Response of rigid piles during passive dragging

Summary This paper develops a three‐layer model and elastic solutions to capture nonlinear response of rigid, passive piles in sliding soil. Elastic solutions are obtained for an equivalent force per unit length ps of the soil movement. They are repeated for a series of linearly increasing ps (with...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical and analytical methods in geomechanics Vol. 40; no. 14; pp. 1936 - 1967
Main Author Guo, Wei Dong
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 10.10.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary This paper develops a three‐layer model and elastic solutions to capture nonlinear response of rigid, passive piles in sliding soil. Elastic solutions are obtained for an equivalent force per unit length ps of the soil movement. They are repeated for a series of linearly increasing ps (with depth) to yield the nonlinear response. The parameters underpinning the model are determined against pertinent numerical solutions and model tests on passive free‐head and capped piles. The solutions are presented in non‐dimensional charts and elaborated through three examples. The study reveals the following: On‐pile pressure in rotationally restrained, sliding layer reduces by a factor α, which resembles the p‐multiplier for a laterally loaded, capped pile, but for its increase with vertical loading (embankment surcharge), and stiffness of underlying stiff layer: α = 0.25 and 0.6 for a shallow, translating and rotating piles, respectively; α = 0.33–0.5 and 0.8–1.3 for a slide overlying a stiff layer concerning a uniform and a linearly increasing pressure, respectively; and α = 0.5–0.72 for moving clay under embankment loading. Ultimate state is well defined using the ratio of passive earth pressure coefficient over that of active earth pressure. The subgrade modulus for a large soil movement may be scaled from model tests. The normalised rotational stiffness is equal to 0.1–0.15 for the capped piles, which increases the pile displacement with depth. The three‐layer model solutions well predict nonlinear response of capped piles subjected to passive loading, which may be used for pertinent design. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList This paper develops a three-layer model and elastic solutions to capture nonlinear response of rigid, passive piles in sliding soil. Elastic solutions are obtained for an equivalent force per unit length ps of the soil movement. They are repeated for a series of linearly increasing ps (with depth) to yield the nonlinear response. The parameters underpinning the model are determined against pertinent numerical solutions and model tests on passive free-head and capped piles. The solutions are presented in non-dimensional charts and elaborated through three examples. The study reveals the following: * On-pile pressure in rotationally restrained, sliding layer reduces by a factor alpha , which resembles the p-multiplier for a laterally loaded, capped pile, but for its increase with vertical loading (embankment surcharge), and stiffness of underlying stiff layer: alpha =0.25 and 0.6 for a shallow, translating and rotating piles, respectively; alpha =0.33-0.5 and 0.8-1.3 for a slide overlying a stiff layer concerning a uniform and a linearly increasing pressure, respectively; and alpha =0.5-0.72 for moving clay under embankment loading. * Ultimate state is well defined using the ratio of passive earth pressure coefficient over that of active earth pressure. The subgrade modulus for a large soil movement may be scaled from model tests. * The normalised rotational stiffness is equal to 0.1-0.15 for the capped piles, which increases the pile displacement with depth. The three-layer model solutions well predict nonlinear response of capped piles subjected to passive loading, which may be used for pertinent design.
Summary This paper develops a three‐layer model and elastic solutions to capture nonlinear response of rigid, passive piles in sliding soil. Elastic solutions are obtained for an equivalent force per unit length ps of the soil movement. They are repeated for a series of linearly increasing ps (with depth) to yield the nonlinear response. The parameters underpinning the model are determined against pertinent numerical solutions and model tests on passive free‐head and capped piles. The solutions are presented in non‐dimensional charts and elaborated through three examples. The study reveals the following: On‐pile pressure in rotationally restrained, sliding layer reduces by a factor α, which resembles the p‐multiplier for a laterally loaded, capped pile, but for its increase with vertical loading (embankment surcharge), and stiffness of underlying stiff layer: α = 0.25 and 0.6 for a shallow, translating and rotating piles, respectively; α = 0.33–0.5 and 0.8–1.3 for a slide overlying a stiff layer concerning a uniform and a linearly increasing pressure, respectively; and α = 0.5–0.72 for moving clay under embankment loading. Ultimate state is well defined using the ratio of passive earth pressure coefficient over that of active earth pressure. The subgrade modulus for a large soil movement may be scaled from model tests. The normalised rotational stiffness is equal to 0.1–0.15 for the capped piles, which increases the pile displacement with depth. The three‐layer model solutions well predict nonlinear response of capped piles subjected to passive loading, which may be used for pertinent design. Copyright © 2016 John Wiley & Sons, Ltd.
Summary This paper develops a three-layer model and elastic solutions to capture nonlinear response of rigid, passive piles in sliding soil. Elastic solutions are obtained for an equivalent force per unit length ps of the soil movement. They are repeated for a series of linearly increasing ps (with depth) to yield the nonlinear response. The parameters underpinning the model are determined against pertinent numerical solutions and model tests on passive free-head and capped piles. The solutions are presented in non-dimensional charts and elaborated through three examples. The study reveals the following: On-pile pressure in rotationally restrained, sliding layer reduces by a factor [alpha], which resembles the p-multiplier for a laterally loaded, capped pile, but for its increase with vertical loading (embankment surcharge), and stiffness of underlying stiff layer: [alpha]=0.25 and 0.6 for a shallow, translating and rotating piles, respectively; [alpha]=0.33-0.5 and 0.8-1.3 for a slide overlying a stiff layer concerning a uniform and a linearly increasing pressure, respectively; and [alpha]=0.5-0.72 for moving clay under embankment loading. Ultimate state is well defined using the ratio of passive earth pressure coefficient over that of active earth pressure. The subgrade modulus for a large soil movement may be scaled from model tests. The normalised rotational stiffness is equal to 0.1-0.15 for the capped piles, which increases the pile displacement with depth. The three-layer model solutions well predict nonlinear response of capped piles subjected to passive loading, which may be used for pertinent design. Copyright © 2016 John Wiley & Sons, Ltd.
Author Guo, Wei Dong
Author_xml – sequence: 1
  givenname: Wei Dong
  surname: Guo
  fullname: Guo, Wei Dong
  email: Correspondence to: W. D. Guo, School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW 2522, Australia., camsaweidguo@lycos.com
  organization: School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, 2522, Wollongong, Australia
BookMark eNqN0FFLwzAQB_AgE9ym4Eco-OJLt0vTJM3jmDrFMVGnPoa0S0pm19ZmVfftTZko-OTTwd2P4-4_QL2yKjVCpxhGGCAalyofRbGAA9THIFgoEkp6qA-EkVAAw0do4NwaAKif9tH4Qbu6Kp0OKhM0NreroLaFdsGqbWyZB7Vyzr7rYNWoPPeNY3RoVOH0yXcdoqery-X0OpzfzW6mk3moSJxAmGU6UxwzKoTJCBVZylgsFI8wTbXmXIHAGlbKUOBJSmjKKTFGJWCoSUFrMkTn-711U7212m3lxrpMF4UqddU6iRNCGU1EEv2DRjwRTGDu6dkfuq7apvSPeOWvZRHEnQr36sMnsZN1Yzeq2UkMsktY-oRll7BcTGZd_fXWbfXnj1fNq2SccCpfFjN5MWXP5P52KR_JF2JffvE
CODEN IJNGDZ
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
7SC
7UA
8FD
C1K
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/nag.2490
DatabaseName Istex
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9853
EndPage 1967
ExternalDocumentID 4170300291
NAG2490
ark_67375_WNG_DC6V3QKT_S
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
AGHNM
AGQPQ
AGYGG
ALVPJ
7SC
7UA
8FD
AAMMB
AEFGJ
AEYWJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-a3480-cceca716599fc359cb6649a7215bee77a091e0daf5078b35b753ffa80f5fb0ee3
IEDL.DBID DR2
ISSN 0363-9061
IngestDate Fri Jul 11 02:55:32 EDT 2025
Fri Jul 11 07:13:58 EDT 2025
Fri Jul 25 10:42:43 EDT 2025
Tue Apr 29 03:01:10 EDT 2025
Wed Oct 30 09:48:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3480-cceca716599fc359cb6649a7215bee77a091e0daf5078b35b753ffa80f5fb0ee3
Notes ArticleID:NAG2490
istex:A0DA18C5451F69B473E567508ACA746CE2342CC1
ark:/67375/WNG-DC6V3QKT-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1816562047
PQPubID 996377
PageCount 32
ParticipantIDs proquest_miscellaneous_1835658982
proquest_miscellaneous_1827896917
proquest_journals_1816562047
wiley_primary_10_1002_nag_2490_NAG2490
istex_primary_ark_67375_WNG_DC6V3QKT_S
PublicationCentury 2000
PublicationDate 10 October 2016
PublicationDateYYYYMMDD 2016-10-10
PublicationDate_xml – month: 10
  year: 2016
  text: 10 October 2016
  day: 10
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical and analytical methods in geomechanics
PublicationTitleAlternate Int. J. Numer. Anal. Meth. Geomech
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Brown DA, Morrison C, Reese LC. Lateral load behaviour of pile group in sand. Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE 1998; 114(11):1261-1276.
Chmoulian A. Briefing: analysis of piled stabilization of landslides. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering 2004; 157(2):55-56.
Bransby MF, Springman SM. 3-D finite element modelling of pile groups adjacent to surcharge loads. Computers and Geotechnics 1996; 19(4):301-324.
Chen LT, Poulos HG, Leung CF, Chow YK, Shen RF. Discussion of "behavior of pile subject to excavation-induced soil movement". Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2002; 128(3):279-281.
Leung CF, Chow YK, Shen RF. Behaviour of pile subject to excavation-induced soil movement. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers 2000; 126(11):947-954.
Yang Z, Jeremic B. Numerical analysis of pile behaviour under lateral load in layered elastic-plastic soils. International Journal of Numerical and Analytical Methods in Geomechanics 2002; 26(14):1385-1406.
Frank R, Pouget P. Experimental pile subjected to long duration thrusts owing to a moving slope. Geotechnique 2008; 58(8):645-658.
Mokwa RL, Duncan JM. Discussion on 'centrifuge model study of laterally loaded pile groups in clay' by T. IIyas, C. F. Leung, Y. K. Chow and S. S. Budi. Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE 2005; 131(10):1305-1307.
Guo WD, Qin HY. Thrust and bending moment of rigid piles subjected to moving soil. Canadian Geotechnical Journal 2010; 47(2):180-196.
Guo WD. Theory and Practice of Pile Foundations. CRC press: Boca Raton, London, New York, 2012.
Cai F, Ugai K. Response of flexible piles under laterally linear movement of the sliding layer in landslides. Canadian Geotechnical Journal 2003; 40(1):46-53.
Guo WD. Nonlinear response of lateral piles with compatible cap stiffness and p-multiplier. Journal of Engineering Mechanics 2015; 141(906015002):06015002-1-06015002-11.
Chow YK. Analysis of piles used for slope stabilization. International Journal for Numerical and Analytical Methods in Geomechanics 1996; 20(9):635-646.
Stewart DP, Jewell RJ, Randolph MF. Design of piled bridge abutment on soft clay for loading from lateral soil movements. Geotechnique 1994; 44(2):277-296.
Guo WD. Elastic models for nonlinear response of rigid passive piles. International Journal for Numerical and Analytical Methods in Geomechanics 2014; 38(18):1969-1989.
Poulos HG, Chen LT, Hull TS. Model tests on single piles subjected to lateral soil movement. Soils and Foundations 1995; 35(4):85-92.
Franke KW, Rollins KM. Simplified hybrid p-y spring model for liquefied soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2013; 139(4):564-576.
He L, Elgamal A, Abdoun T, Abe A, Dobry R, Hamada M, Menses J, Sato M, Shantz T, Tokimatsu K. Liquefaction-induced lateral load on pile in a medium Dr sand layer. Journal of Earthquake Engineering 2009; 13:916-938.
Juirnarongrit T, Ashford SA. Soil-pile responese to blast-induced lateral spreading II: analysis and assessment of the p-y method. Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE 2006; 132(2):163-172.
Guo WD. On limiting force profile, slip depth and lateral pile response. Computers and Geotechnics 2006; 33(1):47-67.
Guo WD. Laterally loaded rigid piles in cohesionless soil. Canadian Geotechnical Journal 2008; 45(5):676-697.
Abdoun T, Dobry R, O'Rourke TD, Goh SH. Pile response to lateral spreads: centrifuge modeling. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2003; 129(10):869-878.
Brandenberg SJ, Boulanger RW, Kutter BL. Discussion of "single piles in lateral spreads: field bending moment evaluation" by R. Dobry, T. Abdoun, T. D. O'Rourke, and S. H. Goh. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2005; 131(4):529-534.
Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles. Soils and Foundations 1975; 15(4):43-59.
Kourkoulis R, Gelagoti F, Anastasopoulos I, Gazetas G. Slope stabilizing piles and pile-groups: parametric study and design insights. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2011; 137(7):663-677.
Poulos HG, Davis EH. Pile Foundation Analysis and Design. John Wiley & Sons: New York, 1980.
Randolph MF, Houlsby GT. The limiting pressure on a circular pile loaded laterally in cohesive soil. Geotechnique 1984; 34(4):613-623.
Brandenberg SJ, Zhao M, Boulanger RW, Wilson DW. p-y plasticity model for nonlinear dynamic analysis of piles in liquefiable soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2005; 139(8):1262-1274.
Smethurst JA, Powrie W. Monitoring and analysis of the bending behaviour of discrete piles used to stabilise a railway embankment. Geotechnique 2007; 57(8):663-677.
Guo WD. pu based solutions for slope stabilising piles. International Journal of Geomechanics 2013; 13(3):292-310.
Dobry R, Abdoun T, O'Rourke TD, Goh SH. Single piles in lateral spreads: field bending moment evaluation. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2003; 129(10):879-889.
Muraro S, Madaschi A, Gajo A. On the reliability of 3D numerical analyses on passive piles used for slope stabilisation in frictional soils. Geotechnique 2014; 64(6):486-492.
Poulos HG. Design of reinforcing piles to increase slope stability. Canadian Geotechnical Journal 1995; 32(5):808-818.
Guo WD. Nonlinear response of laterally loaded rigid piles in sliding soil. Canadian Geotechnical Journal 2015; 52(7):903-925.
De Beer E, Carpentier R. Discussion on 'methods to estimate lateral force acting on stabilising piles' by Ito, T., and Matsui, T. (1975). Soils and Foundations 1977; 17(1):68-82.
2015; 141
2011; 137
1996; 19
2005; 131
2012
2006; 33
1981; 3
1995; 35
2015; 52
1995; 32
2005; 139
2008; 58
1998
1994; 44
1975; 15
2006; 132
2005
1998; 114
2004
2003
2002
2007; 57
2014; 64
2009; 13
2002; 26
2003; 129
2010; 47
2004; 157
2013; 13
1977; 17
2000; 126
1984; 34
2013; 139
2014; 38
2002; 128
1977; 1
2008; 45
1982
1980
2003; 40
1996; 20
References_xml – reference: Juirnarongrit T, Ashford SA. Soil-pile responese to blast-induced lateral spreading II: analysis and assessment of the p-y method. Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE 2006; 132(2):163-172.
– reference: Guo WD. pu based solutions for slope stabilising piles. International Journal of Geomechanics 2013; 13(3):292-310.
– reference: Cai F, Ugai K. Response of flexible piles under laterally linear movement of the sliding layer in landslides. Canadian Geotechnical Journal 2003; 40(1):46-53.
– reference: Dobry R, Abdoun T, O'Rourke TD, Goh SH. Single piles in lateral spreads: field bending moment evaluation. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2003; 129(10):879-889.
– reference: Brandenberg SJ, Boulanger RW, Kutter BL. Discussion of "single piles in lateral spreads: field bending moment evaluation" by R. Dobry, T. Abdoun, T. D. O'Rourke, and S. H. Goh. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2005; 131(4):529-534.
– reference: Bransby MF, Springman SM. 3-D finite element modelling of pile groups adjacent to surcharge loads. Computers and Geotechnics 1996; 19(4):301-324.
– reference: Guo WD. Nonlinear response of lateral piles with compatible cap stiffness and p-multiplier. Journal of Engineering Mechanics 2015; 141(906015002):06015002-1-06015002-11.
– reference: Brandenberg SJ, Zhao M, Boulanger RW, Wilson DW. p-y plasticity model for nonlinear dynamic analysis of piles in liquefiable soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2005; 139(8):1262-1274.
– reference: Franke KW, Rollins KM. Simplified hybrid p-y spring model for liquefied soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2013; 139(4):564-576.
– reference: Poulos HG. Design of reinforcing piles to increase slope stability. Canadian Geotechnical Journal 1995; 32(5):808-818.
– reference: Guo WD. Elastic models for nonlinear response of rigid passive piles. International Journal for Numerical and Analytical Methods in Geomechanics 2014; 38(18):1969-1989.
– reference: Brown DA, Morrison C, Reese LC. Lateral load behaviour of pile group in sand. Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE 1998; 114(11):1261-1276.
– reference: Guo WD. On limiting force profile, slip depth and lateral pile response. Computers and Geotechnics 2006; 33(1):47-67.
– reference: Smethurst JA, Powrie W. Monitoring and analysis of the bending behaviour of discrete piles used to stabilise a railway embankment. Geotechnique 2007; 57(8):663-677.
– reference: Poulos HG, Chen LT, Hull TS. Model tests on single piles subjected to lateral soil movement. Soils and Foundations 1995; 35(4):85-92.
– reference: Guo WD, Qin HY. Thrust and bending moment of rigid piles subjected to moving soil. Canadian Geotechnical Journal 2010; 47(2):180-196.
– reference: Kourkoulis R, Gelagoti F, Anastasopoulos I, Gazetas G. Slope stabilizing piles and pile-groups: parametric study and design insights. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2011; 137(7):663-677.
– reference: Yang Z, Jeremic B. Numerical analysis of pile behaviour under lateral load in layered elastic-plastic soils. International Journal of Numerical and Analytical Methods in Geomechanics 2002; 26(14):1385-1406.
– reference: De Beer E, Carpentier R. Discussion on 'methods to estimate lateral force acting on stabilising piles' by Ito, T., and Matsui, T. (1975). Soils and Foundations 1977; 17(1):68-82.
– reference: Frank R, Pouget P. Experimental pile subjected to long duration thrusts owing to a moving slope. Geotechnique 2008; 58(8):645-658.
– reference: Poulos HG, Davis EH. Pile Foundation Analysis and Design. John Wiley & Sons: New York, 1980.
– reference: Abdoun T, Dobry R, O'Rourke TD, Goh SH. Pile response to lateral spreads: centrifuge modeling. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2003; 129(10):869-878.
– reference: Guo WD. Theory and Practice of Pile Foundations. CRC press: Boca Raton, London, New York, 2012.
– reference: Muraro S, Madaschi A, Gajo A. On the reliability of 3D numerical analyses on passive piles used for slope stabilisation in frictional soils. Geotechnique 2014; 64(6):486-492.
– reference: Randolph MF, Houlsby GT. The limiting pressure on a circular pile loaded laterally in cohesive soil. Geotechnique 1984; 34(4):613-623.
– reference: Guo WD. Nonlinear response of laterally loaded rigid piles in sliding soil. Canadian Geotechnical Journal 2015; 52(7):903-925.
– reference: Leung CF, Chow YK, Shen RF. Behaviour of pile subject to excavation-induced soil movement. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers 2000; 126(11):947-954.
– reference: Chow YK. Analysis of piles used for slope stabilization. International Journal for Numerical and Analytical Methods in Geomechanics 1996; 20(9):635-646.
– reference: Chen LT, Poulos HG, Leung CF, Chow YK, Shen RF. Discussion of "behavior of pile subject to excavation-induced soil movement". Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2002; 128(3):279-281.
– reference: Chmoulian A. Briefing: analysis of piled stabilization of landslides. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering 2004; 157(2):55-56.
– reference: Mokwa RL, Duncan JM. Discussion on 'centrifuge model study of laterally loaded pile groups in clay' by T. IIyas, C. F. Leung, Y. K. Chow and S. S. Budi. Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE 2005; 131(10):1305-1307.
– reference: He L, Elgamal A, Abdoun T, Abe A, Dobry R, Hamada M, Menses J, Sato M, Shantz T, Tokimatsu K. Liquefaction-induced lateral load on pile in a medium Dr sand layer. Journal of Earthquake Engineering 2009; 13:916-938.
– reference: Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles. Soils and Foundations 1975; 15(4):43-59.
– reference: Guo WD. Laterally loaded rigid piles in cohesionless soil. Canadian Geotechnical Journal 2008; 45(5):676-697.
– reference: Stewart DP, Jewell RJ, Randolph MF. Design of piled bridge abutment on soft clay for loading from lateral soil movements. Geotechnique 1994; 44(2):277-296.
– volume: 139
  start-page: 1262
  issue: 8
  year: 2005
  end-page: 1274
  article-title: p‐y plasticity model for nonlinear dynamic analysis of piles in liquefiable soil
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 33
  start-page: 47
  issue: 1
  year: 2006
  end-page: 67
  article-title: On limiting force profile, slip depth and lateral pile response
  publication-title: Computers and Geotechnics
– year: 2005
– volume: 19
  start-page: 301
  issue: 4
  year: 1996
  end-page: 324
  article-title: 3‐D finite element modelling of pile groups adjacent to surcharge loads
  publication-title: Computers and Geotechnics
– volume: 26
  start-page: 1385
  issue: 14
  year: 2002
  end-page: 1406
  article-title: Numerical analysis of pile behaviour under lateral load in layered elastic‐plastic soils
  publication-title: International Journal of Numerical and Analytical Methods in Geomechanics
– volume: 20
  start-page: 635
  issue: 9
  year: 1996
  end-page: 646
  article-title: Analysis of piles used for slope stabilization
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 58
  start-page: 645
  issue: 8
  year: 2008
  end-page: 658
  article-title: Experimental pile subjected to long duration thrusts owing to a moving slope
  publication-title: Geotechnique
– volume: 13
  start-page: 916
  year: 2009
  end-page: 938
  article-title: Liquefaction‐induced lateral load on pile in a medium Dr sand layer
  publication-title: Journal of Earthquake Engineering
– volume: 47
  start-page: 180
  issue: 2
  year: 2010
  end-page: 196
  article-title: Thrust and bending moment of rigid piles subjected to moving soil
  publication-title: Canadian Geotechnical Journal
– volume: 38
  start-page: 1969
  issue: 18
  year: 2014
  end-page: 1989
  article-title: Elastic models for nonlinear response of rigid passive piles
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 57
  start-page: 663
  issue: 8
  year: 2007
  end-page: 677
  article-title: Monitoring and analysis of the bending behaviour of discrete piles used to stabilise a railway embankment
  publication-title: Geotechnique
– year: 2003
– volume: 131
  start-page: 529
  issue: 4
  year: 2005
  end-page: 534
  article-title: Discussion of “single piles in lateral spreads: field bending moment evaluation” by R. Dobry, T. Abdoun, T. D. O'Rourke, and S. H. Goh
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 15
  start-page: 43
  issue: 4
  year: 1975
  end-page: 59
  article-title: Methods to estimate lateral force acting on stabilizing piles
  publication-title: Soils and Foundations
– volume: 52
  start-page: 903
  issue: 7
  year: 2015
  end-page: 925
  article-title: Nonlinear response of laterally loaded rigid piles in sliding soil
  publication-title: Canadian Geotechnical Journal
– volume: 126
  start-page: 947
  issue: 11
  year: 2000
  end-page: 954
  article-title: Behaviour of pile subject to excavation‐induced soil movement
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers
– volume: 34
  start-page: 613
  issue: 4
  year: 1984
  end-page: 623
  article-title: The limiting pressure on a circular pile loaded laterally in cohesive soil
  publication-title: Geotechnique
– volume: 45
  start-page: 676
  issue: 5
  year: 2008
  end-page: 697
  article-title: Laterally loaded rigid piles in cohesionless soil
  publication-title: Canadian Geotechnical Journal
– volume: 131
  start-page: 1305
  issue: 10
  year: 2005
  end-page: 1307
  article-title: Discussion on ‘centrifuge model study of laterally loaded pile groups in clay’ by T. IIyas, C. F. Leung, Y. K. Chow and S. S. Budi
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE
– volume: 129
  start-page: 869
  issue: 10
  year: 2003
  end-page: 878
  article-title: Pile response to lateral spreads: centrifuge modeling
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 157
  start-page: 55
  issue: 2
  year: 2004
  end-page: 56
  article-title: Briefing: analysis of piled stabilization of landslides
  publication-title: Proceedings of the Institution of Civil Engineers: Geotechnical Engineering
– volume: 129
  start-page: 879
  issue: 10
  year: 2003
  end-page: 889
  article-title: Single piles in lateral spreads: field bending moment evaluation
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– year: 1998
– year: 2012
– volume: 1
  start-page: 27
  year: 1977
  end-page: 42
– volume: 141
  start-page: 06015002‐1
  issue: 9
  year: 2015
  end-page: 06015002‐11
  article-title: Nonlinear response of lateral piles with compatible cap stiffness and p‐multiplier
  publication-title: Journal of Engineering Mechanics
– volume: 64
  start-page: 486
  issue: 6
  year: 2014
  end-page: 492
  article-title: On the reliability of 3D numerical analyses on passive piles used for slope stabilisation in frictional soils
  publication-title: Geotechnique
– year: 1982
– year: 1980
– volume: 13
  start-page: 292
  issue: 3
  year: 2013
  end-page: 310
  article-title: p based solutions for slope stabilising piles
  publication-title: International Journal of Geomechanics
– year: 2002
– year: 2004
– volume: 44
  start-page: 277
  issue: 2
  year: 1994
  end-page: 296
  article-title: Design of piled bridge abutment on soft clay for loading from lateral soil movements
  publication-title: Geotechnique
– volume: 17
  start-page: 68
  issue: 1
  year: 1977
  end-page: 82
  article-title: Discussion on ‘methods to estimate lateral force acting on stabilising piles’ by Ito, T., and Matsui, T. (1975)
  publication-title: Soils and Foundations
– volume: 3
  start-page: 555
  year: 1981
  end-page: 560
– volume: 35
  start-page: 85
  issue: 4
  year: 1995
  end-page: 92
  article-title: Model tests on single piles subjected to lateral soil movement
  publication-title: Soils and Foundations
– volume: 139
  start-page: 564
  issue: 4
  year: 2013
  end-page: 576
  article-title: Simplified hybrid p‐y spring model for liquefied soils
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 40
  start-page: 46
  issue: 1
  year: 2003
  end-page: 53
  article-title: Response of flexible piles under laterally linear movement of the sliding layer in landslides
  publication-title: Canadian Geotechnical Journal
– volume: 128
  start-page: 279
  issue: 3
  year: 2002
  end-page: 281
  article-title: Discussion of “behavior of pile subject to excavation‐induced soil movement”
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 32
  start-page: 808
  issue: 5
  year: 1995
  end-page: 818
  article-title: Design of reinforcing piles to increase slope stability
  publication-title: Canadian Geotechnical Journal
– volume: 114
  start-page: 1261
  issue: 11
  year: 1998
  end-page: 1276
  article-title: Lateral load behaviour of pile group in sand
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE
– volume: 132
  start-page: 163
  issue: 2
  year: 2006
  end-page: 172
  article-title: Soil‐pile responese to blast‐induced lateral spreading II: analysis and assessment of the p‐y method
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE
– volume: 137
  start-page: 663
  issue: 7
  year: 2011
  end-page: 677
  article-title: Slope stabilizing piles and pile‐groups: parametric study and design insights
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
SSID ssj0005096
Score 2.1814992
Snippet Summary This paper develops a three‐layer model and elastic solutions to capture nonlinear response of rigid, passive piles in sliding soil. Elastic solutions...
Summary This paper develops a three-layer model and elastic solutions to capture nonlinear response of rigid, passive piles in sliding soil. Elastic solutions...
This paper develops a three-layer model and elastic solutions to capture nonlinear response of rigid, passive piles in sliding soil. Elastic solutions are...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1936
SubjectTerms analytical solutions
Capping
closed-form solutions
Earth pressure
Earth rotation
examples
Mathematical models
nonlinear response
Nonlinearity
passive piles
Piles
Sliding
Soil (material)
soil movement
soil-structure interaction
Stiffness
Title Response of rigid piles during passive dragging
URI https://api.istex.fr/ark:/67375/WNG-DC6V3QKT-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.2490
https://www.proquest.com/docview/1816562047
https://www.proquest.com/docview/1827896917
https://www.proquest.com/docview/1835658982
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHf4vTKRXEW7c2TZP2OKZOFAbOn-AhJO2LB2Eb-wHiX-977TqnBxFPPTQtj7z8-Lzk5RvGThXwUMocfGcD4Ytccd8oLv0stDx0xtJOGmVb9OTVg7h-jp_nWZV0FqbUh1gsuFHPKMZr6uDGTlpLoqHmtYmxA4XrlKpFPNT_Uo4iVZNqmzLFOavSnQ14q_oQcZRq8v0bWy4TajHFXG6wl8q4MrPkrTmb2mb28UO38X_Wb7L1OXl67bKpbLEVGGyztSU9wh3W6pcZs-ANnUc3ZuXeCP8-8crDjN4ISRtHRy8fG1qoft1lD5cX950rf36jgm8ikQR-lkFmMEKK09RlUZxmVkqRonPC2AIoZZAeIMiNQ0pMbBRbDGacM0ngYvQlQLTHaoPhAPaZp0In8hC4EyAEqDDNbWKQRUoiAFNnZ0Xt6lGpmqHN-I2SyFSsn3pdfd6Rj9Htzb2-q7NGVf163n8mGrkDQZMHQtXZyeI1tnzazjADGM6oDJ3ilRhv_lYmQmJN0oSjPYU_FvaUes1coyc0eUL32l16Hvy14CFbRXqSNJGFQYPVpuMZHCGhTO1x0RY_ATgD4R0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT9swFMefEBw2DoyxIcpgyyTELW3iOHYiTggG3YBKsDI4IFl28swBqa1KK6H99XsvaUrHAU075RAnevLzj8-zn78G2NMoYqVKDL2LZChLLUKrhQqL2InYW8c7aZxt0VPda_njNr1dgoPmLEytDzFfcOOeUY3X3MF5QbqzoBpq79sUPFC8vsIXelfx1NWzdhTrmjQblTnNWo3ybCQ6zZcEpFyXT3_R5SKjVpPMyTu4a8yrc0se2tOJaxe_Xyg3_qf967A2g8_gsG4t72EJBxuwuiBJ-AE6V3XSLAZDH_ClWWUwot8_BvV5xmBEsE0DZFCOLa9V33-E65Nv_aNuOLtUIbSJzKKwKLCwFCSlee6LJM0Lp5TMyT9x6hC1tgQQGJXWEyhmLkkdxTPe2yzyKbkTMdmE5cFwgFsQ6NjLMkbhJUqJOs5Ll1nCkRoK0LZgv6peM6qFM4wdP3AemU7NTe_UHB-pX8nlWd_8bMFOU_9m1oUeDaEHsaaIpG7B1_lravy8o2EHOJxyGT7IqyjkfK1MQtCa5ZkgeyqHzO2pJZuFIU8Y9oTpHZ7yc_tfC36BN93-xbk5_947-wRvCaYUz2txtAPLk_EUdwlYJu5z1TD_AFAc5Tg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT9swFMct1EloHDZgQ3TACBLaLW3iOHZyRJSWX6qga7dKO1h28swBqY1KK6H99XsvaUrZYZo45RAnsvye7c-zn79m7FQBD6XMwXc2EL7IFfeN4tLPQstDZyztpFG2RV9ejsT1OB4vsyrpLEylD7FacKOeUY7X1MGL3LXXREPNQwtjBwzX3wkZJOTRncGLdBTJmtT7lClOWrXwbMDb9ZfIo9SUz6_gch1Ryzmm-5H9qmtXpZY8thZz28p-_yXc-Lbqb7MPS_T0zipf2WEbMNllW2uChJ9Ye1ClzII3dR5dmZV7Bf79yatOM3oFojYOj14-M7RS_fCZjboXw_NLf3mlgm8ikQR-lkFmMESK09RlUZxmVkqRonXC2AIoZRAfIMiNQ0xMbBRbjGacM0ngYjQmQLTHGpPpBPaZp0In8hC4EyAEqDDNbWIQRiokANNk38rW1UUlm6HN7JGyyFSsf_Z7unMuf0T3N0P9vckO6-bXyw70pBE8kDR5IFSTnaxeo-vTfoaZwHRBZegYr8SA819lIkTWJE041qe0x6o-lWAz12gJTZbQ_bMePb_8b8FjtnnX6erbq_7NAXuPJCVpUguDQ9aYzxZwhLQyt19Lt_wD0bzj8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+rigid+piles+during+passive+dragging&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=Guo%2C+Wei+Dong&rft.date=2016-10-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=40&rft.issue=14&rft.spage=1936&rft_id=info:doi/10.1002%2Fnag.2490&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4170300291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon