Iron–Cobalt-Based Materials: An Efficient Bimetallic Catalyst for Ammonia Synthesis at Low Temperatures
Ammonia is one of the most commonly produced chemicals in the industry. As a result, ∼1–2% of the world’s electrical energy is used, and it produces ∼1.5–2% of global CO2 emissions. Therefore, developing efficient catalysts at milder conditions is highly desirable. Here, efficient iron/cobalt cataly...
Saved in:
Published in | ACS catalysis Vol. 12; no. 1; pp. 587 - 599 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
07.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ammonia is one of the most commonly produced chemicals in the industry. As a result, ∼1–2% of the world’s electrical energy is used, and it produces ∼1.5–2% of global CO2 emissions. Therefore, developing efficient catalysts at milder conditions is highly desirable. Here, efficient iron/cobalt catalysts for ammonia synthesis are prepared with different Fe/Co ratios from phthalocyanine precursors, resulting in Fe–Co bimetallic nanoparticles embedded in a porous carbon–nitrogen matrix. The incorporation of Co to the Fe catalyst up to 20% wt of Co leads to ∼40% enhancement in the activity compared to the monometallic Fe-based catalyst. Interestingly, catalysts exhibit excellent activity even at low temperatures (350 °C). E a for the most efficient 6K–FePc80CoPc20 catalyst is found to be 29 kJ·mol–1, suggesting facile activation of N2 at low temperatures. An in-depth kinetic study revealed that introducing Co in the Fe catalysts drastically tuned the surface of the catalyst by weakening the various NH x retarding species. Density functional theory calculations confirm the thermodynamic feasibility for introducing 25% of Co at surface Fe sites. This indicates that the presence of Co on the surface draws negative charges from neighboring Fe sites, making the exposed Fe sites neutral and more favorable for N2 activation on the bimetallic K2O/Co–Fe catalyst and displaying a more thermodynamically feasible energy profile as compared to the pristine K2O/Fe catalyst. |
---|---|
AbstractList | Ammonia is one of the most commonly produced chemicals in the industry. As a result, ∼1–2% of the world’s electrical energy is used, and it produces ∼1.5–2% of global CO2 emissions. Therefore, developing efficient catalysts at milder conditions is highly desirable. Here, efficient iron/cobalt catalysts for ammonia synthesis are prepared with different Fe/Co ratios from phthalocyanine precursors, resulting in Fe–Co bimetallic nanoparticles embedded in a porous carbon–nitrogen matrix. The incorporation of Co to the Fe catalyst up to 20% wt of Co leads to ∼40% enhancement in the activity compared to the monometallic Fe-based catalyst. Interestingly, catalysts exhibit excellent activity even at low temperatures (350 °C). E a for the most efficient 6K–FePc80CoPc20 catalyst is found to be 29 kJ·mol–1, suggesting facile activation of N2 at low temperatures. An in-depth kinetic study revealed that introducing Co in the Fe catalysts drastically tuned the surface of the catalyst by weakening the various NH x retarding species. Density functional theory calculations confirm the thermodynamic feasibility for introducing 25% of Co at surface Fe sites. This indicates that the presence of Co on the surface draws negative charges from neighboring Fe sites, making the exposed Fe sites neutral and more favorable for N2 activation on the bimetallic K2O/Co–Fe catalyst and displaying a more thermodynamically feasible energy profile as compared to the pristine K2O/Fe catalyst. |
Author | Harb, Moussab Hedhili, Mohamed N Cavallo, Luigi Al Maksoud, Walid Morlanés, Natalia Ahmad, Rafia Rai, Rohit K Basset, Jean-Marie Genovese, Alessandro |
AuthorAffiliation | King Abdullah University of Science and Technology (KAUST) Core Labs KAUST Catalysis Center and Division of Physical Sciences and Engineering |
AuthorAffiliation_xml | – name: Core Labs – name: KAUST Catalysis Center and Division of Physical Sciences and Engineering – name: King Abdullah University of Science and Technology (KAUST) |
Author_xml | – sequence: 1 givenname: Rohit K surname: Rai fullname: Rai, Rohit K organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering – sequence: 2 givenname: Walid surname: Al Maksoud fullname: Al Maksoud, Walid organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering – sequence: 3 givenname: Natalia surname: Morlanés fullname: Morlanés, Natalia organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering – sequence: 4 givenname: Moussab orcidid: 0000-0001-5540-9792 surname: Harb fullname: Harb, Moussab organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering – sequence: 5 givenname: Rafia surname: Ahmad fullname: Ahmad, Rafia organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering – sequence: 6 givenname: Alessandro surname: Genovese fullname: Genovese, Alessandro organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Mohamed N surname: Hedhili fullname: Hedhili, Mohamed N organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Luigi orcidid: 0000-0002-1398-338X surname: Cavallo fullname: Cavallo, Luigi organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering – sequence: 9 givenname: Jean-Marie orcidid: 0000-0003-3166-8882 surname: Basset fullname: Basset, Jean-Marie email: jeanmarie.basset@kaust.edu.sa organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering |
BookMark | eNp9kMFKAzEQhoNUsNbePeYB3Jp0N9nVW1uqFioerOdlNjvBlN2kJCnSm-_gG_okbmkFEXQuMzD_Nz_zn5OedRYJueRsxNmYX4MKCiI0I66YYHlxQvpjLkQislT0fsxnZBjCmnWVCVnkrE_Mwjv7-f4xcxU0MZlCwJo-QkRvoAm3dGLpXGujDNpIp6bFzqUxis72drsQqXaeTtrWWQP0eWfjKwYTKES6dG90he0GPcStx3BBTnV3EofHPiAvd_PV7CFZPt0vZpNlAmkmYwJY60pJXssUUbFKVbVGoWV2gynL8rTQgnGpdF0IXRXpuM50zlUnLopcZ1qmA8IOd5V3IXjU5cabFvyu5Kzcp1V-p1Ue0-oQ-QtRJkI0zkYPpvkPvDqA3aZcu6233Wd_y78AypKFvA |
CitedBy_id | crossref_primary_10_1002_aenm_202404030 crossref_primary_10_1002_adsu_202400507 crossref_primary_10_1016_j_mcat_2024_113961 crossref_primary_10_1021_acssuschemeng_2c06711 crossref_primary_10_1002_adma_202408434 crossref_primary_10_1002_cctc_202400115 crossref_primary_10_1021_acs_iecr_3c04299 crossref_primary_10_1021_acsnano_4c09247 crossref_primary_10_1002_ange_202318967 crossref_primary_10_1021_acsomega_2c05988 crossref_primary_10_1002_cssc_202300942 crossref_primary_10_1016_j_cattod_2024_115054 crossref_primary_10_1016_j_cej_2024_153794 crossref_primary_10_1002_ange_202408309 crossref_primary_10_1016_S1872_5813_23_60397_4 crossref_primary_10_1038_s41467_023_42050_7 crossref_primary_10_1039_D3GC02996D crossref_primary_10_1002_anie_202413227 crossref_primary_10_1016_j_ijhydene_2024_06_206 crossref_primary_10_1016_j_jece_2022_109097 crossref_primary_10_3390_ijms24010765 crossref_primary_10_1002_anie_202318967 crossref_primary_10_1016_j_apcata_2024_119677 crossref_primary_10_1016_j_ccr_2023_215573 crossref_primary_10_1021_acs_est_3c05606 crossref_primary_10_1021_jacs_4c03875 crossref_primary_10_1016_j_ccr_2022_214981 crossref_primary_10_1002_anie_202408309 crossref_primary_10_1002_ange_202413227 crossref_primary_10_1016_j_fuel_2023_130504 crossref_primary_10_1016_j_nexres_2025_100181 crossref_primary_10_1007_s40242_022_2039_4 crossref_primary_10_1016_j_fuel_2024_133174 |
Cites_doi | 10.1021/jacs.7b08891 10.1039/c7ee02220d 10.1016/0021-9517(73)90162-0 10.1039/c9ee02873k 10.1063/1.458452 10.1038/ngeo325 10.1016/j.cattod.2005.10.011 10.1021/acssuschemeng.0c05491 10.1021/cs400336z 10.1002/adma.201604799 10.1103/physrevb.50.17953 10.1016/j.cej.2020.127310 10.1016/s1872-2067(14)60118-2 10.1039/c2cs35185d 10.1039/c1jm12020d 10.1021/ja010963d 10.1021/la981132x 10.1007/s12274-019-2349-0 10.1039/c6cc08566k 10.1016/s0166-9834(00)82492-6 10.1039/b720020j 10.1063/1.1329672 10.1002/adfm.201803309 10.1002/anie.200301553 10.1023/a:1016533224270 10.1016/j.apcata.2005.11.003 10.1007/978-1-4757-9592-9_2 10.1063/1.481103 10.1016/S1466-6049(00)00009-X 10.1073/pnas.82.8.2207 10.1021/acssuschemeng.7b02812 10.1016/j.apcata.2020.117906 10.1016/s0021-9517(02)00182-3 10.1039/c6sc00767h 10.1134/S2070050416040115 10.1038/s41467-020-14287-z 10.1038/ncomms7731 10.1016/j.cattod.2016.08.012 10.1038/s41467-018-03795-8 10.1021/cr040090g 10.1039/b002930k 10.1021/acscatal.8b03650 10.1016/j.apsusc.2010.10.051 10.1039/c3nj00650f 10.1039/c9cy02326g 10.1016/j.jcat.2006.08.012 10.1021/j100784a503 10.1016/0927-0256(96)00008-0 10.1038/nchem.2595 10.1039/c4cs00236a 10.1002/jctb.280590112 10.1038/s41467-020-15868-8 10.1103/physrevlett.77.3865 10.1063/1.1316015 10.1126/science.1143078 10.1103/physrevb.59.1758 10.1039/c3cs60206k 10.1016/j.jcat.2020.10.031 10.1007/s10975-005-0113-9 10.1103/physrevb.13.5188 10.1103/physrevb.60.6146 10.1002/anie.201712398 10.1007/978-1-4757-9592-9_4 10.1103/physrevb.49.14251 10.1103/physrevb.54.11169 10.1021/jacs.0c06624 10.1039/b202781j 10.1021/jp065181r |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acscatal.1c05078 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 599 |
ExternalDocumentID | 10_1021_acscatal_1c05078 a142244486 |
GroupedDBID | 55A 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED GGK GNL IH9 JG K2 RNS ROL UI2 VF5 VG9 W1F .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV BAANH CITATION CUPRZ ED~ JG~ |
ID | FETCH-LOGICAL-a346t-aedfbc61d63eec0bcbdfe5f649e304738f5016cfd85fb832d4f71c63e887f4f63 |
IEDL.DBID | ACS |
ISSN | 2155-5435 |
IngestDate | Tue Jul 01 02:04:10 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Tue Jan 11 05:26:09 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | iron and cobalt phthalocyanines Co−Fe catalyst, alkali promoter, N2 activation carbon embedded bimetallic nanoparticles ammonia synthesis |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a346t-aedfbc61d63eec0bcbdfe5f649e304738f5016cfd85fb832d4f71c63e887f4f63 |
ORCID | 0000-0001-5540-9792 0000-0002-1398-338X 0000-0003-3166-8882 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1021_acscatal_1c05078 crossref_citationtrail_10_1021_acscatal_1c05078 acs_journals_10_1021_acscatal_1c05078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-07 |
PublicationDateYYYYMMDD | 2022-01-07 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 Pereira A. L. C. (ref37/cit37) 2007; 167 ref53/cit53 ref19/cit19 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 Strongin D. R. (ref20/cit20) 1991 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 Strongin D. R. (ref21/cit21) 1991 ref55/cit55 ref69/cit69 Schlögl R. (ref45/cit45) 1991 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref9/cit9 doi: 10.1021/jacs.7b08891 – ident: ref61/cit61 doi: 10.1039/c7ee02220d – ident: ref14/cit14 doi: 10.1016/0021-9517(73)90162-0 – ident: ref10/cit10 doi: 10.1039/c9ee02873k – ident: ref55/cit55 – ident: ref71/cit71 doi: 10.1063/1.458452 – ident: ref2/cit2 doi: 10.1038/ngeo325 – ident: ref50/cit50 doi: 10.1016/j.cattod.2005.10.011 – ident: ref4/cit4 doi: 10.1021/acssuschemeng.0c05491 – ident: ref53/cit53 doi: 10.1021/cs400336z – ident: ref8/cit8 doi: 10.1002/adma.201604799 – ident: ref62/cit62 doi: 10.1103/physrevb.50.17953 – volume-title: Catalytic Ammonia Synthesis Fundamentals and Practice year: 1991 ident: ref20/cit20 – ident: ref11/cit11 doi: 10.1016/j.cej.2020.127310 – ident: ref12/cit12 doi: 10.1016/s1872-2067(14)60118-2 – ident: ref33/cit33 doi: 10.1039/c2cs35185d – ident: ref35/cit35 doi: 10.1039/c1jm12020d – ident: ref39/cit39 doi: 10.1021/ja010963d – ident: ref58/cit58 doi: 10.1021/la981132x – ident: ref17/cit17 doi: 10.1007/s12274-019-2349-0 – ident: ref40/cit40 doi: 10.1039/c6cc08566k – ident: ref46/cit46 doi: 10.1016/s0166-9834(00)82492-6 – ident: ref6/cit6 doi: 10.1039/b720020j – ident: ref69/cit69 doi: 10.1063/1.1329672 – ident: ref23/cit23 doi: 10.1002/adfm.201803309 – ident: ref1/cit1 doi: 10.1002/anie.200301553 – ident: ref29/cit29 doi: 10.1023/a:1016533224270 – ident: ref41/cit41 doi: 10.1016/j.apcata.2005.11.003 – start-page: 19 volume-title: Catalytic Ammonia Synthesis: Fundamentals and Practice year: 1991 ident: ref45/cit45 doi: 10.1007/978-1-4757-9592-9_2 – ident: ref15/cit15 doi: 10.1063/1.481103 – ident: ref43/cit43 doi: 10.1016/S1466-6049(00)00009-X – ident: ref28/cit28 doi: 10.1073/pnas.82.8.2207 – ident: ref31/cit31 doi: 10.1021/acssuschemeng.7b02812 – ident: ref38/cit38 doi: 10.1016/j.apcata.2020.117906 – volume: 167 start-page: 225 volume-title: Studies in Surface Science and Catalysis year: 2007 ident: ref37/cit37 – ident: ref49/cit49 doi: 10.1016/s0021-9517(02)00182-3 – ident: ref7/cit7 doi: 10.1039/c6sc00767h – ident: ref25/cit25 doi: 10.1134/S2070050416040115 – ident: ref13/cit13 doi: 10.1038/s41467-020-14287-z – ident: ref19/cit19 doi: 10.1038/ncomms7731 – ident: ref26/cit26 doi: 10.1016/j.cattod.2016.08.012 – ident: ref16/cit16 doi: 10.1038/s41467-018-03795-8 – ident: ref34/cit34 doi: 10.1021/cr040090g – ident: ref51/cit51 doi: 10.1039/b002930k – ident: ref5/cit5 doi: 10.1021/acscatal.8b03650 – ident: ref56/cit56 doi: 10.1016/j.apsusc.2010.10.051 – ident: ref57/cit57 doi: 10.1039/c3nj00650f – ident: ref32/cit32 doi: 10.1039/c9cy02326g – ident: ref36/cit36 doi: 10.1016/j.jcat.2006.08.012 – ident: ref54/cit54 doi: 10.1021/j100784a503 – ident: ref65/cit65 doi: 10.1016/0927-0256(96)00008-0 – ident: ref18/cit18 doi: 10.1038/nchem.2595 – ident: ref30/cit30 doi: 10.1039/c4cs00236a – ident: ref42/cit42 doi: 10.1002/jctb.280590112 – ident: ref47/cit47 doi: 10.1038/s41467-020-15868-8 – ident: ref67/cit67 doi: 10.1103/physrevlett.77.3865 – ident: ref70/cit70 doi: 10.1063/1.1316015 – ident: ref22/cit22 doi: 10.1126/science.1143078 – ident: ref66/cit66 doi: 10.1103/physrevb.59.1758 – ident: ref52/cit52 doi: 10.1039/c3cs60206k – ident: ref44/cit44 doi: 10.1016/j.jcat.2020.10.031 – ident: ref24/cit24 doi: 10.1007/s10975-005-0113-9 – ident: ref68/cit68 doi: 10.1103/physrevb.13.5188 – ident: ref60/cit60 doi: 10.1103/physrevb.60.6146 – ident: ref27/cit27 doi: 10.1002/anie.201712398 – start-page: 133 volume-title: Catalytic Ammonia Synthesis: Fundamentals and Practice year: 1991 ident: ref21/cit21 doi: 10.1007/978-1-4757-9592-9_4 – ident: ref63/cit63 doi: 10.1103/physrevb.49.14251 – ident: ref64/cit64 doi: 10.1103/physrevb.54.11169 – ident: ref3/cit3 doi: 10.1021/jacs.0c06624 – ident: ref48/cit48 doi: 10.1039/b202781j – ident: ref59/cit59 doi: 10.1021/jp065181r |
SSID | ssj0000456870 |
Score | 2.481557 |
Snippet | Ammonia is one of the most commonly produced chemicals in the industry. As a result, ∼1–2% of the world’s electrical energy is used, and it produces ∼1.5–2% of... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 587 |
Title | Iron–Cobalt-Based Materials: An Efficient Bimetallic Catalyst for Ammonia Synthesis at Low Temperatures |
URI | http://dx.doi.org/10.1021/acscatal.1c05078 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCjiibfIADh7RZHCfllkatCqJc2kq9RbFjSxElRU0qVE78A3_IlzBO0lKxqXc7Y9kTv-cZ-w1Cl5QIU-eO0NxIF3BACYnGAHU0mys9MSmpztUD5-4D7QzI3dAefsnkfM_gm0Y95GkeyagZXAfy4q6jDZO6jjpoeX5vEU9R1MTNa8MBiIEtoAFlVvK3jygs4ukSFi2BSnunqE6U5lqE6i7JY22asRp__anUuMJ4d9F2yS2xVzjDHloTyT7a9Ocl3Q5QfDsZJx9v774SAcm0JiBYhLthVnjhDfYS3MolJQCJcDN-EmBgFHPsK0uzNMPAcLGnPDcOcW-WAHlM4xSHGb4fv-C-AApeSDSnh2jQbvX9jlbWWtBCi9BMC0UkGadGRC0huM44i6SwJSUNoRJzlittIIdcRq4tGewCEZGOwaExbFKSSGodoUoyTsQxwsRSsaTIdrglYVF4yEgDmgjJgCw2bFFFVzBHQfmvpEGeBjeNYD5xQTlxVVSfr07AS8FyVTdj9E-P60WP50Ks48-2JyuO4hRtmerFg4q6OGeokk2m4hx4SMYucgf8BJoX224 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGMrCG1GeHmBgSEkaJ03ZQgRqoWWgrdQtih1biigpalKhMvEf-If8Es5JWioECNbIsU_2xd_nu_g7gBObiqrOa0JzQl3gASWgGkPU0Syu9MSktHWuLji37-xGj970rf4CGNO7MGhEgj0lWRL_U13AOMdnWUCjYnAdOYyzCMvIRarqvOV6nVlYRTEUJysRh1iGQyIbKJKT33WiIIknc5A0hy3Xa3A_syr7peShMk5Zhb98EWz8l9nrsFowTeLmrrEBCyLehJI3LfC2BVFzNIzfX988JQmSapeIZyFpB2nukxfEjclVJjCBuEQuo0eBAwwiTjw10iRJCfJd4io_jgLSmcRIJZMoIUFKWsNn0hVIyHPB5mQbetdXXa-hFZUXtMCkdqoFIpSM20Zom0JwnXEWSmFJm9aFStOZjrSQKnIZOpZkuCeEVNYMjo1xy5JU2uYOLMXDWOwCoaaKLIVWjZsS14YHjNaxiZAMqWPdEmU4xTnyiy8n8bOkeNXwpxPnFxNXhvPpIvm8kC9XVTQGv7xxNnvjKZfu-LHt3h-tOIZSo9tu-a3m3e0-rFTVXQgVj6kdwFI6GotDZCgpO8p88gNYS-PP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGkIALb8SbHODAoVu7pl3HbZRNA7YJaYB2q5qXVAEdop0QnPgP_EN-CU7XTRMCBNfKSazEib_YzWeAQ5fKismr0vCEKfGCElKDodcxHK75xJRyTa4fOHe6buuGXvSdfgGc8VsYVCLBnpIsia939aNQOcOAVcbvWVCjZHETcYw3A7M6a6fvXHW_NwmtaJTiZWXi0J_hsIgI8gTld51ot8STKbc05V-aS3A70Sz7reSuNExZib9-IW38t-rLsJgjTlIfmcgKFGS8CvP-uNDbGkTnT4P44-3d19QgqXGKfk2QTpiObPOE1GPSyIgm0D-R0-hB4gD3ESe-HuklSQniXlLX9hyFpPcSI6RMooSEKWkPnsm1RGA-Im5O1uGm2bj2W0ZegcEIbeqmRiiFYty1hGtLyU3GmVDSUS6tSZ2usz3lIGTkSniOYng2CKqqFkdhPLoUVa69AcV4EMtNINTWESbhVLmtcH14yGgNRaRiCCFrjtyCI5yjIN9BSZAlxytWMJ64IJ-4LSiPFyrgOY25rqZx_0uL40mLxxGFx4-y23_U4gDmrs6aQfu8e7kDCxX9JEKHZaq7UEyfhnIPgUrK9jOz_AS0c-ZS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron%E2%80%93Cobalt-Based+Materials%3A+An+Efficient+Bimetallic+Catalyst+for+Ammonia+Synthesis+at+Low+Temperatures&rft.jtitle=ACS+catalysis&rft.au=Rai%2C+Rohit+K.&rft.au=Al+Maksoud%2C+Walid&rft.au=Morlan%C3%A9s%2C+Natalia&rft.au=Harb%2C+Moussab&rft.date=2022-01-07&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=12&rft.issue=1&rft.spage=587&rft.epage=599&rft_id=info:doi/10.1021%2Facscatal.1c05078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acscatal_1c05078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |