Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes

Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semico...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 7; no. 3; pp. 471 - 479
Main Authors Rettie, Alexander J. E, Chemelewski, William D, Emin, David, Mullins, C. Buddie
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.02.2016
Online AccessGet full text
ISSN1948-7185
1948-7185
DOI10.1021/acs.jpclett.5b02143

Cover

Loading…
Abstract Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10–4 and 10–2 cm2 V–1 s–1, respectively. Future directions to build a full picture of charge transport in this family of materials are discussed.
AbstractList Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10–4 and 10–2 cm2 V–1 s–1, respectively. Future directions to build a full picture of charge transport in this family of materials are discussed.
Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed.
Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed.Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed.
Author Rettie, Alexander J. E
Mullins, C. Buddie
Chemelewski, William D
Emin, David
AuthorAffiliation Department of Chemistry and Biochemistry
Department of Physics and Astronomy
The University of Texas at Austin
Texas Materials Institute
The University of New Mexico
McKetta Department of Chemical Engineering
AuthorAffiliation_xml – name: Department of Physics and Astronomy
– name: Texas Materials Institute
– name: The University of Texas at Austin
– name: The University of New Mexico
– name: McKetta Department of Chemical Engineering
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Alexander J. E
  surname: Rettie
  fullname: Rettie, Alexander J. E
– sequence: 2
  givenname: William D
  surname: Chemelewski
  fullname: Chemelewski, William D
– sequence: 3
  givenname: David
  surname: Emin
  fullname: Emin, David
– sequence: 4
  givenname: C. Buddie
  surname: Mullins
  fullname: Mullins, C. Buddie
  email: mullins@che.utexas.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26758715$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtOwzAQRS1URB_wBUgoSzZp4ySOkyVUvKSiVqJdWxNnAqlcu9gugr8n0FRCLLqyPb5nNHOGpKeNRkIuaTSmUUwnIN14vZUKvR-zsq2kyQkZ0CLNQ05z1vtz75Ohc-soyooo52ekH2ec5ZyyAbldaQsfqFSjX4OXDSgVLowCa3SwtKDd1lgfNDp4Rg8qmH82FQaLN-MNKpTemgrdOTmtQTm86M4RWd3fLaeP4Wz-8DS9mYWQpMyHEmWNZYkJZyDTvKzbdwwpSyitsioqAHjNSskhzwBpFdOY8zTJcsY48KqukxG53vfdWvO-Q-fFpnGyHR00mp0TlGdxkSUxpW30qovuyg1WYmubDdgvcdi7DRT7gLTGOYu1kI0H3xjtLTRK0Ej8OBatY9E5Fp3jlk3-sYf2x6nJnvr9NDurW1dHiW9lE5UP
CitedBy_id crossref_primary_10_1021_acs_jpcc_3c06808
crossref_primary_10_1103_PhysRevMaterials_7_064602
crossref_primary_10_1515_rams_2022_0043
crossref_primary_10_1021_acs_jpcc_0c05447
crossref_primary_10_1021_acsaem_0c00028
crossref_primary_10_1039_D2NA00029F
crossref_primary_10_1021_acs_jpcc_3c00146
crossref_primary_10_1021_acs_jpclett_0c02330
crossref_primary_10_1002_aenm_202101041
crossref_primary_10_1103_PhysRevB_97_195150
crossref_primary_10_1016_j_optmat_2023_114191
crossref_primary_10_1021_acs_jpclett_3c03380
crossref_primary_10_3390_ma17133071
crossref_primary_10_1103_PhysRevLett_126_037202
crossref_primary_10_1016_j_ceramint_2021_04_026
crossref_primary_10_1016_j_jphotochemrev_2019_02_001
crossref_primary_10_1021_acs_jpclett_0c01590
crossref_primary_10_1021_acs_jpclett_3c03128
crossref_primary_10_1002_adma_201706577
crossref_primary_10_1021_acs_energyfuels_0c03342
crossref_primary_10_1021_acs_jpcc_3c07206
crossref_primary_10_1016_j_mattod_2021_10_028
crossref_primary_10_1039_C9TC01036J
crossref_primary_10_1021_acs_jpclett_9b02552
crossref_primary_10_1002_admi_201700064
crossref_primary_10_1021_acs_chemmater_6b00830
crossref_primary_10_1021_acs_jpclett_1c00003
crossref_primary_10_1021_jacs_2c03994
crossref_primary_10_1038_s41578_021_00343_7
crossref_primary_10_1002_adma_202004490
crossref_primary_10_1039_C8TA06269B
crossref_primary_10_1021_acsenergylett_6b00586
crossref_primary_10_1063_1_5025569
crossref_primary_10_1039_D4TA08318K
crossref_primary_10_1002_adom_202202660
crossref_primary_10_1021_acsaem_2c00470
crossref_primary_10_1103_PhysRevB_95_161110
crossref_primary_10_1016_j_cap_2024_05_007
crossref_primary_10_1039_C9CP03374B
crossref_primary_10_1002_aenm_201701536
crossref_primary_10_1039_C6CP04526J
crossref_primary_10_1038_s41578_020_0198_9
crossref_primary_10_54939_1859_1043_j_mst_96_2024_3_11
crossref_primary_10_1007_s10854_018_9431_3
crossref_primary_10_1016_j_nanoen_2017_02_051
crossref_primary_10_1021_acs_jpcc_9b07391
crossref_primary_10_1088_0957_4484_27_50_505207
crossref_primary_10_1021_acs_chemmater_7b00807
crossref_primary_10_1021_jacs_9b09056
crossref_primary_10_1016_j_joule_2017_12_007
crossref_primary_10_1021_acs_jpclett_4c02493
crossref_primary_10_1016_j_chempr_2024_12_006
crossref_primary_10_1016_j_mtener_2023_101399
crossref_primary_10_1002_ange_201912475
crossref_primary_10_1038_nmat4936
crossref_primary_10_1142_S1793604716500478
crossref_primary_10_1016_j_nantod_2019_100763
crossref_primary_10_1002_admi_201601235
crossref_primary_10_3390_app10217818
crossref_primary_10_1007_s11664_020_08155_1
crossref_primary_10_1016_j_mtener_2019_05_011
crossref_primary_10_1016_j_pmatsci_2019_100632
crossref_primary_10_1021_acs_jpcc_0c08751
crossref_primary_10_1088_2053_1591_ad7d6e
crossref_primary_10_1039_C8CC01745J
crossref_primary_10_1016_j_apcata_2024_119960
crossref_primary_10_1103_PhysRevMaterials_1_035404
crossref_primary_10_1002_admi_202300602
crossref_primary_10_1039_D4SE00451E
crossref_primary_10_1103_PhysRevApplied_7_064008
crossref_primary_10_1021_acsami_4c09713
crossref_primary_10_1016_j_matlet_2021_131251
crossref_primary_10_1039_D2TA03932J
crossref_primary_10_1038_s41467_019_11767_9
crossref_primary_10_1039_D2YA00077F
crossref_primary_10_1088_1402_4896_abe0ef
crossref_primary_10_1039_C8CS00882E
crossref_primary_10_1038_s41578_022_00433_0
crossref_primary_10_1016_j_chemphys_2021_111117
crossref_primary_10_1016_j_enconman_2024_118901
crossref_primary_10_1002_adfm_201910832
crossref_primary_10_1021_acsenergylett_9b00276
crossref_primary_10_1021_acs_jpcc_0c07408
crossref_primary_10_1103_PhysRevB_103_085206
crossref_primary_10_1080_17436753_2019_1705017
crossref_primary_10_1021_acs_jpclett_1c03716
crossref_primary_10_1038_s41524_018_0118_3
crossref_primary_10_1021_acscatal_8b00877
crossref_primary_10_1021_acsenergylett_6b00423
crossref_primary_10_1021_acsami_2c02790
crossref_primary_10_1103_PhysRevB_102_054205
crossref_primary_10_1088_1361_6463_aa6738
crossref_primary_10_1111_jace_18820
crossref_primary_10_1039_D3TC01526B
crossref_primary_10_1039_D1CP00103E
crossref_primary_10_4011_shikizai_96_192
crossref_primary_10_1039_C6RA18123F
crossref_primary_10_1016_j_electacta_2020_137012
crossref_primary_10_1088_1361_648X_aa84d9
crossref_primary_10_1002_adfm_202110284
crossref_primary_10_1021_acsami_0c12491
crossref_primary_10_1002_cphc_201800792
crossref_primary_10_1149_2_0021905jes
crossref_primary_10_1039_D1EE00650A
crossref_primary_10_1021_acsami_8b04900
crossref_primary_10_1103_PhysRevB_94_020103
crossref_primary_10_1038_s41524_022_00814_7
crossref_primary_10_1063_1_5138484
crossref_primary_10_1111_jace_14908
crossref_primary_10_1063_5_0050353
crossref_primary_10_1002_aenm_202003474
crossref_primary_10_1021_acs_jpclett_2c00295
crossref_primary_10_1021_acs_jpclett_8b01525
crossref_primary_10_1021_acs_jpclett_2c02596
crossref_primary_10_1016_j_apsusc_2023_157120
crossref_primary_10_1021_jacs_9b10109
crossref_primary_10_1021_acs_chemmater_0c01481
crossref_primary_10_1103_PhysRevMaterials_4_083808
crossref_primary_10_1039_C6TA07177E
crossref_primary_10_1021_acs_chemmater_6b01994
crossref_primary_10_1126_sciadv_adk4282
crossref_primary_10_1021_acs_chemrev_2c00843
crossref_primary_10_1021_acsmaterialslett_4c00636
crossref_primary_10_3390_coatings12081206
crossref_primary_10_1021_acs_chemmater_9b00009
crossref_primary_10_1021_acsenergylett_8b00938
crossref_primary_10_1002_aenm_201600683
crossref_primary_10_1021_acs_jpclett_1c01060
crossref_primary_10_1088_1361_648X_aa7767
crossref_primary_10_1016_j_jpcs_2024_112160
crossref_primary_10_1021_acs_chemmater_3c00322
crossref_primary_10_1126_sciadv_adg3833
crossref_primary_10_1149_2_0481904jes
crossref_primary_10_1088_1402_4896_ad9553
crossref_primary_10_1063_5_0207132
crossref_primary_10_1038_s41467_022_33905_6
crossref_primary_10_1039_C9SE00009G
crossref_primary_10_1039_C7CP08565F
crossref_primary_10_1103_PhysRevB_94_155147
crossref_primary_10_1038_s41467_018_06838_2
crossref_primary_10_1021_acs_chemmater_8b03201
crossref_primary_10_1021_acs_jpcc_1c00366
crossref_primary_10_1021_acs_chemmater_0c02227
crossref_primary_10_1021_jacs_9b07976
crossref_primary_10_1021_acsenergylett_7b00834
crossref_primary_10_1016_j_nanoen_2019_104110
crossref_primary_10_1149_2_1321702jes
crossref_primary_10_1103_PhysRevB_100_205201
crossref_primary_10_1103_PhysRevB_96_155115
crossref_primary_10_1039_C9CP05133C
crossref_primary_10_1039_D3QM01100C
crossref_primary_10_1002_anie_201912475
crossref_primary_10_1021_acs_jpcc_0c06344
crossref_primary_10_1039_C8TA07437B
crossref_primary_10_1002_anie_202304562
crossref_primary_10_1021_acs_jpcc_2c00442
crossref_primary_10_1088_1361_6463_ab596f
crossref_primary_10_1016_j_jpowsour_2020_228348
crossref_primary_10_1038_s41524_019_0254_4
crossref_primary_10_1021_acs_jpcc_9b05929
crossref_primary_10_1016_j_mtchem_2022_101060
crossref_primary_10_1021_acs_chemmater_7b05093
crossref_primary_10_1002_adfm_201901590
crossref_primary_10_1021_acs_chemmater_6b02953
crossref_primary_10_1039_D1CS00577D
crossref_primary_10_1002_ange_202304562
crossref_primary_10_1002_aenm_202303312
crossref_primary_10_1002_adfm_201905153
crossref_primary_10_1021_acs_jpclett_2c01187
crossref_primary_10_1039_D0SE00664E
crossref_primary_10_1002_celc_202100108
crossref_primary_10_1021_acsaem_0c00109
crossref_primary_10_1021_acsenergylett_0c00067
crossref_primary_10_1002_solr_202000741
crossref_primary_10_1016_j_apcatb_2017_06_005
crossref_primary_10_1016_j_jeurceramsoc_2017_06_027
crossref_primary_10_1039_C7TA01415E
crossref_primary_10_1021_acs_jpcc_9b01533
crossref_primary_10_1021_acs_jpclett_1c00713
crossref_primary_10_1016_j_apcata_2021_118073
crossref_primary_10_1002_advs_202305139
crossref_primary_10_1063_5_0123246
crossref_primary_10_1021_acsenergylett_9b02620
crossref_primary_10_1038_s41467_018_04856_8
crossref_primary_10_1039_C7EE02702H
crossref_primary_10_1002_aenm_202201093
crossref_primary_10_1088_1402_4896_ac2758
crossref_primary_10_1021_acsenergylett_6b00287
crossref_primary_10_1002_chem_201905665
crossref_primary_10_1021_acs_jpclett_6b00165
crossref_primary_10_1002_adma_201707502
crossref_primary_10_1021_acs_jpcc_4c05340
crossref_primary_10_1002_adfm_202300065
crossref_primary_10_1016_j_vacuum_2019_04_059
crossref_primary_10_1002_adfm_201910432
crossref_primary_10_1002_cphc_202100859
crossref_primary_10_1103_PhysRevMaterials_2_055801
crossref_primary_10_1021_acsaem_9b00297
crossref_primary_10_1016_j_jece_2022_108429
crossref_primary_10_1038_ncomms13764
crossref_primary_10_1002_smll_202404909
crossref_primary_10_1002_adma_202108178
crossref_primary_10_1103_PRXEnergy_1_023008
crossref_primary_10_1039_C7TA10170H
crossref_primary_10_1039_C8TA09899A
crossref_primary_10_1021_acs_cgd_0c00496
crossref_primary_10_1021_acs_jpcc_1c07697
crossref_primary_10_1021_acs_jctc_0c00374
crossref_primary_10_1016_j_apcatb_2018_11_089
crossref_primary_10_1002_eng2_12387
crossref_primary_10_1021_acs_jpcc_0c01259
crossref_primary_10_1021_acs_energyfuels_3c02680
crossref_primary_10_1021_acs_jpcc_9b04583
crossref_primary_10_1038_s41570_022_00366_w
crossref_primary_10_1016_j_apcatb_2021_120980
crossref_primary_10_1021_acscatal_3c00932
crossref_primary_10_1021_acsanm_3c06012
crossref_primary_10_1021_acsenergylett_1c02220
crossref_primary_10_1002_adma_202002893
crossref_primary_10_1039_C8CE01246F
crossref_primary_10_1007_s43939_022_00026_2
crossref_primary_10_3389_fchem_2018_00601
crossref_primary_10_1021_acsenergylett_8b01445
crossref_primary_10_1103_PhysRevLett_126_227402
crossref_primary_10_1002_smll_202001600
crossref_primary_10_1021_acs_jpcc_8b09016
crossref_primary_10_1039_D0TA01554G
crossref_primary_10_1021_acs_jpcc_1c00702
crossref_primary_10_1039_D1TA10203F
crossref_primary_10_1021_acs_chemmater_0c03930
Cites_doi 10.1103/PhysRevB.73.165211
10.1063/1.4905786
10.1080/14786435808233324
10.1007/978-1-4684-0850-8_16
10.1016/0031-8914(66)90034-6
10.1063/1.1869492
10.1103/PhysRevLett.28.813
10.1016/0003-4916(63)90130-1
10.1016/0003-4916(86)90053-9
10.1063/1.327451
10.1016/0003-4916(59)90003-X
10.1088/0022-3719/8/4/003
10.1103/RevModPhys.82.1539
10.1016/0025-5408(72)90227-9
10.1146/annurev-physchem-032511-143759
10.1039/C2CS35260E
10.1080/00018737000101071
10.1021/jp204492r
10.1063/1.4730634
10.1021/cr1002326
10.1038/nmat3684
10.2307/2369245
10.1103/PhysRevB.84.245325
10.1557/JMR.2010.0020
10.1126/science.1246913
10.1103/PhysRevLett.87.198102
10.1007/978-1-4757-1367-1_8
10.1016/0022-3697(58)90129-X
10.1063/1.2177426
10.1080/00018736900101267
10.1021/ja405550k
10.1080/14786437708232944
10.1103/PhysRevB.87.205202
10.1007/BF01105096
10.1126/science.1223598
10.1103/PhysRevB.85.201202
10.1039/C4EE01320D
10.1039/c3cp52536h
10.1002/cctc.201200472
10.1021/ar00051a007
10.1039/C4CP03666B
10.1016/0003-4916(69)90034-7
10.1021/cm5025074
10.1007/978-1-4757-1367-1_9
10.1063/1.3432736
10.1063/1.1558534
10.1063/1.3436648
10.1002/cssc.201402456
10.1117/12.893100
10.1016/j.solener.2004.01.012
10.1103/PhysRevB.48.13691
10.1039/C5CP04299B
10.1063/1.2938044
10.1002/cssc.201000416
10.1002/anie.201003110
10.1063/1.1713588
10.1016/0254-0584(88)90054-5
10.1103/PhysRevLett.78.951
10.1016/0003-4916(71)90109-6
10.1038/nature13854
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.jpclett.5b02143
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 479
ExternalDocumentID 26758715
10_1021_acs_jpclett_5b02143
a677169466
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
DU5
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
4.4
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a345t-cecfebbe375ac48bfecf2a45311d6d09aa7f5bc7a86ae1d212774368557a7dff3
IEDL.DBID ACS
ISSN 1948-7185
IngestDate Fri Jul 11 07:26:02 EDT 2025
Thu Jan 02 22:18:04 EST 2025
Thu Apr 24 23:00:48 EDT 2025
Tue Jul 01 03:24:10 EDT 2025
Thu Aug 27 13:42:23 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a345t-cecfebbe375ac48bfecf2a45311d6d09aa7f5bc7a86ae1d212774368557a7dff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26758715
PQID 1762963211
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1762963211
pubmed_primary_26758715
crossref_citationtrail_10_1021_acs_jpclett_5b02143
crossref_primary_10_1021_acs_jpclett_5b02143
acs_journals_10_1021_acs_jpclett_5b02143
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160204
2016-02-04
2016-Feb-04
PublicationDateYYYYMMDD 2016-02-04
PublicationDate_xml – month: 02
  year: 2016
  text: 20160204
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
Van der Pauw L. (ref33/cit33) 1958; 20
ref16/cit16
Gharibi E. (ref60/cit60) 1990; 27
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref71/cit71
ref20/cit20
ref48/cit48
(ref4/cit4) 2012
ref17/cit17
Finklea H. O. (ref34/cit34) 1988
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Herring C. (ref28/cit28) 1960
ref61/cit61
ref67/cit67
Bahk J.-H. (ref32/cit32) 2013; 16
ref50/cit50
ref64/cit64
ref6/cit6
ref36/cit36
Emin D. (ref44/cit44) 1980
ref18/cit18
Heikes R. R. (ref39/cit39) 1961
ref65/cit65
Emin D. (ref11/cit11) 2013
ref25/cit25
ref29/cit29
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
Emin D. (ref38/cit38) 1976
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
Nagels P. (ref24/cit24) 1980
ref62/cit62
Emin D. (ref37/cit37) 2002
ref66/cit66
ref41/cit41
Streetman B. G. (ref54/cit54) 2006
ref58/cit58
ref22/cit22
ref30/cit30
ref47/cit47
ref1/cit1
ref70/cit70
ref7/cit7
Mott N. F. (ref53/cit53) 1979
References_xml – ident: ref15/cit15
  doi: 10.1103/PhysRevB.73.165211
– ident: ref35/cit35
  doi: 10.1063/1.4905786
– ident: ref21/cit21
  doi: 10.1080/14786435808233324
– volume-title: The Current State of Transport Theory
  year: 1960
  ident: ref28/cit28
– start-page: 461
  volume-title: Physics of Structurally Disordered Solids
  year: 1976
  ident: ref38/cit38
  doi: 10.1007/978-1-4684-0850-8_16
– ident: ref57/cit57
  doi: 10.1016/0031-8914(66)90034-6
– ident: ref36/cit36
  doi: 10.1063/1.1869492
– volume-title: Thermoelectricity: Science and Engineering
  year: 1961
  ident: ref39/cit39
– ident: ref14/cit14
  doi: 10.1103/PhysRevLett.28.813
– ident: ref19/cit19
  doi: 10.1016/0003-4916(63)90130-1
– volume-title: Photoelectrochemical Hydrogen Production
  year: 2012
  ident: ref4/cit4
– ident: ref12/cit12
  doi: 10.1016/0003-4916(86)90053-9
– ident: ref56/cit56
  doi: 10.1063/1.327451
– volume: 16
  volume-title: Annual Review of Heat Transfer
  year: 2013
  ident: ref32/cit32
– ident: ref20/cit20
  doi: 10.1016/0003-4916(59)90003-X
– ident: ref52/cit52
  doi: 10.1088/0022-3719/8/4/003
– ident: ref40/cit40
  doi: 10.1103/RevModPhys.82.1539
– ident: ref47/cit47
  doi: 10.1016/0025-5408(72)90227-9
– ident: ref3/cit3
  doi: 10.1146/annurev-physchem-032511-143759
– ident: ref6/cit6
  doi: 10.1039/C2CS35260E
– ident: ref59/cit59
  doi: 10.1080/00018737000101071
– volume-title: Polarons
  year: 2013
  ident: ref11/cit11
– ident: ref51/cit51
  doi: 10.1021/jp204492r
– volume: 20
  start-page: 220
  year: 1958
  ident: ref33/cit33
  publication-title: Philips Technol. Rev.
– volume-title: Electronic Processes in Non-Crystalline Materials
  year: 1979
  ident: ref53/cit53
– ident: ref66/cit66
  doi: 10.1063/1.4730634
– ident: ref2/cit2
  doi: 10.1021/cr1002326
– volume: 27
  start-page: 647
  year: 1990
  ident: ref60/cit60
  publication-title: Eur. J. Solid State Inorg. Chem.
– ident: ref65/cit65
  doi: 10.1038/nmat3684
– ident: ref41/cit41
  doi: 10.2307/2369245
– ident: ref61/cit61
  doi: 10.1103/PhysRevB.84.245325
– ident: ref7/cit7
  doi: 10.1557/JMR.2010.0020
– ident: ref9/cit9
  doi: 10.1126/science.1246913
– ident: ref16/cit16
  doi: 10.1103/PhysRevLett.87.198102
– start-page: 253
  volume-title: The Hall Effect and Its Applications
  year: 1980
  ident: ref24/cit24
  doi: 10.1007/978-1-4757-1367-1_8
– ident: ref22/cit22
  doi: 10.1016/0022-3697(58)90129-X
– ident: ref68/cit68
  doi: 10.1063/1.2177426
– ident: ref23/cit23
  doi: 10.1080/00018736900101267
– ident: ref43/cit43
  doi: 10.1021/ja405550k
– ident: ref46/cit46
  doi: 10.1080/14786437708232944
– ident: ref67/cit67
  doi: 10.1103/PhysRevB.87.205202
– ident: ref70/cit70
  doi: 10.1007/BF01105096
– volume-title: Wiley Encyclopedia of Electrical and Electronics Engineering
  year: 2002
  ident: ref37/cit37
– ident: ref69/cit69
  doi: 10.1126/science.1223598
– volume-title: Solid State Electronic Devices
  year: 2006
  ident: ref54/cit54
– ident: ref63/cit63
  doi: 10.1103/PhysRevB.85.201202
– volume-title: Semiconductor Electrodes
  year: 1988
  ident: ref34/cit34
– ident: ref30/cit30
  doi: 10.1039/C4EE01320D
– ident: ref26/cit26
  doi: 10.1039/c3cp52536h
– ident: ref55/cit55
  doi: 10.1002/cctc.201200472
– ident: ref1/cit1
  doi: 10.1021/ar00051a007
– ident: ref49/cit49
  doi: 10.1039/C4CP03666B
– ident: ref18/cit18
  doi: 10.1016/0003-4916(69)90034-7
– ident: ref48/cit48
  doi: 10.1021/cm5025074
– start-page: 281
  volume-title: The Hall Effect and Its Applications
  year: 1980
  ident: ref44/cit44
  doi: 10.1007/978-1-4757-1367-1_9
– ident: ref62/cit62
  doi: 10.1063/1.3432736
– ident: ref29/cit29
  doi: 10.1063/1.1558534
– ident: ref31/cit31
  doi: 10.1063/1.3436648
– ident: ref10/cit10
  doi: 10.1002/cssc.201402456
– ident: ref42/cit42
  doi: 10.1117/12.893100
– ident: ref71/cit71
  doi: 10.1016/j.solener.2004.01.012
– ident: ref64/cit64
  doi: 10.1103/PhysRevB.48.13691
– ident: ref50/cit50
  doi: 10.1039/C5CP04299B
– ident: ref27/cit27
  doi: 10.1063/1.2938044
– ident: ref5/cit5
  doi: 10.1002/cssc.201000416
– ident: ref8/cit8
  doi: 10.1002/anie.201003110
– ident: ref13/cit13
  doi: 10.1063/1.1713588
– ident: ref58/cit58
  doi: 10.1016/0254-0584(88)90054-5
– ident: ref25/cit25
  doi: 10.1103/PhysRevLett.78.951
– ident: ref45/cit45
  doi: 10.1016/0003-4916(71)90109-6
– ident: ref17/cit17
  doi: 10.1038/nature13854
SSID ssj0069087
Score 2.5803792
SecondaryResourceType review_article
Snippet Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 471
Title Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes
URI http://dx.doi.org/10.1021/acs.jpclett.5b02143
https://www.ncbi.nlm.nih.gov/pubmed/26758715
https://www.proquest.com/docview/1762963211
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEF60PuiL91EvIvjgg6k5drPbRy2WIrQWaqFvYa9gtSbFpCD-emdzFM_iY0J2yc7OznzD7HyD0LmUDGMdCNvVDraxH0hbOBE16UKOlXQFJaYaudsLOkN8NyKjT8Xq3zL4nnvFZdp4moIMs6xBhKH48pfRihcA0DZIqDWoDC_EeXk_PAjLmQ0ml1QkQ79PYtyRTL-6oz8wZu5r2huoV1XsFFdMnhuzTDTk-08Cx_8tYxOtl6jTui7UZAst6XgbrbaqZm876GYYmz5EOUG3NXjhk4ndN0FvEltz-nNrHFtdDWDdun8bK231H5MsKdvoKJ3uomH79qHVscv2Cjb3MclsqWWkhdA-JVxiJiJ49jiGQ-mqQDlNzmlEhKScBVy7ylDB05yvnlBOVRT5e6gWJ7E-QJYbqCYAoUg4gmLFHM4kxN2csSBivlSqji5g_WF5PNIwz3x7bpi_LIQSlkKpI6_akFCWNOWmW8Zk8aDL-aBpwdKx-POzaqdDkLNJkfBYJzP4MfANYJIgKq6j_UIF5hN6JraiLjn8_2KO0BoArOKWNz5Gtex1pk8AxGTiNFfdD_R971M
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB619EAvhQKFLVCCxIEDWfKwY3NcVkVb2AUkWIlb5FfEY5ugJishfj1jJ1kEoqg9xopH9njs-UZjfwOwoxQnxCTSD01AfBInypdBxmy6UBCtQsmofY08Ok0GY3J8Ra-aR2H2LQwOokRJpUviP7MLhPu27fYeVVlVXSot01f8ET4hHInsRb5e_6I9fzHcc2XxMDrnPp68tOUaeluI9UqqfOmV_gI1ncs5WoDxbLDupsldd1rJrnp8xeP4v7NZhC8NBvV6tdF8hQ8mX4L5flv6bRkOx7mtSuTour2L32Iy8c9tCFzk3owM3bvJvZFB6O6dPdxo451fF1XRFNXRplyB8dHPy_7Ab4ot-CImtPKVUZmR0sSMCkW4zPA7EgS3aKgTHRwIwTIqFRM8ESbUlhieOfZ6ygTTWRZ_g7m8yM0aeGGiDxAWZTKQjGgeCK4wChecJxmPldYd2MX5p81mKVOXB4_C1DXWSkkbpXQgatclVQ1pua2dMXm_096s033N2fH-79vtgqeoZ5swEbkppjgw9BR4QGGM3IHV2hJmAiMbabGQfv_3yWzB_OByNEyHv05P1uEzQq_6_jfZgLnqz9RsIryp5A9nzU_pz_e0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8BkwYvsA0GBbZl0h54IF3S2LF5hG4V-4BVgkrwFPlTFEpSkVSa9tdzdpJKQ4CmPcaKLft89v1Od_4dwCelOCEmlWFsIhKSJFWhjCxz4UJBtIolo-418slpejwi3y_oxQLw9i0MTqLEkUofxHeneqptwzAQf3bt11MUZ1V1qXRsX8kivHCBO5fMd9g_a-9gdPl8aTz00HmIty9t-YYeH8RZJlX-bZmegJve7AzW4HI-YZ9tctOdVbKr_jzgcvyfFb2C1QaLBoe18ryGBZO_geV-WwJuHY5GuatO5Gm7g7NbMZmEQ-cKF3kwJ0UPxnlwYhDCB79-j7UJhldFVTTFdbQpN2A0-HrePw6boguhSAitQmWUNVKahFGhCJcWv3uC4FGNdaqjAyGYpVIxwVNhYu0I4plnsadMMG1t8haW8iI3WxDEqT5AeGRlJBnRPBJcoTcuOE8tT5TWHdjD9WfNoSkzHw_vxZlvrIWSNULpQK_dm0w15OWuhsbk-U77807Tmrvj-d8_tpueoZxd4ETkppjhxNBi4EWFvnIHNmttmA_Ycx4Xi-n2vy_mA7wcfhlkP7-d_tiBFURgdRo42YWl6m5m3iHKqeR7r9D34Yv6Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unravelling+Small-Polaron+Transport+in+Metal+Oxide+Photoelectrodes&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Rettie%2C+Alexander+J.+E&rft.au=Chemelewski%2C+William+D&rft.au=Emin%2C+David&rft.au=Mullins%2C+C.+Buddie&rft.date=2016-02-04&rft.pub=American+Chemical+Society&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=7&rft.issue=3&rft.spage=471&rft.epage=479&rft_id=info:doi/10.1021%2Facs.jpclett.5b02143&rft.externalDocID=a677169466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon