1g1RuZuXMV-zCy93vddEHWvWX7d3HcNBuzKJTG1W5jFhAmAMEZx30UltBEuJlAKgjRg7-4c-52ibuIcwbooMv0CdYlHaS0AyhbqqzPcT0hTvuA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LTxsxEIdHCA5wgbYUGkrbReqlB4eNX-u9EUVFaSFckiBuK7_2QrRbZZMLfz3jfQQVCUVcLa_l13q-0di_AfjpfRw7RGMileeESxYTLZwlXqTU5Srhsn4ePbmT4zn_-yAedkB0b2GwExW2VNVB_Bd1gcFlKNNNAoWqH9sQQcKTdw95hAafaziabg5gymUjlYmeMlecdi_m3mgl2CVb_W-X3oDN2uhcH8H9prv1XZPH_npl-vbplZLju8fzAQ5bDI2Gzb75CDu--AT7oy772zFcTTxieTRGTHc-mq6DIHJQ0Y1GZREkYstlFSHvRsPFgkxLrERqbI0avU50vz_D_Pr3bDQmbbYFohlXKzyPhTQ2drmlzFBlU2cTlmuXKqetoalLlEHWocZ5pWOhchZQw8sk8V5ZlrMT2C3Kwn-BiJqEu1wEVyjlaIS1MFQKZrhVNNUu7sEvHH7W_i1VVgfC6SALhd2cZO2c9IB165LZVrY8ZM9YbPmKbL7618h2bKl_0S15hhMdgia68OW6yihXCDVUSdmD02YvbFpkDPE25fzsHeP5Afvj2eQ2u_1zd_MVDmi4IhPyy8hz2F0t1_4bMs7KfK939DPhFfgZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SQb34ftTnCl48pG6TbDZ7s1RLfSLUQvGy5LUXy6647cVf72QfRQUpeg3JkJk85hsm-QahM2t93wA0xlxYhhmnPpaB0dgGETGJCBkvvkc_PPL-kN2OgtGXUl8wiRwk5UUS353qN5NUDAPtC9cuyyIKecvXLosEt--iy9y5uKvTHcwuYcJ4SZcJ0TITjNS_5n6R4nyTzr_7pl8AZ-F4emvoZTbl4r3Ja2s6US398YPN8V86raPVCo56nXL_bKAFm26i5W5dBW4LXT5YgOdeH-C6sd5g6oiRHZuu181SRxWbvece4F6vMx7jQQadcAFfvZK3E8LwbTTsXT93-7iquoAlZWIC93LAlfZNoglVROjI6JAm0kTCSK1IZEKhAPMQZayQfiAS6iCH5WFordA0oTuokWap3UMeUSEzSeBCooiBM5aBIjygimlBImn8JjoH9ePq1ORxkRAn7dg11jaJK5s0Ea3XJtYVfbmrojGeMwrPRr2V9B1z-p_Wyx6DoV3yRKY2m-YxYQLADRGcN9FuuR9mEikFmBsxtv8HfU7Q0tNVL76_ebw7QCvEvZRxZWb4IWpM3qf2CKDORB0Xm_oT41v6nA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Halide+Superionic+Conductors+for+All-Solid-State+Batteries&rft.jtitle=Accounts+of+chemical+research&rft.au=Liang%2C+Jianwen&rft.au=Li%2C+Xiaona&rft.au=Adair%2C+Keegan+R&rft.au=Sun%2C+Xueliang&rft.date=2021-02-16&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=54&rft.issue=4&rft.spage=1023&rft_id=info:doi/10.1021%2Facs.accounts.0c00762&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon