Fermi Level Determination for Charged Systems via Recursive Density of States Integration

Determining the Fermi level position for a given material is important to understand many of its electronic and chemical properties. Ab initio methods are effective in computing Fermi levels when using charge-neutral supercells. However, in the case where charges are explicitly included, the compens...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 9; no. 14; pp. 4014 - 4019
Main Authors Tahini, H. A, Tan, X, Smith, S. C
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.07.2018
Online AccessGet full text

Cover

Loading…
Abstract Determining the Fermi level position for a given material is important to understand many of its electronic and chemical properties. Ab initio methods are effective in computing Fermi levels when using charge-neutral supercells. However, in the case where charges are explicitly included, the compensating homogeneous background charge, which is necessary to maintain charge neutrality in periodic models, causes the vacuum potential to be ill-defined  which would otherwise have been a reliable reference potential. Here, we develop a method based on recursively integrating the density of states to determine shifts in the Fermi level upon charging. By introducing incremental charges, one can compute the density of states profile and determine the shift in the Fermi level that corresponds to adding or removing a given increment of charge δq, which allows the evaluation of the Fermi level for any arbitrary charge q. We test this method for a range of materials (graphene, h-BN, C3N4, Cu, and MoS2) and demonstrate that this method can produce a reasonable agreement with models that rely on localized compensating background charges.
AbstractList Determining the Fermi level position for a given material is important to understand many of its electronic and chemical properties. Ab initio methods are effective in computing Fermi levels when using charge neutral supercells. However, in the case where charges are explicitly included, the compensating homogeneous background charge, which is necessary to maintain charge neutrality in periodic models, causes the vacuum potential to be ill-defined, which would otherwise have been a reliable reference potential. Here, we develop a method based on recursively integrating the density of states to determine shifts in the Fermi level with charge. By introducing incremental charges, one can compute the density of states profile and determine the shift in the Fermi level that corresponds to adding or removing a given increment of charge δq, which allows the evaluation of the Fermi level for any arbitrary charge q. We test this method for a range of materials (graphene, h-BN, C3N4, Cu and MoS2), and demonstrate the that this method can produce a reasonable agreement with models that rely on localized compensating background charges.
Determining the Fermi level position for a given material is important to understand many of its electronic and chemical properties. Ab initio methods are effective in computing Fermi levels when using charge-neutral supercells. However, in the case where charges are explicitly included, the compensating homogeneous background charge, which is necessary to maintain charge neutrality in periodic models, causes the vacuum potential to be ill-defined  which would otherwise have been a reliable reference potential. Here, we develop a method based on recursively integrating the density of states to determine shifts in the Fermi level upon charging. By introducing incremental charges, one can compute the density of states profile and determine the shift in the Fermi level that corresponds to adding or removing a given increment of charge δq, which allows the evaluation of the Fermi level for any arbitrary charge q. We test this method for a range of materials (graphene, h-BN, C3N4, Cu, and MoS2) and demonstrate that this method can produce a reasonable agreement with models that rely on localized compensating background charges.
Determining the Fermi level position for a given material is important to understand many of its electronic and chemical properties. Ab initio methods are effective in computing Fermi levels when using charge-neutral supercells. However, in the case where charges are explicitly included, the compensating homogeneous background charge, which is necessary to maintain charge neutrality in periodic models, causes the vacuum potential to be ill-defined - which would otherwise have been a reliable reference potential. Here, we develop a method based on recursively integrating the density of states to determine shifts in the Fermi level upon charging. By introducing incremental charges, one can compute the density of states profile and determine the shift in the Fermi level that corresponds to adding or removing a given increment of charge δq, which allows the evaluation of the Fermi level for any arbitrary charge q. We test this method for a range of materials (graphene, h-BN, C3N4, Cu, and MoS2) and demonstrate that this method can produce a reasonable agreement with models that rely on localized compensating background charges.
Author Tahini, H. A
Smith, S. C
Tan, X
AuthorAffiliation Department of Applied Mathematics, Research School of Physics and Engineering
AuthorAffiliation_xml – name: Department of Applied Mathematics, Research School of Physics and Engineering
Author_xml – sequence: 1
  givenname: H. A
  orcidid: 0000-0001-5454-0983
  surname: Tahini
  fullname: Tahini, H. A
– sequence: 2
  givenname: X
  orcidid: 0000-0002-6352-8828
  surname: Tan
  fullname: Tan, X
– sequence: 3
  givenname: S. C
  orcidid: 0000-0002-5679-8205
  surname: Smith
  fullname: Smith, S. C
  email: sean.smith@anu.edu.au
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29968476$$D View this record in MEDLINE/PubMed
BookMark eNp9kFFLwzAQx4NMnJt-AkHy6Eu3pE2T5lGm08FAcPrgU0nT6-xom5mkg317u62KTz7dHfz-d9xvhAaNaQChG0omlIR0qrSbbLa6Au8nSUYoj-gZuqSSJYGgSTz40w_RyLkNIVySRFygYSglT5jgl-hjDrYu8RJ2UOEH8IepUb40DS6MxbNPZdeQ49Xeeagd3pUKv4JurSt30PGNK_0emwKvvPLg8KLxsLbH_BU6L1Tl4LqvY_Q-f3ybPQfLl6fF7H4ZqIjFPtBZIQktNGFAc5HxiBQqzhUHJmXGRBzmrKAxhCGwXJA8FpKpLOM50xQk5zoao7vT3q01Xy04n9al01BVqgHTujQkPBI0CuOwQ6MTqq1xzkKRbm1ZK7tPKUkPTtPOado7TXunXeq2P9BmNeS_mR-JHTA9Ace0aW3T_fvvym9FIoiZ
CitedBy_id crossref_primary_10_1002_wene_476
crossref_primary_10_1515_nanoph_2019_0154
Cites_doi 10.1021/acsami.6b02117
10.3390/nano8020074
10.1103/PhysRevB.54.11169
10.1002/cssc.201501082
10.1002/cssc.201300624
10.1080/08927022.2015.1086486
10.1103/PhysRevB.78.235104
10.1103/PhysRevB.85.045121
10.1103/PhysRevLett.110.095505
10.1103/PhysRevB.95.235310
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.92.085420
10.1063/1.1316015
10.1103/PhysRevLett.101.026803
10.1103/PhysRevLett.77.3865
10.1021/ja400243r
10.1063/1.1379327
10.1039/B700099E
10.1351/pac198658070955
10.1088/1361-6595/aaa868
10.1039/C5MH00160A
10.1002/adfm.201600243
10.1038/srep29184
10.1038/nmat1134
10.1103/PhysRevB.50.17953
10.1016/j.cej.2017.12.113
10.1103/PhysRevB.85.075426
10.1016/j.ensm.2016.12.002
10.1021/acs.jpclett.5b01043
10.1103/PhysRevLett.105.136805
10.1103/PhysRevB.93.235116
10.1039/C7NR01601H
10.1038/am.2013.33
10.1016/j.coelec.2017.08.006
10.1002/cssc.201500026
10.1007/978-3-319-25340-4_11
10.1063/1.1682673
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.jpclett.8b01631
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 4019
ExternalDocumentID 10_1021_acs_jpclett_8b01631
29968476
e12889536
Genre Journal Article
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
DU5
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
5VS
ABFRP
ABJNI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a345t-cbf901fc04e1d7b630fa5da6e499b4752d4f15e22e4d70d5794abb6d4c1e966c3
IEDL.DBID ACS
ISSN 1948-7185
IngestDate Fri Aug 16 09:58:52 EDT 2024
Fri Aug 23 04:01:28 EDT 2024
Fri May 24 00:04:51 EDT 2024
Thu Aug 27 13:43:10 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a345t-cbf901fc04e1d7b630fa5da6e499b4752d4f15e22e4d70d5794abb6d4c1e966c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5454-0983
0000-0002-6352-8828
0000-0002-5679-8205
PMID 29968476
PQID 2063713252
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2063713252
crossref_primary_10_1021_acs_jpclett_8b01631
pubmed_primary_29968476
acs_journals_10_1021_acs_jpclett_8b01631
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-07-19
PublicationDateYYYYMMDD 2018-07-19
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1021/acsami.6b02117
– ident: ref33/cit33
  doi: 10.3390/nano8020074
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.54.11169
– ident: ref9/cit9
  doi: 10.1002/cssc.201501082
– ident: ref2/cit2
  doi: 10.1002/cssc.201300624
– ident: ref10/cit10
  doi: 10.1080/08927022.2015.1086486
– ident: ref14/cit14
  doi: 10.1103/PhysRevB.78.235104
– ident: ref15/cit15
  doi: 10.1103/PhysRevB.85.045121
– ident: ref16/cit16
  doi: 10.1103/PhysRevLett.110.095505
– ident: ref17/cit17
  doi: 10.1103/PhysRevB.95.235310
– ident: ref35/cit35
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref19/cit19
  doi: 10.1103/PhysRevB.92.085420
– ident: ref20/cit20
  doi: 10.1063/1.1316015
– ident: ref24/cit24
  doi: 10.1103/PhysRevLett.101.026803
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref1/cit1
  doi: 10.1021/ja400243r
– ident: ref18/cit18
  doi: 10.1063/1.1379327
– ident: ref22/cit22
  doi: 10.1039/B700099E
– ident: ref30/cit30
  doi: 10.1351/pac198658070955
– ident: ref7/cit7
  doi: 10.1088/1361-6595/aaa868
– ident: ref26/cit26
  doi: 10.1039/C5MH00160A
– ident: ref27/cit27
  doi: 10.1002/adfm.201600243
– ident: ref32/cit32
  doi: 10.1038/srep29184
– ident: ref11/cit11
  doi: 10.1038/nmat1134
– ident: ref36/cit36
  doi: 10.1103/PhysRevB.50.17953
– ident: ref6/cit6
  doi: 10.1016/j.cej.2017.12.113
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.85.075426
– ident: ref3/cit3
  doi: 10.1016/j.ensm.2016.12.002
– ident: ref23/cit23
  doi: 10.1021/acs.jpclett.5b01043
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.105.136805
– ident: ref28/cit28
  doi: 10.1103/PhysRevB.93.235116
– ident: ref29/cit29
  doi: 10.1039/C7NR01601H
– ident: ref25/cit25
  doi: 10.1038/am.2013.33
– ident: ref5/cit5
  doi: 10.1016/j.coelec.2017.08.006
– ident: ref8/cit8
  doi: 10.1002/cssc.201500026
– ident: ref4/cit4
  doi: 10.1007/978-3-319-25340-4_11
– ident: ref13/cit13
  doi: 10.1063/1.1682673
SSID ssj0069087
Score 2.2936802
Snippet Determining the Fermi level position for a given material is important to understand many of its electronic and chemical properties. Ab initio methods are...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 4014
Title Fermi Level Determination for Charged Systems via Recursive Density of States Integration
URI http://dx.doi.org/10.1021/acs.jpclett.8b01631
https://www.ncbi.nlm.nih.gov/pubmed/29968476
https://search.proquest.com/docview/2063713252
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZQGWDhPsolIzEwkBI7duKMqFABgg5ApTJFvoIAKa1IysCv5zkH4lbXyLGT92y_7_M7jNCBjQNjgXJ5gYkVEBRrPCGdp5AZk-oITIx2-c7X_fB8wC6HfPgpWf2bB5-SY6nzztMYZFgUHaEAobis6VnqYggdEureNhsv8LzyPjyg5cKDLZc3RYZ-78SZI51_NUd_YMzS1vQWUb_J2KlCTJ47k0J19NvPAo7T_cYSWqhRJz6ppskymrHZCprrNpe9raL7nguKwVcuhAifNiEyTmkYUC12TvkHa3Bd3xy_Pkp8407qXfA7tM9cZAcepbjCrviiLkIB76-hQe_srnvu1bcueDJgvPC0SgEjpNpnlphIhYGfSm5kaIEbKRZxalhKuKXUMhP5hsOClkqFhmligTvpYB21slFmNxE2WlNfKJIq4TMjYqEAjhBGjA2oBZvZRocglqReNXlSOsQpScqHlaySWlZtdNToKRlXdTj-b77f6DIBSToniMzsaJInFDAZEHPKYfSNSskfHYJpDsFah1vTf9c2mgcIJdxpL4l3UKt4mdhdgCmF2isn5zuQkuSr
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZQGcrCfZTTSAwMpMSOnWNEhaqFtgO0Upmi-AgCpLQiKQO_nuccRSBAsEaO47xn-32f32GETnTgKA2Uy3JUIICgaGX5kfEUMqVi6YGJkSbfuT9wOyN2PebjMinM5MLAIFLoKc2d-B_VBci5efY0BVFmWdMXAFRM8vQi94CRG0DUuqv2X6B7-bV4wM59C3ZeXtUa-r4TY5Vk-tkq_QA1c5PTXkGj-WDzSJPn5iwTTfn2pY7jf_9mFS2XGBRfFJNmDS3oZB3VW9XVbxvovm1CZHDPBBThyypgxqgQA8bFxkX_oBUuq53j18cI35pzexMKD-0TE-eBJzEukCzuliUp4P1NNGpfDVsdq7yDwYocxjNLihgQQyxtponyhOvYccRV5GpgSoJ5nCoWE64p1Ux5tuKwvCMhXMUk0cCkpLOFaskk0TsIKymp7QsSC99myg98AeCEMKK0QzVY0AY6BbGE5RpKw9w9TkmYPyxkFZayaqCzSl3htKjK8Xvz40qlIUjSuESiRE9maUgBoQFNpxy-vl3oet4hGGoXbLe7-_dxHaF6Z9jvhb3u4GYPLQG48s05MAn2US17mekDADCZOMzn6zuA6u0W
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QSMCF92M8g8SBAx1Nm3TZEW1MDMaEgElwqppHESB1E-048Oux-5gEAoS4Vmma2km-z7FjE3Jom76xYHI5vmkqMFCscWSEnkJuTKwbADEa7ztf9YPzAb-4F_dTRFZ3YWAQKfSU5k58XNUjE5cZBtgJPn8egTizrC4VkBW8QD0jsIQ3kqLWbbUHg8mXl8YDC106sPuKKt_Q950gMun0MzL9QDdz2OkskofJgPNok5f6OFN1_f4ll-N__miJLJRclJ4Wk2eZTNlkhcy1qhJwq-Shg6EytIeBRbRdBc6gKilwXYqu-kdraJn1nL49RfQGz-8xJB7aJxjvQYcxLRgt7ZapKeD9NTLonN21zp2yFoMT-VxkjlYxMIdYu9wy01CB78aRMFFgwWJSvCE8w2MmrOdZbhquEbDMI6UCwzWzYFFpf51MJ8PEbhJqtPZcqVispMuNbEoFJIVxZqzvWUDSGjkCsYTlWkrD3E3usTB_WMgqLGVVI8eVysJRkZ3j9-YHlVpDkCS6RqLEDsdp6AFTA3PdE_D1jULfkw4BsAPA8GDr7-PaJ7PX7U7Y6_Yvt8k8cCyJx8GsuUOms9ex3QUek6m9fMp-ABc575A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fermi+Level+Determination+for+Charged+Systems+via+Recursive+Density+of+States+Integration&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Tahini%2C+H.+A.&rft.au=Tan%2C+X.&rft.au=Smith%2C+S.+C.&rft.date=2018-07-19&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=9&rft.issue=14&rft.spage=4014&rft.epage=4019&rft_id=info:doi/10.1021%2Facs.jpclett.8b01631&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpclett_8b01631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon