PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co3O4 p‑Type Semiconductor in Cells and the Lung

We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 136; no. 17; pp. 6406 - 6420
Main Authors Zhang, Haiyuan, Pokhrel, Suman, Ji, Zhaoxia, Meng, Huan, Wang, Xiang, Lin, Sijie, Chang, Chong Hyun, Li, Linjiang, Li, Ruibin, Sun, Bingbing, Wang, Meiying, Liao, Yu-Pei, Liu, Rong, Xia, Tian, Mädler, Lutz, Nel, André E
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 30.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0–8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E c levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from −4.12 to −4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E v, E c, and E f levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4.
AbstractList We demonstrate through PdO doping that creation of heterojunctions on Co₃O₄ nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0–8.9%) allowed electron transfer from Co₃O₄ to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co₃O₄ interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the Ec levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from −4.12 to −4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co₃O₄ nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co₃O₄ nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of Eᵥ, Ec, and Ef levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co₃O₄.
We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0-8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E(c) levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from -4.12 to -4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E(v), E(c), and E(f) levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4.We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0-8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E(c) levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from -4.12 to -4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E(v), E(c), and E(f) levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4.
We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0–8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E c levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from −4.12 to −4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E v, E c, and E f levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4.
We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0-8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E(c) levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from -4.12 to -4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E(v), E(c), and E(f) levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4.
Author Li, Linjiang
Liu, Rong
Sun, Bingbing
Wang, Meiying
Liao, Yu-Pei
Meng, Huan
Chang, Chong Hyun
Nel, André E
Wang, Xiang
Mädler, Lutz
Ji, Zhaoxia
Pokhrel, Suman
Lin, Sijie
Li, Ruibin
Xia, Tian
Zhang, Haiyuan
AuthorAffiliation Chinese Academy of Sciences
Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry
California NanoSystems Institute
University of Bremen
Department of Chemical & Biomolecular Engineering
Division of NanoMedicine, Department of Medicine
Foundation Institute of Materials Science (IWT), Department of Production Engineering
University of California
AuthorAffiliation_xml – name: Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry
– name: California NanoSystems Institute
– name: University of California
– name: Chinese Academy of Sciences
– name: Foundation Institute of Materials Science (IWT), Department of Production Engineering
– name: University of Bremen
– name: Division of NanoMedicine, Department of Medicine
– name: Department of Chemical & Biomolecular Engineering
Author_xml – sequence: 1
  givenname: Haiyuan
  surname: Zhang
  fullname: Zhang, Haiyuan
– sequence: 2
  givenname: Suman
  surname: Pokhrel
  fullname: Pokhrel, Suman
– sequence: 3
  givenname: Zhaoxia
  surname: Ji
  fullname: Ji, Zhaoxia
– sequence: 4
  givenname: Huan
  surname: Meng
  fullname: Meng, Huan
– sequence: 5
  givenname: Xiang
  surname: Wang
  fullname: Wang, Xiang
– sequence: 6
  givenname: Sijie
  surname: Lin
  fullname: Lin, Sijie
– sequence: 7
  givenname: Chong Hyun
  surname: Chang
  fullname: Chang, Chong Hyun
– sequence: 8
  givenname: Linjiang
  surname: Li
  fullname: Li, Linjiang
– sequence: 9
  givenname: Ruibin
  surname: Li
  fullname: Li, Ruibin
– sequence: 10
  givenname: Bingbing
  surname: Sun
  fullname: Sun, Bingbing
– sequence: 11
  givenname: Meiying
  surname: Wang
  fullname: Wang, Meiying
– sequence: 12
  givenname: Yu-Pei
  surname: Liao
  fullname: Liao, Yu-Pei
– sequence: 13
  givenname: Rong
  surname: Liu
  fullname: Liu, Rong
– sequence: 14
  givenname: Tian
  surname: Xia
  fullname: Xia, Tian
– sequence: 15
  givenname: Lutz
  surname: Mädler
  fullname: Mädler, Lutz
  email: lmaedler@iwt.uni-bremen.de
– sequence: 16
  givenname: André E
  surname: Nel
  fullname: Nel, André E
  email: anel@mednet.ucla.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24673286$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOwzAQRS0EgvJY8APIGyQ2Ab_iOEsoT6lSERSxjBx7UlK1dogTRHds-AB-kS_BFY8tq6vRnLmaubON1p13gNA-JceUMHoy0ymhMs9hDQ1oykiSUibX0YAQwpJMSb6FtkOYxVIwRTfRFhMy40zJAXq_tWN87pvaTfGkdxDwmXY2udINvnDQTpd4BC8wD1gH_Ajz-UrHr7XVXf0C-L5rIQR8B6HxLsThzmONh56PBW4-3z4myyZCsKiNd7Y3nW9x7fAw-kRDZ3H3BHjUu-ku2qj0PMDej-6gh8uLyfA6GY2vboano0RzIbtE8tJWZSWkKUvFhaksZ2VKDa-EoZVhSmUaDMt4ymWWlZQLVrJcxTbLbW4E30FH375N6597CF2xqIOJ62gHvg8FixHxTChG_kVXOfOUZWrlevCD9uUCbNG09UK3y-I35QgcfgPahGLm-9bFIwtKitX3ir_v8S-C3orp
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID N~.
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/ja501699e
DatabaseName American Chemical Society (ACS) Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 6420
ExternalDocumentID 24673286
a203717868
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: U19 ES019528
– fundername: NIEHS NIH HHS
  grantid: R01 ES016746
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
N~.
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYWT
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
IH2
NPM
XSW
YQT
ZCA
~02
7X8
7S9
L.6
ID FETCH-LOGICAL-a346t-63bdfbf46cbb834cfd32b51c3f4c1fc2887aec27353677b1342b2983f429d9c43
IEDL.DBID N~.
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 02:23:44 EDT 2025
Mon Jul 21 10:36:26 EDT 2025
Mon Jul 21 06:07:38 EDT 2025
Thu Aug 27 13:42:28 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a346t-63bdfbf46cbb834cfd32b51c3f4c1fc2887aec27353677b1342b2983f429d9c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/ja501699e
PMID 24673286
PQID 1520352784
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2000374820
proquest_miscellaneous_1520352784
pubmed_primary_24673286
acs_journals_10_1021_ja501699e
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
N~.
UI2
PublicationCentury 2000
PublicationDate 2014-04-30
PublicationDateYYYYMMDD 2014-04-30
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References 19603646 - Environ Sci Technol. 2009 Jun 15;43(12):4355-60
8806885 - Toxicol Appl Pharmacol. 1996 Sep;140(1):188-99
22240982 - Toxicol Sci. 2012 Apr;126(2):469-77
19446243 - Toxicol Lett. 2009 Jul 24;188(2):112-8
21317892 - Nat Nanotechnol. 2011 Mar;6(3):175-8
20043640 - ACS Nano. 2010 Jan 26;4(1):15-29
16209704 - Part Fibre Toxicol. 2005 Oct 06;2:8
22693953 - Chem Res Toxicol. 2012 Aug 20;25(8):1675-81
19539014 - Toxicol Lett. 2009 Sep 28;189(3):253-9
21155558 - ACS Nano. 2011 Jan 25;5(1):443-9
21255821 - Sci Total Environ. 2011 Mar 1;409(7):1219-28
19558235 - Inhal Toxicol. 2009 Jul;21 Suppl 1:61-7
16895376 - Nano Lett. 2006 Aug;6(8):1794-807
23689214 - Nanoscale. 2013 Jun 21;5(12):5644-53
21250651 - ACS Nano. 2011 Feb 22;5(2):1223-35
20561263 - Risk Anal. 2010 Nov;30(11):1723-34
19924979 - Environ Sci Technol. 2009 Nov 1;43(21):8423-9
24387092 - ACS Appl Mater Interfaces. 2014 Feb 12;6(3):1959-70
19270794 - Environ Health Perspect. 2009 Feb;117(2):241-7
22924492 - J Am Chem Soc. 2012 Sep 26;134(38):15790-804
16456071 - Science. 2006 Feb 3;311(5761):622-7
23893238 - Nat Commun. 2013;4:2195
21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69
23194152 - Acc Chem Res. 2013 Mar 19;46(3):632-41
23851924 - Nat Commun. 2013;4:2169
20729176 - Environ Health Perspect. 2010 Dec;118(12):1699-706
21828028 - Eur Respir J. 2012 Mar;39(3):546-57
19206459 - ACS Nano. 2008 Oct 28;2(10):2121-34
17517904 - J Biomol Screen. 2007 Aug;12(5):645-55
21062097 - Chem Rev. 2010 Nov 10;110(11):6446-73
20512811 - Adv Mater. 2010 Jun 25;22(24):2601-27
20820719 - Nanoscale. 2010 Aug;2(8):1324-47
22057388 - Nat Mater. 2011 Nov 06;11(1):76-81
22783915 - Chem Rev. 2012 Oct 10;112(10):5520-51
21609138 - Nanotoxicology. 2011 Jun;5(2):228-35
20155585 - J Toxicol Environ Health A. 2010;73(5):445-61
23425045 - Acc Chem Res. 2013 Jul 16;46(7):1558-66
16613837 - Toxicol Sci. 2006 Jul;92(1):174-85
21678906 - J Am Chem Soc. 2011 Jul 27;133(29):11270-8
17276655 - Genomics. 2007 Apr;89(4):552-61
20536146 - Environ Sci Technol. 2010 Oct 1;44(19):7309-14
23530781 - Acc Chem Res. 2013 Aug 20;46(8):1900-9
22502734 - ACS Nano. 2012 May 22;6(5):4349-68
21384562 - Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011 May-Jun;3(3):298-306
22587225 - ACS Nano. 2012 Jun 26;6(6):5164-73
20066380 - Phys Chem Chem Phys. 2010 Jan 28;12(4):947-59
20827377 - Nanotoxicology. 2008 Mar;2(1):33-42
11028997 - Nature. 2000 Sep 28;407(6803):496-9
19644458 - Nat Methods. 2009 Aug;6(8):569-75
16039403 - Toxicol Lett. 2005 Aug 14;158(2):152-7
23296910 - Small. 2013 Apr 8;9(7):970-82
References_xml – reference: 21678906 - J Am Chem Soc. 2011 Jul 27;133(29):11270-8
– reference: 21062097 - Chem Rev. 2010 Nov 10;110(11):6446-73
– reference: 22057388 - Nat Mater. 2011 Nov 06;11(1):76-81
– reference: 17276655 - Genomics. 2007 Apr;89(4):552-61
– reference: 16456071 - Science. 2006 Feb 3;311(5761):622-7
– reference: 22240982 - Toxicol Sci. 2012 Apr;126(2):469-77
– reference: 20729176 - Environ Health Perspect. 2010 Dec;118(12):1699-706
– reference: 23194152 - Acc Chem Res. 2013 Mar 19;46(3):632-41
– reference: 23893238 - Nat Commun. 2013;4:2195
– reference: 22587225 - ACS Nano. 2012 Jun 26;6(6):5164-73
– reference: 16209704 - Part Fibre Toxicol. 2005 Oct 06;2:8
– reference: 19924979 - Environ Sci Technol. 2009 Nov 1;43(21):8423-9
– reference: 16895376 - Nano Lett. 2006 Aug;6(8):1794-807
– reference: 21155558 - ACS Nano. 2011 Jan 25;5(1):443-9
– reference: 22924492 - J Am Chem Soc. 2012 Sep 26;134(38):15790-804
– reference: 21828028 - Eur Respir J. 2012 Mar;39(3):546-57
– reference: 20512811 - Adv Mater. 2010 Jun 25;22(24):2601-27
– reference: 24387092 - ACS Appl Mater Interfaces. 2014 Feb 12;6(3):1959-70
– reference: 23425045 - Acc Chem Res. 2013 Jul 16;46(7):1558-66
– reference: 19558235 - Inhal Toxicol. 2009 Jul;21 Suppl 1:61-7
– reference: 8806885 - Toxicol Appl Pharmacol. 1996 Sep;140(1):188-99
– reference: 20155585 - J Toxicol Environ Health A. 2010;73(5):445-61
– reference: 17517904 - J Biomol Screen. 2007 Aug;12(5):645-55
– reference: 19446243 - Toxicol Lett. 2009 Jul 24;188(2):112-8
– reference: 20066380 - Phys Chem Chem Phys. 2010 Jan 28;12(4):947-59
– reference: 16039403 - Toxicol Lett. 2005 Aug 14;158(2):152-7
– reference: 16613837 - Toxicol Sci. 2006 Jul;92(1):174-85
– reference: 21609138 - Nanotoxicology. 2011 Jun;5(2):228-35
– reference: 20820719 - Nanoscale. 2010 Aug;2(8):1324-47
– reference: 11028997 - Nature. 2000 Sep 28;407(6803):496-9
– reference: 23689214 - Nanoscale. 2013 Jun 21;5(12):5644-53
– reference: 19270794 - Environ Health Perspect. 2009 Feb;117(2):241-7
– reference: 19206459 - ACS Nano. 2008 Oct 28;2(10):2121-34
– reference: 23296910 - Small. 2013 Apr 8;9(7):970-82
– reference: 23851924 - Nat Commun. 2013;4:2169
– reference: 20536146 - Environ Sci Technol. 2010 Oct 1;44(19):7309-14
– reference: 21255821 - Sci Total Environ. 2011 Mar 1;409(7):1219-28
– reference: 20043640 - ACS Nano. 2010 Jan 26;4(1):15-29
– reference: 19539014 - Toxicol Lett. 2009 Sep 28;189(3):253-9
– reference: 22693953 - Chem Res Toxicol. 2012 Aug 20;25(8):1675-81
– reference: 21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69
– reference: 22783915 - Chem Rev. 2012 Oct 10;112(10):5520-51
– reference: 19644458 - Nat Methods. 2009 Aug;6(8):569-75
– reference: 19603646 - Environ Sci Technol. 2009 Jun 15;43(12):4355-60
– reference: 20561263 - Risk Anal. 2010 Nov;30(11):1723-34
– reference: 23530781 - Acc Chem Res. 2013 Aug 20;46(8):1900-9
– reference: 21384562 - Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011 May-Jun;3(3):298-306
– reference: 21317892 - Nat Nanotechnol. 2011 Mar;6(3):175-8
– reference: 20827377 - Nanotoxicology. 2008 Mar;2(1):33-42
– reference: 21250651 - ACS Nano. 2011 Feb 22;5(2):1223-35
– reference: 22502734 - ACS Nano. 2012 May 22;6(5):4349-68
SSID ssj0004281
Score 2.4863229
Snippet We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study...
We demonstrate through PdO doping that creation of heterojunctions on Co₃O₄ nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study...
SourceID proquest
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 6406
SubjectTerms Animals
Cell Line
Cobalt - chemistry
Cobalt - toxicity
cobalt oxide
cytokines
cytotoxicity
Cytotoxins - chemistry
Cytotoxins - toxicity
electron transfer
energy
epithelium
glutathione
homeostasis
Humans
hydroxyl radicals
Lung - cytology
Lung - drug effects
Lung - metabolism
lungs
macrophages
Macrophages - cytology
Macrophages - drug effects
Macrophages - metabolism
nanoparticles
Nanoparticles - chemistry
Nanoparticles - toxicity
Nanoparticles - ultrastructure
oxidants
oxidative stress
Oxidative Stress - drug effects
Oxides - chemistry
Oxides - toxicity
Palladium - chemistry
Palladium - toxicity
pyrolysis
redox potential
semiconductors
Semiconductors - adverse effects
stress response
Title PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co3O4 p‑Type Semiconductor in Cells and the Lung
URI http://dx.doi.org/10.1021/ja501699e
https://www.ncbi.nlm.nih.gov/pubmed/24673286
https://www.proquest.com/docview/1520352784
https://www.proquest.com/docview/2000374820
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYoHNoLKvTBtmU1VXtNRWYcxz7SFIoQdKsuqNyi-BEJCSUrdlfiVPXCD-Av9pd0nGxULquefPBD1ng0_kYz840QH8m4VDEyTrylKpE2dYl2tUqM8gatlC7tIqbn39TJpTy9yq42xIc1EXyM_EBZZAwx4YnYQsXqFrtb_vr0r_gRdTpg3FwrGuiDHm-NX4-brweR3Wdy_Fxsr1AgHPbPtiM2QrMrnhZD87UX4v67n8CXrpgJLpZsjuAzu_zJ12oGR121HpzFbJ85VHP4GW5u4ji5u_YdjTdMuwIQ-NHnv_LmRQsVFC1NJMz-_H6IzidMY1p820S-1_YWrhso-Bw-sPHAoBDO2Aq8FJfHRxfFSbLqmJBUJNUiUWR9bWupnLWapKs9oc1SRzULvXbIFqUKjhFLRirPbUoSLRrN02i8cZJeic2mbcKeAHIy08GaOkcvFeaVCjVjMS2JzIEjGokxi7Rcafy87ILZyM7EIPOReD9Iu2ThxThE1YR2yUszjCysuZbr1-CKGQcPRuJ1_1TlrOffKJGNO6FWb_53hbfiGeMb2Qd_3onNxe0y7DOGWNgxY-hiOu406S_Ay8Gf
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMoFyntpKYPENVVjO459LKFlgW0XsVvRW-RXpIoqWTVZCXHiwg_gL_aXMHYSFSFVcMoh9mjkx8xnzcw3hLxmyqYCkXHiDNMJN6lNpK1EooRT1HBu0xgxPT4R01P-4Sw7G2hyQi0MKtGipDYG8a_ZBQJNUBaIQ5S_Te4gCKHhNB8Ui-saSCrTEermUrCRRejPqcED2fZmLBl9ytH9vjlR1CamknzdW3dmz37_i6jx_9TdIvcGaAkH_Vl4QG75-iHZLMaObo_Iz09uDm9jhRQs12jj4I2uXfJOr-AwlgDCLKQQtaBb-OIvLsJ3_u3cRW5wWMSqEvjcJ9Xi5K4BDUXD5hxWVz9-hRctLEKufVMHEtnmEs5rKFAOCqwdINKEGZqWx-T06HBZTJOhDUOiGRddIphxlam4sMZIxm3lGDVZalmFO1lZimZKe4swKGMiz03KODVUSfxNlVOWsydko25q_4wAszyT3qgqp44LmmvhKwR4kjOm9i1jE7KLi1kO16gtY4Sc4gtlXM0JeTXuXYmLF4IbuvbNGodmNFC75pLfPIYOdDt0f0Ke9htfrnpSj5Kix2BUiuf_UuEl2Zwuj2fl7P3Jx21yFwEU76NLO2Sju1z7FwhSOrMbT-dvqfHfjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagSMAF8c8WKIPENWjjcRz7CNsuBZbdiraityj-kypVyarZlThVXHgAXpEnYewkgkvFKYfYI2tsj7_RzHzD2BvUNpeEjDNnsM6EyW2mbJCZlk5zI4TNU8T0y1IenopPZ8XZ4CjGWhhaREeSuhTEj7d67cLAMBCpgopIHqL9TXaLYMg0tmpYXr39WwfJVT7C3VJJHJmE_p0aXyHbXY8n07syv8_uDYAQ3vU7-IDd8M1Ddmc29mF7xH4euRXsp7omONmSZYL35P1nH-o1HKTCPVjExJ8O6g6--YuL-F19P3eJ0RuOUy0IfO1TYWnypoUaZi2uBKx___gV_VA4jhnybROpX9tLOG9gRnJIYOOA8CEsyCA8Zqfzg5PZYTY0T8hqFHKTSTQumCCkNUahsMEhN0VuMZD-g-VkXGpvCbwUKMvS5Ci44VrRb66dtgKfsJ2mbfwzBmhFobzRoeROSF7W0geCZUog6qlFnLA9Umk1HP6uSnFtTn7FqPMJez1quyLlxZBE3fh2S0MLHglZSyWuH8MHkhw-nbCn_VZV656Ko-Jk55Erufu_Jbxit4_259Xi4_Lzc3aXUI_oQ0Iv2M7mcutfErLYmL10nP4Al7_HWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PdO+Doping+Tunes+Band-Gap+Energy+Levels+as+Well+as+Oxidative+Stress+Responses+to+a+Co3O4+p%E2%80%91Type+Semiconductor+in+Cells+and+the+Lung&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhang%2C+Haiyuan&rft.au=Pokhrel%2C+Suman&rft.au=Ji%2C+Zhaoxia&rft.au=Meng%2C+Huan&rft.date=2014-04-30&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=136&rft.issue=17&rft.spage=6406&rft.epage=6420&rft_id=info:doi/10.1021%2Fja501699e&rft.externalDocID=a203717868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon