Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes
Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semico...
Saved in:
Published in | The journal of physical chemistry letters Vol. 7; no. 3; pp. 471 - 479 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.02.2016
|
Online Access | Get full text |
ISSN | 1948-7185 1948-7185 |
DOI | 10.1021/acs.jpclett.5b02143 |
Cover
Loading…
Abstract | Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10–4 and 10–2 cm2 V–1 s–1, respectively. Future directions to build a full picture of charge transport in this family of materials are discussed. |
---|---|
AbstractList | Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10–4 and 10–2 cm2 V–1 s–1, respectively. Future directions to build a full picture of charge transport in this family of materials are discussed. Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed. Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed.Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed. |
Author | Rettie, Alexander J. E Mullins, C. Buddie Chemelewski, William D Emin, David |
AuthorAffiliation | Department of Chemistry and Biochemistry Department of Physics and Astronomy The University of Texas at Austin Texas Materials Institute The University of New Mexico McKetta Department of Chemical Engineering |
AuthorAffiliation_xml | – name: Department of Physics and Astronomy – name: Texas Materials Institute – name: The University of Texas at Austin – name: The University of New Mexico – name: McKetta Department of Chemical Engineering – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Alexander J. E surname: Rettie fullname: Rettie, Alexander J. E – sequence: 2 givenname: William D surname: Chemelewski fullname: Chemelewski, William D – sequence: 3 givenname: David surname: Emin fullname: Emin, David – sequence: 4 givenname: C. Buddie surname: Mullins fullname: Mullins, C. Buddie email: mullins@che.utexas.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26758715$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtOwzAQRS1URB_wBUgoSzZp4ySOkyVUvKSiVqJdWxNnAqlcu9gugr8n0FRCLLqyPb5nNHOGpKeNRkIuaTSmUUwnIN14vZUKvR-zsq2kyQkZ0CLNQ05z1vtz75Ohc-soyooo52ekH2ec5ZyyAbldaQsfqFSjX4OXDSgVLowCa3SwtKDd1lgfNDp4Rg8qmH82FQaLN-MNKpTemgrdOTmtQTm86M4RWd3fLaeP4Wz-8DS9mYWQpMyHEmWNZYkJZyDTvKzbdwwpSyitsioqAHjNSskhzwBpFdOY8zTJcsY48KqukxG53vfdWvO-Q-fFpnGyHR00mp0TlGdxkSUxpW30qovuyg1WYmubDdgvcdi7DRT7gLTGOYu1kI0H3xjtLTRK0Ej8OBatY9E5Fp3jlk3-sYf2x6nJnvr9NDurW1dHiW9lE5UP |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_3c06808 crossref_primary_10_1103_PhysRevMaterials_7_064602 crossref_primary_10_1515_rams_2022_0043 crossref_primary_10_1021_acs_jpcc_0c05447 crossref_primary_10_1021_acsaem_0c00028 crossref_primary_10_1039_D2NA00029F crossref_primary_10_1021_acs_jpcc_3c00146 crossref_primary_10_1021_acs_jpclett_0c02330 crossref_primary_10_1002_aenm_202101041 crossref_primary_10_1103_PhysRevB_97_195150 crossref_primary_10_1016_j_optmat_2023_114191 crossref_primary_10_1021_acs_jpclett_3c03380 crossref_primary_10_3390_ma17133071 crossref_primary_10_1103_PhysRevLett_126_037202 crossref_primary_10_1016_j_ceramint_2021_04_026 crossref_primary_10_1016_j_jphotochemrev_2019_02_001 crossref_primary_10_1021_acs_jpclett_0c01590 crossref_primary_10_1021_acs_jpclett_3c03128 crossref_primary_10_1002_adma_201706577 crossref_primary_10_1021_acs_energyfuels_0c03342 crossref_primary_10_1021_acs_jpcc_3c07206 crossref_primary_10_1016_j_mattod_2021_10_028 crossref_primary_10_1039_C9TC01036J crossref_primary_10_1021_acs_jpclett_9b02552 crossref_primary_10_1002_admi_201700064 crossref_primary_10_1021_acs_chemmater_6b00830 crossref_primary_10_1021_acs_jpclett_1c00003 crossref_primary_10_1021_jacs_2c03994 crossref_primary_10_1038_s41578_021_00343_7 crossref_primary_10_1002_adma_202004490 crossref_primary_10_1039_C8TA06269B crossref_primary_10_1021_acsenergylett_6b00586 crossref_primary_10_1063_1_5025569 crossref_primary_10_1039_D4TA08318K crossref_primary_10_1002_adom_202202660 crossref_primary_10_1021_acsaem_2c00470 crossref_primary_10_1103_PhysRevB_95_161110 crossref_primary_10_1016_j_cap_2024_05_007 crossref_primary_10_1039_C9CP03374B crossref_primary_10_1002_aenm_201701536 crossref_primary_10_1039_C6CP04526J crossref_primary_10_1038_s41578_020_0198_9 crossref_primary_10_54939_1859_1043_j_mst_96_2024_3_11 crossref_primary_10_1007_s10854_018_9431_3 crossref_primary_10_1016_j_nanoen_2017_02_051 crossref_primary_10_1021_acs_jpcc_9b07391 crossref_primary_10_1088_0957_4484_27_50_505207 crossref_primary_10_1021_acs_chemmater_7b00807 crossref_primary_10_1021_jacs_9b09056 crossref_primary_10_1016_j_joule_2017_12_007 crossref_primary_10_1021_acs_jpclett_4c02493 crossref_primary_10_1016_j_chempr_2024_12_006 crossref_primary_10_1016_j_mtener_2023_101399 crossref_primary_10_1002_ange_201912475 crossref_primary_10_1038_nmat4936 crossref_primary_10_1142_S1793604716500478 crossref_primary_10_1016_j_nantod_2019_100763 crossref_primary_10_1002_admi_201601235 crossref_primary_10_3390_app10217818 crossref_primary_10_1007_s11664_020_08155_1 crossref_primary_10_1016_j_mtener_2019_05_011 crossref_primary_10_1016_j_pmatsci_2019_100632 crossref_primary_10_1021_acs_jpcc_0c08751 crossref_primary_10_1088_2053_1591_ad7d6e crossref_primary_10_1039_C8CC01745J crossref_primary_10_1016_j_apcata_2024_119960 crossref_primary_10_1103_PhysRevMaterials_1_035404 crossref_primary_10_1002_admi_202300602 crossref_primary_10_1039_D4SE00451E crossref_primary_10_1103_PhysRevApplied_7_064008 crossref_primary_10_1021_acsami_4c09713 crossref_primary_10_1016_j_matlet_2021_131251 crossref_primary_10_1039_D2TA03932J crossref_primary_10_1038_s41467_019_11767_9 crossref_primary_10_1039_D2YA00077F crossref_primary_10_1088_1402_4896_abe0ef crossref_primary_10_1039_C8CS00882E crossref_primary_10_1038_s41578_022_00433_0 crossref_primary_10_1016_j_chemphys_2021_111117 crossref_primary_10_1016_j_enconman_2024_118901 crossref_primary_10_1002_adfm_201910832 crossref_primary_10_1021_acsenergylett_9b00276 crossref_primary_10_1021_acs_jpcc_0c07408 crossref_primary_10_1103_PhysRevB_103_085206 crossref_primary_10_1080_17436753_2019_1705017 crossref_primary_10_1021_acs_jpclett_1c03716 crossref_primary_10_1038_s41524_018_0118_3 crossref_primary_10_1021_acscatal_8b00877 crossref_primary_10_1021_acsenergylett_6b00423 crossref_primary_10_1021_acsami_2c02790 crossref_primary_10_1103_PhysRevB_102_054205 crossref_primary_10_1088_1361_6463_aa6738 crossref_primary_10_1111_jace_18820 crossref_primary_10_1039_D3TC01526B crossref_primary_10_1039_D1CP00103E crossref_primary_10_4011_shikizai_96_192 crossref_primary_10_1039_C6RA18123F crossref_primary_10_1016_j_electacta_2020_137012 crossref_primary_10_1088_1361_648X_aa84d9 crossref_primary_10_1002_adfm_202110284 crossref_primary_10_1021_acsami_0c12491 crossref_primary_10_1002_cphc_201800792 crossref_primary_10_1149_2_0021905jes crossref_primary_10_1039_D1EE00650A crossref_primary_10_1021_acsami_8b04900 crossref_primary_10_1103_PhysRevB_94_020103 crossref_primary_10_1038_s41524_022_00814_7 crossref_primary_10_1063_1_5138484 crossref_primary_10_1111_jace_14908 crossref_primary_10_1063_5_0050353 crossref_primary_10_1002_aenm_202003474 crossref_primary_10_1021_acs_jpclett_2c00295 crossref_primary_10_1021_acs_jpclett_8b01525 crossref_primary_10_1021_acs_jpclett_2c02596 crossref_primary_10_1016_j_apsusc_2023_157120 crossref_primary_10_1021_jacs_9b10109 crossref_primary_10_1021_acs_chemmater_0c01481 crossref_primary_10_1103_PhysRevMaterials_4_083808 crossref_primary_10_1039_C6TA07177E crossref_primary_10_1021_acs_chemmater_6b01994 crossref_primary_10_1126_sciadv_adk4282 crossref_primary_10_1021_acs_chemrev_2c00843 crossref_primary_10_1021_acsmaterialslett_4c00636 crossref_primary_10_3390_coatings12081206 crossref_primary_10_1021_acs_chemmater_9b00009 crossref_primary_10_1021_acsenergylett_8b00938 crossref_primary_10_1002_aenm_201600683 crossref_primary_10_1021_acs_jpclett_1c01060 crossref_primary_10_1088_1361_648X_aa7767 crossref_primary_10_1016_j_jpcs_2024_112160 crossref_primary_10_1021_acs_chemmater_3c00322 crossref_primary_10_1126_sciadv_adg3833 crossref_primary_10_1149_2_0481904jes crossref_primary_10_1088_1402_4896_ad9553 crossref_primary_10_1063_5_0207132 crossref_primary_10_1038_s41467_022_33905_6 crossref_primary_10_1039_C9SE00009G crossref_primary_10_1039_C7CP08565F crossref_primary_10_1103_PhysRevB_94_155147 crossref_primary_10_1038_s41467_018_06838_2 crossref_primary_10_1021_acs_chemmater_8b03201 crossref_primary_10_1021_acs_jpcc_1c00366 crossref_primary_10_1021_acs_chemmater_0c02227 crossref_primary_10_1021_jacs_9b07976 crossref_primary_10_1021_acsenergylett_7b00834 crossref_primary_10_1016_j_nanoen_2019_104110 crossref_primary_10_1149_2_1321702jes crossref_primary_10_1103_PhysRevB_100_205201 crossref_primary_10_1103_PhysRevB_96_155115 crossref_primary_10_1039_C9CP05133C crossref_primary_10_1039_D3QM01100C crossref_primary_10_1002_anie_201912475 crossref_primary_10_1021_acs_jpcc_0c06344 crossref_primary_10_1039_C8TA07437B crossref_primary_10_1002_anie_202304562 crossref_primary_10_1021_acs_jpcc_2c00442 crossref_primary_10_1088_1361_6463_ab596f crossref_primary_10_1016_j_jpowsour_2020_228348 crossref_primary_10_1038_s41524_019_0254_4 crossref_primary_10_1021_acs_jpcc_9b05929 crossref_primary_10_1016_j_mtchem_2022_101060 crossref_primary_10_1021_acs_chemmater_7b05093 crossref_primary_10_1002_adfm_201901590 crossref_primary_10_1021_acs_chemmater_6b02953 crossref_primary_10_1039_D1CS00577D crossref_primary_10_1002_ange_202304562 crossref_primary_10_1002_aenm_202303312 crossref_primary_10_1002_adfm_201905153 crossref_primary_10_1021_acs_jpclett_2c01187 crossref_primary_10_1039_D0SE00664E crossref_primary_10_1002_celc_202100108 crossref_primary_10_1021_acsaem_0c00109 crossref_primary_10_1021_acsenergylett_0c00067 crossref_primary_10_1002_solr_202000741 crossref_primary_10_1016_j_apcatb_2017_06_005 crossref_primary_10_1016_j_jeurceramsoc_2017_06_027 crossref_primary_10_1039_C7TA01415E crossref_primary_10_1021_acs_jpcc_9b01533 crossref_primary_10_1021_acs_jpclett_1c00713 crossref_primary_10_1016_j_apcata_2021_118073 crossref_primary_10_1002_advs_202305139 crossref_primary_10_1063_5_0123246 crossref_primary_10_1021_acsenergylett_9b02620 crossref_primary_10_1038_s41467_018_04856_8 crossref_primary_10_1039_C7EE02702H crossref_primary_10_1002_aenm_202201093 crossref_primary_10_1088_1402_4896_ac2758 crossref_primary_10_1021_acsenergylett_6b00287 crossref_primary_10_1002_chem_201905665 crossref_primary_10_1021_acs_jpclett_6b00165 crossref_primary_10_1002_adma_201707502 crossref_primary_10_1021_acs_jpcc_4c05340 crossref_primary_10_1002_adfm_202300065 crossref_primary_10_1016_j_vacuum_2019_04_059 crossref_primary_10_1002_adfm_201910432 crossref_primary_10_1002_cphc_202100859 crossref_primary_10_1103_PhysRevMaterials_2_055801 crossref_primary_10_1021_acsaem_9b00297 crossref_primary_10_1016_j_jece_2022_108429 crossref_primary_10_1038_ncomms13764 crossref_primary_10_1002_smll_202404909 crossref_primary_10_1002_adma_202108178 crossref_primary_10_1103_PRXEnergy_1_023008 crossref_primary_10_1039_C7TA10170H crossref_primary_10_1039_C8TA09899A crossref_primary_10_1021_acs_cgd_0c00496 crossref_primary_10_1021_acs_jpcc_1c07697 crossref_primary_10_1021_acs_jctc_0c00374 crossref_primary_10_1016_j_apcatb_2018_11_089 crossref_primary_10_1002_eng2_12387 crossref_primary_10_1021_acs_jpcc_0c01259 crossref_primary_10_1021_acs_energyfuels_3c02680 crossref_primary_10_1021_acs_jpcc_9b04583 crossref_primary_10_1038_s41570_022_00366_w crossref_primary_10_1016_j_apcatb_2021_120980 crossref_primary_10_1021_acscatal_3c00932 crossref_primary_10_1021_acsanm_3c06012 crossref_primary_10_1021_acsenergylett_1c02220 crossref_primary_10_1002_adma_202002893 crossref_primary_10_1039_C8CE01246F crossref_primary_10_1007_s43939_022_00026_2 crossref_primary_10_3389_fchem_2018_00601 crossref_primary_10_1021_acsenergylett_8b01445 crossref_primary_10_1103_PhysRevLett_126_227402 crossref_primary_10_1002_smll_202001600 crossref_primary_10_1021_acs_jpcc_8b09016 crossref_primary_10_1039_D0TA01554G crossref_primary_10_1021_acs_jpcc_1c00702 crossref_primary_10_1039_D1TA10203F crossref_primary_10_1021_acs_chemmater_0c03930 |
Cites_doi | 10.1103/PhysRevB.73.165211 10.1063/1.4905786 10.1080/14786435808233324 10.1007/978-1-4684-0850-8_16 10.1016/0031-8914(66)90034-6 10.1063/1.1869492 10.1103/PhysRevLett.28.813 10.1016/0003-4916(63)90130-1 10.1016/0003-4916(86)90053-9 10.1063/1.327451 10.1016/0003-4916(59)90003-X 10.1088/0022-3719/8/4/003 10.1103/RevModPhys.82.1539 10.1016/0025-5408(72)90227-9 10.1146/annurev-physchem-032511-143759 10.1039/C2CS35260E 10.1080/00018737000101071 10.1021/jp204492r 10.1063/1.4730634 10.1021/cr1002326 10.1038/nmat3684 10.2307/2369245 10.1103/PhysRevB.84.245325 10.1557/JMR.2010.0020 10.1126/science.1246913 10.1103/PhysRevLett.87.198102 10.1007/978-1-4757-1367-1_8 10.1016/0022-3697(58)90129-X 10.1063/1.2177426 10.1080/00018736900101267 10.1021/ja405550k 10.1080/14786437708232944 10.1103/PhysRevB.87.205202 10.1007/BF01105096 10.1126/science.1223598 10.1103/PhysRevB.85.201202 10.1039/C4EE01320D 10.1039/c3cp52536h 10.1002/cctc.201200472 10.1021/ar00051a007 10.1039/C4CP03666B 10.1016/0003-4916(69)90034-7 10.1021/cm5025074 10.1007/978-1-4757-1367-1_9 10.1063/1.3432736 10.1063/1.1558534 10.1063/1.3436648 10.1002/cssc.201402456 10.1117/12.893100 10.1016/j.solener.2004.01.012 10.1103/PhysRevB.48.13691 10.1039/C5CP04299B 10.1063/1.2938044 10.1002/cssc.201000416 10.1002/anie.201003110 10.1063/1.1713588 10.1016/0254-0584(88)90054-5 10.1103/PhysRevLett.78.951 10.1016/0003-4916(71)90109-6 10.1038/nature13854 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.jpclett.5b02143 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1948-7185 |
EndPage | 479 |
ExternalDocumentID | 26758715 10_1021_acs_jpclett_5b02143 a677169466 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ DU5 EBS ED ED~ EJD GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ 4.4 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a345t-cecfebbe375ac48bfecf2a45311d6d09aa7f5bc7a86ae1d212774368557a7dff3 |
IEDL.DBID | ACS |
ISSN | 1948-7185 |
IngestDate | Fri Jul 11 07:26:02 EDT 2025 Thu Jan 02 22:18:04 EST 2025 Thu Apr 24 23:00:48 EDT 2025 Tue Jul 01 03:24:10 EDT 2025 Thu Aug 27 13:42:23 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a345t-cecfebbe375ac48bfecf2a45311d6d09aa7f5bc7a86ae1d212774368557a7dff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26758715 |
PQID | 1762963211 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1762963211 pubmed_primary_26758715 crossref_citationtrail_10_1021_acs_jpclett_5b02143 crossref_primary_10_1021_acs_jpclett_5b02143 acs_journals_10_1021_acs_jpclett_5b02143 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160204 2016-02-04 2016-Feb-04 |
PublicationDateYYYYMMDD | 2016-02-04 |
PublicationDate_xml | – month: 02 year: 2016 text: 20160204 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry letters |
PublicationTitleAlternate | J. Phys. Chem. Lett |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 Van der Pauw L. (ref33/cit33) 1958; 20 ref16/cit16 Gharibi E. (ref60/cit60) 1990; 27 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref71/cit71 ref20/cit20 ref48/cit48 (ref4/cit4) 2012 ref17/cit17 Finklea H. O. (ref34/cit34) 1988 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Herring C. (ref28/cit28) 1960 ref61/cit61 ref67/cit67 Bahk J.-H. (ref32/cit32) 2013; 16 ref50/cit50 ref64/cit64 ref6/cit6 ref36/cit36 Emin D. (ref44/cit44) 1980 ref18/cit18 Heikes R. R. (ref39/cit39) 1961 ref65/cit65 Emin D. (ref11/cit11) 2013 ref25/cit25 ref29/cit29 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 Emin D. (ref38/cit38) 1976 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 Nagels P. (ref24/cit24) 1980 ref62/cit62 Emin D. (ref37/cit37) 2002 ref66/cit66 ref41/cit41 Streetman B. G. (ref54/cit54) 2006 ref58/cit58 ref22/cit22 ref30/cit30 ref47/cit47 ref1/cit1 ref70/cit70 ref7/cit7 Mott N. F. (ref53/cit53) 1979 |
References_xml | – ident: ref15/cit15 doi: 10.1103/PhysRevB.73.165211 – ident: ref35/cit35 doi: 10.1063/1.4905786 – ident: ref21/cit21 doi: 10.1080/14786435808233324 – volume-title: The Current State of Transport Theory year: 1960 ident: ref28/cit28 – start-page: 461 volume-title: Physics of Structurally Disordered Solids year: 1976 ident: ref38/cit38 doi: 10.1007/978-1-4684-0850-8_16 – ident: ref57/cit57 doi: 10.1016/0031-8914(66)90034-6 – ident: ref36/cit36 doi: 10.1063/1.1869492 – volume-title: Thermoelectricity: Science and Engineering year: 1961 ident: ref39/cit39 – ident: ref14/cit14 doi: 10.1103/PhysRevLett.28.813 – ident: ref19/cit19 doi: 10.1016/0003-4916(63)90130-1 – volume-title: Photoelectrochemical Hydrogen Production year: 2012 ident: ref4/cit4 – ident: ref12/cit12 doi: 10.1016/0003-4916(86)90053-9 – ident: ref56/cit56 doi: 10.1063/1.327451 – volume: 16 volume-title: Annual Review of Heat Transfer year: 2013 ident: ref32/cit32 – ident: ref20/cit20 doi: 10.1016/0003-4916(59)90003-X – ident: ref52/cit52 doi: 10.1088/0022-3719/8/4/003 – ident: ref40/cit40 doi: 10.1103/RevModPhys.82.1539 – ident: ref47/cit47 doi: 10.1016/0025-5408(72)90227-9 – ident: ref3/cit3 doi: 10.1146/annurev-physchem-032511-143759 – ident: ref6/cit6 doi: 10.1039/C2CS35260E – ident: ref59/cit59 doi: 10.1080/00018737000101071 – volume-title: Polarons year: 2013 ident: ref11/cit11 – ident: ref51/cit51 doi: 10.1021/jp204492r – volume: 20 start-page: 220 year: 1958 ident: ref33/cit33 publication-title: Philips Technol. Rev. – volume-title: Electronic Processes in Non-Crystalline Materials year: 1979 ident: ref53/cit53 – ident: ref66/cit66 doi: 10.1063/1.4730634 – ident: ref2/cit2 doi: 10.1021/cr1002326 – volume: 27 start-page: 647 year: 1990 ident: ref60/cit60 publication-title: Eur. J. Solid State Inorg. Chem. – ident: ref65/cit65 doi: 10.1038/nmat3684 – ident: ref41/cit41 doi: 10.2307/2369245 – ident: ref61/cit61 doi: 10.1103/PhysRevB.84.245325 – ident: ref7/cit7 doi: 10.1557/JMR.2010.0020 – ident: ref9/cit9 doi: 10.1126/science.1246913 – ident: ref16/cit16 doi: 10.1103/PhysRevLett.87.198102 – start-page: 253 volume-title: The Hall Effect and Its Applications year: 1980 ident: ref24/cit24 doi: 10.1007/978-1-4757-1367-1_8 – ident: ref22/cit22 doi: 10.1016/0022-3697(58)90129-X – ident: ref68/cit68 doi: 10.1063/1.2177426 – ident: ref23/cit23 doi: 10.1080/00018736900101267 – ident: ref43/cit43 doi: 10.1021/ja405550k – ident: ref46/cit46 doi: 10.1080/14786437708232944 – ident: ref67/cit67 doi: 10.1103/PhysRevB.87.205202 – ident: ref70/cit70 doi: 10.1007/BF01105096 – volume-title: Wiley Encyclopedia of Electrical and Electronics Engineering year: 2002 ident: ref37/cit37 – ident: ref69/cit69 doi: 10.1126/science.1223598 – volume-title: Solid State Electronic Devices year: 2006 ident: ref54/cit54 – ident: ref63/cit63 doi: 10.1103/PhysRevB.85.201202 – volume-title: Semiconductor Electrodes year: 1988 ident: ref34/cit34 – ident: ref30/cit30 doi: 10.1039/C4EE01320D – ident: ref26/cit26 doi: 10.1039/c3cp52536h – ident: ref55/cit55 doi: 10.1002/cctc.201200472 – ident: ref1/cit1 doi: 10.1021/ar00051a007 – ident: ref49/cit49 doi: 10.1039/C4CP03666B – ident: ref18/cit18 doi: 10.1016/0003-4916(69)90034-7 – ident: ref48/cit48 doi: 10.1021/cm5025074 – start-page: 281 volume-title: The Hall Effect and Its Applications year: 1980 ident: ref44/cit44 doi: 10.1007/978-1-4757-1367-1_9 – ident: ref62/cit62 doi: 10.1063/1.3432736 – ident: ref29/cit29 doi: 10.1063/1.1558534 – ident: ref31/cit31 doi: 10.1063/1.3436648 – ident: ref10/cit10 doi: 10.1002/cssc.201402456 – ident: ref42/cit42 doi: 10.1117/12.893100 – ident: ref71/cit71 doi: 10.1016/j.solener.2004.01.012 – ident: ref64/cit64 doi: 10.1103/PhysRevB.48.13691 – ident: ref50/cit50 doi: 10.1039/C5CP04299B – ident: ref27/cit27 doi: 10.1063/1.2938044 – ident: ref5/cit5 doi: 10.1002/cssc.201000416 – ident: ref8/cit8 doi: 10.1002/anie.201003110 – ident: ref13/cit13 doi: 10.1063/1.1713588 – ident: ref58/cit58 doi: 10.1016/0254-0584(88)90054-5 – ident: ref25/cit25 doi: 10.1103/PhysRevLett.78.951 – ident: ref45/cit45 doi: 10.1016/0003-4916(71)90109-6 – ident: ref17/cit17 doi: 10.1038/nature13854 |
SSID | ssj0069087 |
Score | 2.5803792 |
SecondaryResourceType | review_article |
Snippet | Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 471 |
Title | Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes |
URI | http://dx.doi.org/10.1021/acs.jpclett.5b02143 https://www.ncbi.nlm.nih.gov/pubmed/26758715 https://www.proquest.com/docview/1762963211 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEF60PuiL91EvIvjgg6k5drPbRy2WIrQWaqFvYa9gtSbFpCD-emdzFM_iY0J2yc7OznzD7HyD0LmUDGMdCNvVDraxH0hbOBE16UKOlXQFJaYaudsLOkN8NyKjT8Xq3zL4nnvFZdp4moIMs6xBhKH48pfRihcA0DZIqDWoDC_EeXk_PAjLmQ0ml1QkQ79PYtyRTL-6oz8wZu5r2huoV1XsFFdMnhuzTDTk-08Cx_8tYxOtl6jTui7UZAst6XgbrbaqZm876GYYmz5EOUG3NXjhk4ndN0FvEltz-nNrHFtdDWDdun8bK231H5MsKdvoKJ3uomH79qHVscv2Cjb3MclsqWWkhdA-JVxiJiJ49jiGQ-mqQDlNzmlEhKScBVy7ylDB05yvnlBOVRT5e6gWJ7E-QJYbqCYAoUg4gmLFHM4kxN2csSBivlSqji5g_WF5PNIwz3x7bpi_LIQSlkKpI6_akFCWNOWmW8Zk8aDL-aBpwdKx-POzaqdDkLNJkfBYJzP4MfANYJIgKq6j_UIF5hN6JraiLjn8_2KO0BoArOKWNz5Gtex1pk8AxGTiNFfdD_R971M |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB619EAvhQKFLVCCxIEDWfKwY3NcVkVb2AUkWIlb5FfEY5ugJishfj1jJ1kEoqg9xopH9njs-UZjfwOwoxQnxCTSD01AfBInypdBxmy6UBCtQsmofY08Ok0GY3J8Ra-aR2H2LQwOokRJpUviP7MLhPu27fYeVVlVXSot01f8ET4hHInsRb5e_6I9fzHcc2XxMDrnPp68tOUaeluI9UqqfOmV_gI1ncs5WoDxbLDupsldd1rJrnp8xeP4v7NZhC8NBvV6tdF8hQ8mX4L5flv6bRkOx7mtSuTour2L32Iy8c9tCFzk3owM3bvJvZFB6O6dPdxo451fF1XRFNXRplyB8dHPy_7Ab4ot-CImtPKVUZmR0sSMCkW4zPA7EgS3aKgTHRwIwTIqFRM8ESbUlhieOfZ6ygTTWRZ_g7m8yM0aeGGiDxAWZTKQjGgeCK4wChecJxmPldYd2MX5p81mKVOXB4_C1DXWSkkbpXQgatclVQ1pua2dMXm_096s033N2fH-79vtgqeoZ5swEbkppjgw9BR4QGGM3IHV2hJmAiMbabGQfv_3yWzB_OByNEyHv05P1uEzQq_6_jfZgLnqz9RsIryp5A9nzU_pz_e0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8BkwYvsA0GBbZl0h54IF3S2LF5hG4V-4BVgkrwFPlTFEpSkVSa9tdzdpJKQ4CmPcaKLft89v1Od_4dwCelOCEmlWFsIhKSJFWhjCxz4UJBtIolo-418slpejwi3y_oxQLw9i0MTqLEkUofxHeneqptwzAQf3bt11MUZ1V1qXRsX8kivHCBO5fMd9g_a-9gdPl8aTz00HmIty9t-YYeH8RZJlX-bZmegJve7AzW4HI-YZ9tctOdVbKr_jzgcvyfFb2C1QaLBoe18ryGBZO_geV-WwJuHY5GuatO5Gm7g7NbMZmEQ-cKF3kwJ0UPxnlwYhDCB79-j7UJhldFVTTFdbQpN2A0-HrePw6boguhSAitQmWUNVKahFGhCJcWv3uC4FGNdaqjAyGYpVIxwVNhYu0I4plnsadMMG1t8haW8iI3WxDEqT5AeGRlJBnRPBJcoTcuOE8tT5TWHdjD9WfNoSkzHw_vxZlvrIWSNULpQK_dm0w15OWuhsbk-U77807Tmrvj-d8_tpueoZxd4ETkppjhxNBi4EWFvnIHNmttmA_Ycx4Xi-n2vy_mA7wcfhlkP7-d_tiBFURgdRo42YWl6m5m3iHKqeR7r9D34Yv6Nw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unravelling+Small-Polaron+Transport+in+Metal+Oxide+Photoelectrodes&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Rettie%2C+Alexander+J.+E&rft.au=Chemelewski%2C+William+D&rft.au=Emin%2C+David&rft.au=Mullins%2C+C.+Buddie&rft.date=2016-02-04&rft.pub=American+Chemical+Society&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=7&rft.issue=3&rft.spage=471&rft.epage=479&rft_id=info:doi/10.1021%2Facs.jpclett.5b02143&rft.externalDocID=a677169466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |