Unraveling the Role of Excess Ligand in Nanoparticle Pattern Formation from an Evaporatively Dewetting Nanofluid Droplet

Nanoparticle (NP) patterning on a solid surface via nanofluid droplet evaporation is one of the most fascinating topics of research. Quite intriguingly, though a dose of excess ligand has been invariably included in all of the experimental studies that resulted in large-area NP patterns, the role of...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 124; no. 42; pp. 23446 - 23453
Main Authors Bhattacharjee, Kaustav, Biswas, Korak, Prasad, Bhagavatula L. V
Format Journal Article
LanguageEnglish
Published American Chemical Society 22.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanoparticle (NP) patterning on a solid surface via nanofluid droplet evaporation is one of the most fascinating topics of research. Quite intriguingly, though a dose of excess ligand has been invariably included in all of the experimental studies that resulted in large-area NP patterns, the role of this excess ligand has been addressed inadequately in the modeling studies carried out so far. Addressing this, we have conducted systematic studies by including excess ligand both in our experiments and modeling, and correlated the results with each other. For this, we prepared nearly monodispersed thiol-protected gold nanoparticle dispersion in toluene and added calculated amounts of excess thiol before drop-casting it onto a transmission electron microscopy (TEM) grid. Subsequently, upon solvent evaporation, the patterns formed were imaged using conventional electron microscopy and analyzed with customized image processing tools, to perform statistically significant measurements. Our study demonstrates the ability of soluble excess ligand to induce NP aggregation under nonequilibrium condition, leading to large-area monolayer formation. These experimental results were then rationalized by Monte Carlo simulations, based on a modified coarse-grained two-dimensional (2D) lattice-gas model. We found that excess ligand facilitates NP spinodal phase separation under nonequilibrium conditions, largely governed by the interplay between ligand–solvent and nanoparticle–ligand interactions. Using power spectrum density analysis, we clearly demonstrate that these spatial patterns have fractal surface characteristics due to persistent fractional Brownian motion within subdiffusion limit.
AbstractList Nanoparticle (NP) patterning on a solid surface via nanofluid droplet evaporation is one of the most fascinating topics of research. Quite intriguingly, though a dose of excess ligand has been invariably included in all of the experimental studies that resulted in large-area NP patterns, the role of this excess ligand has been addressed inadequately in the modeling studies carried out so far. Addressing this, we have conducted systematic studies by including excess ligand both in our experiments and modeling, and correlated the results with each other. For this, we prepared nearly monodispersed thiol-protected gold nanoparticle dispersion in toluene and added calculated amounts of excess thiol before drop-casting it onto a transmission electron microscopy (TEM) grid. Subsequently, upon solvent evaporation, the patterns formed were imaged using conventional electron microscopy and analyzed with customized image processing tools, to perform statistically significant measurements. Our study demonstrates the ability of soluble excess ligand to induce NP aggregation under nonequilibrium condition, leading to large-area monolayer formation. These experimental results were then rationalized by Monte Carlo simulations, based on a modified coarse-grained two-dimensional (2D) lattice-gas model. We found that excess ligand facilitates NP spinodal phase separation under nonequilibrium conditions, largely governed by the interplay between ligand–solvent and nanoparticle–ligand interactions. Using power spectrum density analysis, we clearly demonstrate that these spatial patterns have fractal surface characteristics due to persistent fractional Brownian motion within subdiffusion limit.
Author Biswas, Korak
Bhattacharjee, Kaustav
Prasad, Bhagavatula L. V
AuthorAffiliation Physical and Material Chemistry Division
Indian Institute of Science Education and Research
Academy of Science and Innovation Research (AcSIR)
Department of Physics
AuthorAffiliation_xml – name: Physical and Material Chemistry Division
– name: Department of Physics
– name: Indian Institute of Science Education and Research
– name: Academy of Science and Innovation Research (AcSIR)
Author_xml – sequence: 1
  givenname: Kaustav
  orcidid: 0000-0001-7184-1825
  surname: Bhattacharjee
  fullname: Bhattacharjee, Kaustav
  email: k.bhattacharjee@ncl.res.in
  organization: Physical and Material Chemistry Division
– sequence: 2
  givenname: Korak
  surname: Biswas
  fullname: Biswas, Korak
  organization: Indian Institute of Science Education and Research
– sequence: 3
  givenname: Bhagavatula L. V
  orcidid: 0000-0002-3115-0736
  surname: Prasad
  fullname: Prasad, Bhagavatula L. V
  email: pl.bhagavatula@ncl.res.in
  organization: Academy of Science and Innovation Research (AcSIR)
BookMark eNp1kMtOwzAQRS0EEm1hz9IfQIsdJ068RH0AUgUI0XU08aOkSu3Idkv79yS0YsdqRjP3Xs2cIbq0zmqE7iiZUJLQB5BhsmmlnBBJ8iQTF2hABUvGeZpll399ml-jYQgbQjJGKBugw8p62OumtmscvzT-cI3GzuD5QeoQ8LJeg1W4tvgVrGvBx1p2gneIUXuLF85vIdbOYuPdFoPF8z20znezLvOIZ_pbx9hn93bT7GqFZ961jY436MpAE_TtuY7QajH_nD6Pl29PL9PH5RhYyuM4pzkIlUnKkzQxPAXJikoaUQlBDFNKQfcIKFXxtGIiN0ZwzqksZKFlVvCCjRA55UrvQvDalK2vt-CPJSVlT67syJU9ufJMrrPcnyy_G7fztjvwf_kPbfx2uA
CitedBy_id crossref_primary_10_1039_D3SM00290J
crossref_primary_10_1021_acs_langmuir_3c02316
crossref_primary_10_1039_D1RA03902D
crossref_primary_10_1021_acs_langmuir_3c02542
Cites_doi 10.1103/PhysRevLett.100.176102
10.1021/acs.nanolett.6b01877
10.1039/C39940000801
10.1038/nmat1611
10.1103/PhysRevE.97.052803
10.1021/la200005q
10.1186/2193-9772-3-10
10.1088/0953-8984/21/26/260302
10.1073/pnas.1221962110
10.1103/PhysRevE.76.041609
10.1038/nmat3178
10.1016/j.physrep.2019.01.008
10.1039/c1jm12182k
10.1039/b312640b
10.1351/PAC-REC-08-05-02
10.1021/jp981598o
10.1007/978-1-4899-2578-7
10.1140/epje/i2018-11639-2
10.1021/acs.nanolett.7b00958
10.1039/C0SM00626B
10.1103/PhysRevLett.99.116103
10.1038/ncomms14942
10.1039/C4FD00270A
10.1021/nl903946n
10.1021/jp0102062
10.1021/jacs.5b00839
10.1039/C4CP03465A
10.1021/jp002280a
10.1103/PhysRevE.78.041601
10.1039/C5NR00809C
10.1038/nature02087
10.1021/acs.jpclett.6b02859
10.1002/9783527610501
10.1103/PhysRevB.98.235432
10.1017/CBO9781139174695
10.1103/PhysRevLett.93.135503
10.1016/S1369-7021(09)70156-7
10.1039/C6CS00902F
10.1038/srep17930
10.1021/acs.langmuir.7b00193
10.1088/0031-8949/1986/T13/004
10.1021/acs.jpcc.5b07164
10.1021/acs.langmuir.8b01382
10.1038/nmat3492
10.1038/24808
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.0c07259
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 23453
ExternalDocumentID 10_1021_acs_jpcc_0c07259
i3262514
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABJNI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a346t-717a9d5c16242f64ac38bcf9b990f3ddda530addb64b397ff96661c8c8ec58683
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Fri Aug 23 01:15:09 EDT 2024
Sat Oct 24 14:25:33 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a346t-717a9d5c16242f64ac38bcf9b990f3ddda530addb64b397ff96661c8c8ec58683
ORCID 0000-0002-3115-0736
0000-0001-7184-1825
PageCount 8
ParticipantIDs crossref_primary_10_1021_acs_jpcc_0c07259
acs_journals_10_1021_acs_jpcc_0c07259
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2020-10-22
PublicationDateYYYYMMDD 2020-10-22
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-22
  day: 22
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
Vedmedenko E. Y. (ref5/cit5) 2007
ref46/cit46
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
Russ J. C. (ref41/cit41) 1994
ref7/cit7
Turcotte D. L. (ref42/cit42) 1997
References_xml – ident: ref23/cit23
  doi: 10.1103/PhysRevLett.100.176102
– ident: ref7/cit7
  doi: 10.1021/acs.nanolett.6b01877
– ident: ref16/cit16
  doi: 10.1039/C39940000801
– ident: ref21/cit21
  doi: 10.1038/nmat1611
– ident: ref37/cit37
  doi: 10.1103/PhysRevE.97.052803
– ident: ref31/cit31
  doi: 10.1021/la200005q
– ident: ref30/cit30
  doi: 10.1186/2193-9772-3-10
– ident: ref1/cit1
  doi: 10.1088/0953-8984/21/26/260302
– ident: ref46/cit46
  doi: 10.1073/pnas.1221962110
– ident: ref24/cit24
  doi: 10.1103/PhysRevE.76.041609
– ident: ref36/cit36
  doi: 10.1038/nmat3178
– ident: ref3/cit3
  doi: 10.1016/j.physrep.2019.01.008
– ident: ref8/cit8
  doi: 10.1039/c1jm12182k
– ident: ref28/cit28
  doi: 10.1039/b312640b
– ident: ref32/cit32
  doi: 10.1351/PAC-REC-08-05-02
– ident: ref18/cit18
  doi: 10.1021/jp981598o
– volume-title: Fractal Surfaces
  year: 1994
  ident: ref41/cit41
  doi: 10.1007/978-1-4899-2578-7
  contributor:
    fullname: Russ J. C.
– ident: ref4/cit4
  doi: 10.1140/epje/i2018-11639-2
– ident: ref6/cit6
– ident: ref34/cit34
  doi: 10.1021/acs.nanolett.7b00958
– ident: ref47/cit47
  doi: 10.1039/C0SM00626B
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.99.116103
– ident: ref12/cit12
  doi: 10.1038/ncomms14942
– ident: ref26/cit26
  doi: 10.1039/C4FD00270A
– ident: ref35/cit35
  doi: 10.1021/nl903946n
– ident: ref20/cit20
  doi: 10.1021/jp0102062
– ident: ref33/cit33
  doi: 10.1021/jacs.5b00839
– ident: ref45/cit45
  doi: 10.1039/C4CP03465A
– ident: ref25/cit25
  doi: 10.1021/jp002280a
– ident: ref39/cit39
– ident: ref22/cit22
  doi: 10.1103/PhysRevE.78.041601
– ident: ref9/cit9
  doi: 10.1039/C5NR00809C
– ident: ref27/cit27
  doi: 10.1038/nature02087
– ident: ref14/cit14
  doi: 10.1021/acs.jpclett.6b02859
– volume-title: Competing Interactions and Patterns in Nanoworld
  year: 2007
  ident: ref5/cit5
  doi: 10.1002/9783527610501
  contributor:
    fullname: Vedmedenko E. Y.
– ident: ref13/cit13
  doi: 10.1103/PhysRevB.98.235432
– volume-title: Fractals and Chaos in Geology and Geophysics
  year: 1997
  ident: ref42/cit42
  doi: 10.1017/CBO9781139174695
  contributor:
    fullname: Turcotte D. L.
– ident: ref19/cit19
  doi: 10.1103/PhysRevLett.93.135503
– ident: ref15/cit15
  doi: 10.1016/S1369-7021(09)70156-7
– ident: ref2/cit2
  doi: 10.1039/C6CS00902F
– ident: ref10/cit10
  doi: 10.1038/srep17930
– ident: ref29/cit29
  doi: 10.1021/acs.langmuir.7b00193
– ident: ref43/cit43
  doi: 10.1088/0031-8949/1986/T13/004
– ident: ref11/cit11
  doi: 10.1021/acs.jpcc.5b07164
– ident: ref38/cit38
  doi: 10.1021/acs.langmuir.8b01382
– ident: ref40/cit40
  doi: 10.1038/nmat3492
– ident: ref17/cit17
  doi: 10.1038/24808
SSID ssj0053013
Score 2.4133208
Snippet Nanoparticle (NP) patterning on a solid surface via nanofluid droplet evaporation is one of the most fascinating topics of research. Quite intriguingly, though...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 23446
SubjectTerms C: Physical Processes in Nanomaterials and Nanostructures
Title Unraveling the Role of Excess Ligand in Nanoparticle Pattern Formation from an Evaporatively Dewetting Nanofluid Droplet
URI http://dx.doi.org/10.1021/acs.jpcc.0c07259
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB60HvTiLtaNOejBQ2I72SbH0oUiKqIWeguTWaRapqVJsfrrfTNJsLiAx4TkEd68vPd9vA2h8yACq-UBc_w4VI5PA-HEMVxSHgOPi1IW2S7X27uwP_Cvh8Hwa0zO9ww-aV4xnrkvU87dBm9EANZX0RqBsGiIVqv9WHndAAzVKzLIgBh9PypTkr9JMIGIZ0uBaCmi9LaK1USZHURoCkle3Xmeuvzj55jGf3zsNtosgSVuFZawg1ak3kXr7Wqf2x5aDLRZNWTazzGgPvwwGUs8Ubi7MJ0C-Gb0zLTAI43B4QKTLuTgezt_U-Ne1eSITUMKZhoDBrczkMFdjt9xR75JW0JtX1fj-UjgzsxUp-f7aNDrPrX7Trl3wWGeH-YOMDwWi4A3Te-ICn3GPZpyFacQuZQnhGCgbfCLaeinAGeUAsoUNjnlVPKAhtQ7QDU90fIQ4ZiEiinCKAGeF7GACsLBC0RcNhggQVJHF6CypPxvssSmxEkzsTdBj0mpxzq6rA4rmRZjOP589uifMo_RBjHkGQIRISeols_m8hQQRp6eWdP6BFHQzQs
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGOMCFN2I8c4ADh441bdr0iPbQgA0h2KTdqjRt0GDqEOvE4NfjZC0gBBIcG7VW5Lj2Z9mfA3DMfLRayYTlBp6yXM5iKwjwkcsA8zg_Er5huXavvXbfvRywQQnsgguDm5igpIkp4n9OF7DP9NrDk5TVmqz5iNkXYJH5GOw0GqrfFc6Xob0680IyAkfX9fPK5E8SdDySky_x6Etgaa3C7ceWTD_JY3WaRVX59m1a47_2vAYrOcwk53O7WIdSkm7AUr243W0TZv1UXzykyegEMSC5HY8SMlakOdO8AdIZ3os0JsOUoPvFvHouh9yYaZwpaRWUR6LpKUSkBBG5mYiMznP0ShrJS2Iaqs3najQdxqTxrHvVsy3ot5q9etvKb2GwhON6mYX5nghiJm3NJFGeK6TDI6mCCOOYcuI4Fqh09JKR50YIbpTCBMqzJZc8kYx73NmGcjpOkx0gAfWUUFRwilmfLxiPqUSf4MukJhAX0gqcoMrC_C-ahKZATu3QLKIew1yPFTgtzix8mg_l-PXd3T_KPIKldq_bCTsX11d7sEx1Wo0hitJ9KGfP0-QAsUcWHRpreweq79V2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SMCFN-JNDnDg0LGmSZse0cbEWwgY4lalSYMGUzexTjx-PU7WIoRAgmOj1opcx_4s-3MAdnmEVqu49FgcGo8Jrr04xkehYszjolRGjuV6cRket9npPb8fA15xYXATA5Q0cEV8e6r72pQTBvwDu_7YV6pWV_UIcfs4TPLIZ_Y8HjZuKgfM0WaDUTEZwSNjUVmd_EmCjUlq8CUmfQkurTm4-9yW6yl5qg2LtKbev01s_Pe-52G2hJvkcGQfCzCW5Ysw3ahueVuC13ZuLyCypHSCWJBc97oZ6Rly9Gr5A-S88yBzTTo5QTeM-fVIDrlyUzlz0qqoj8TSVIjMCSJzNxkZnWj3jTSzl8w1VrvPTXfY0aT5bHvWi2Vot45uG8deeRuDJwMWFh7mfTLWXPmWUWJCJlUgUmXiFOOZCbTWEhWP3jINWYogxxhMpEJfCSUyxUUoghWYyHt5tgokpqGRhkpBMfuLJBeaKvQNkcrqEvEhXYM9VFlSnqZB4grl1E_cIuoxKfW4BvvVf0v6o-Ecv767_keZOzB11Wwl5yeXZxswQ212jZGK0k2YKJ6H2RZCkCLddgb3AZDs1_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Role+of+Excess+Ligand+in+Nanoparticle+Pattern+Formation+from+an+Evaporatively+Dewetting+Nanofluid+Droplet&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Bhattacharjee%2C+Kaustav&rft.au=Biswas%2C+Korak&rft.au=Prasad%2C+Bhagavatula+L.+V.&rft.date=2020-10-22&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=124&rft.issue=42&rft.spage=23446&rft.epage=23453&rft_id=info:doi/10.1021%2Facs.jpcc.0c07259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_0c07259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon