Toward Chemically Resolved Computer Simulations of Dynamics and Remodeling of Biological Membranes
Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations wh...
Saved in:
Published in | The journal of physical chemistry letters Vol. 8; no. 15; pp. 3586 - 3594 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations when subject to specific environmental changes, including gel–liquid phase transitions, change of aggregation structure, formation of microtubules, or rupture into vesicles. All of these processes are dependent on a delicate interplay between intermolecular forces, molecular crowding, and entropy, and their understanding requires approaches that are able to capture and rationalize the details of all of the involved interactions. Molecular dynamics-based computational models at atom-level resolution are, in principle, the best way to perform such investigations. Unfortunately, the relevant spatial and time dimensionalities involved in membrane remodeling phenomena would require computational costs that are today unaffordable on a routinely basis. Such hurdles can be removed by coarse-graining the representations of the individual molecular components of the systems. This procedure anyway reduces the possibility of describing the chemical variations in the lipid mixtures composing biological membranes. New hybrid particle field multiscale approaches offer today a promising alternative to the more traditional particle-based simulations methods. By combining chemically distinguishable molecular representations with mesoscale-based computationally affordable potentials, they appear as one of the most promising ways to keep an accurate description of the chemical complexity of biological membranes and, at the same time, cover the required scales to describe remodeling events. |
---|---|
AbstractList | Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations when subject to specific environmental changes, including gel-liquid phase transitions, change of aggregation structure, formation of microtubules, or rupture into vesicles. All of these processes are dependent on a delicate interplay between intermolecular forces, molecular crowding, and entropy, and their understanding requires approaches that are able to capture and rationalize the details of all of the involved interactions. Molecular dynamics-based computational models at atom-level resolution are, in principle, the best way to perform such investigations. Unfortunately, the relevant spatial and time dimensionalities involved in membrane remodeling phenomena would require computational costs that are today unaffordable on a routinely basis. Such hurdles can be removed by coarse-graining the representations of the individual molecular components of the systems. This procedure anyway reduces the possibility of describing the chemical variations in the lipid mixtures composing biological membranes. New hybrid particle field multiscale approaches offer today a promising alternative to the more traditional particle-based simulations methods. By combining chemically distinguishable molecular representations with mesoscale-based computationally affordable potentials, they appear as one of the most promising ways to keep an accurate description of the chemical complexity of biological membranes and, at the same time, cover the required scales to describe remodeling events. Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations when subject to specific environmental changes, including gel-liquid phase transitions, change of aggregation structure, formation of microtubules, or rupture into vesicles. All of these processes are dependent on a delicate interplay between intermolecular forces, molecular crowding, and entropy, and their understanding requires approaches that are able to capture and rationalize the details of all of the involved interactions. Molecular dynamics-based computational models at atom-level resolution are, in principle, the best way to perform such investigations. Unfortunately, the relevant spatial and time dimensionalities involved in membrane remodeling phenomena would require computational costs that are today unaffordable on a routinely basis. Such hurdles can be removed by coarse-graining the representations of the individual molecular components of the systems. This procedure anyway reduces the possibility of describing the chemical variations in the lipid mixtures composing biological membranes. New hybrid particle field multiscale approaches offer today a promising alternative to the more traditional particle-based simulations methods. By combining chemically distinguishable molecular representations with mesoscale-based computationally affordable potentials, they appear as one of the most promising ways to keep an accurate description of the chemical complexity of biological membranes and, at the same time, cover the required scales to describe remodeling events.Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations when subject to specific environmental changes, including gel-liquid phase transitions, change of aggregation structure, formation of microtubules, or rupture into vesicles. All of these processes are dependent on a delicate interplay between intermolecular forces, molecular crowding, and entropy, and their understanding requires approaches that are able to capture and rationalize the details of all of the involved interactions. Molecular dynamics-based computational models at atom-level resolution are, in principle, the best way to perform such investigations. Unfortunately, the relevant spatial and time dimensionalities involved in membrane remodeling phenomena would require computational costs that are today unaffordable on a routinely basis. Such hurdles can be removed by coarse-graining the representations of the individual molecular components of the systems. This procedure anyway reduces the possibility of describing the chemical variations in the lipid mixtures composing biological membranes. New hybrid particle field multiscale approaches offer today a promising alternative to the more traditional particle-based simulations methods. By combining chemically distinguishable molecular representations with mesoscale-based computationally affordable potentials, they appear as one of the most promising ways to keep an accurate description of the chemical complexity of biological membranes and, at the same time, cover the required scales to describe remodeling events. |
Author | Vanni, Stefano Milano, Giuseppe Soares, Thereza A Cascella, Michele |
AuthorAffiliation | Federal University of Pernambuco, Cidade Universitária Department of Biology Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC) Department of Fundamental Chemistry Università di Salerno Dipartimento di Chimica e Biologia |
AuthorAffiliation_xml | – name: Department of Fundamental Chemistry – name: Federal University of Pernambuco, Cidade Universitária – name: Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC) – name: Dipartimento di Chimica e Biologia – name: Università di Salerno – name: Department of Biology |
Author_xml | – sequence: 1 givenname: Thereza A surname: Soares fullname: Soares, Thereza A organization: Federal University of Pernambuco, Cidade Universitária – sequence: 2 givenname: Stefano surname: Vanni fullname: Vanni, Stefano organization: Department of Biology – sequence: 3 givenname: Giuseppe surname: Milano fullname: Milano, Giuseppe organization: Università di Salerno – sequence: 4 givenname: Michele orcidid: 0000-0003-2266-5399 surname: Cascella fullname: Cascella, Michele email: michele.cascella@kjemi.uio.no organization: Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28707901$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtOwzAQRS0EgrbwBUgoSzZt7SSukyWUpwRCgrKOJvYEXDlxsRNQ_x73AUIsYDYeec4djU6f7Da2QUKOGR0xGrMxSD-aL6TBth2JktI0T3ZIj-VpNhQs47s_-gPS935O6SSnmdgnB3EmqMgp65FyZj_AqWj6irWWYMwyekRvzTuGP1svuhZd9KTrzkCrbeMjW0UXywYC7CNoVKBrq9Do5mU1OtfW2JfVouge69JBg_6Q7FVgPB5t3wF5vrqcTW-Gdw_Xt9OzuyEkKW-HEMc0FSXjClKmJBcVLeMsERUHLnjFQ5UJzyHFFOIMFahEoZR0UpUwyXJIBuR0s3fh7FuHvi1q7SUaE46wnS9YHtOYJpyygJ5s0a6sURULp2twy-LLSwCSDSCd9d5h9Y0wWqzsF8F-sbVfbO2HVP4rJXW79tY60Oaf7HiTXQ9t55rg6s_EJxMXn_s |
CitedBy_id | crossref_primary_10_1039_C9SM02339A crossref_primary_10_1063_5_0007445 crossref_primary_10_1021_acs_jcim_7b00271 crossref_primary_10_1039_D0FD00058B crossref_primary_10_1038_s43588_021_00060_9 crossref_primary_10_1021_acs_jpcb_3c02848 crossref_primary_10_1039_C8NR05135F crossref_primary_10_1080_00268976_2020_1785571 crossref_primary_10_1021_acs_jpcb_4c05035 crossref_primary_10_1063_5_0020733 crossref_primary_10_1063_5_0153104 crossref_primary_10_1039_C7CP03871B crossref_primary_10_1016_j_bbagen_2020_129570 crossref_primary_10_3389_fmolb_2019_00124 crossref_primary_10_3390_molecules25215120 crossref_primary_10_1021_acs_jctc_8b01201 crossref_primary_10_1021_acs_jcim_9b00569 crossref_primary_10_1021_acs_jcim_3c00186 crossref_primary_10_1002_anie_202004522 crossref_primary_10_1016_j_bbrc_2017_10_132 crossref_primary_10_1021_acs_jpclett_4c00806 crossref_primary_10_1021_acs_jpclett_8b03399 crossref_primary_10_1021_acs_jctc_2c00107 crossref_primary_10_1021_acs_jpcb_0c04842 crossref_primary_10_1021_acs_jctc_7b01160 crossref_primary_10_1007_s00232_018_0050_y crossref_primary_10_1063_5_0145142 crossref_primary_10_1016_j_bbamem_2018_04_015 crossref_primary_10_1002_ange_202004522 crossref_primary_10_1021_acs_jctc_9b01140 crossref_primary_10_1021_acsanm_1c00171 crossref_primary_10_1039_D0SM02270E crossref_primary_10_1038_s41467_020_16424_0 crossref_primary_10_1021_acs_jctc_8b00466 |
Cites_doi | 10.1038/nature04396 10.1039/B608631D 10.1039/b818782g 10.1002/anie.201406489 10.1016/j.jsb.2016.05.010 10.1063/1.4960433 10.1038/nchembio.1941 10.1126/science.1255288 10.1016/S0091-679X(08)00802-9 10.1016/j.bbamem.2006.02.030 10.1371/journal.pcbi.0030220 10.1007/978-3-662-10024-0 10.1039/a608417f 10.1016/S0006-3495(04)74227-7 10.1063/1.2364506 10.1021/acs.biochem.5b00718 10.1016/S1063-5823(08)00001-X 10.1063/1.3142103 10.1021/ct400137q 10.1016/j.bbamem.2014.01.006 10.1021/ma980727w 10.1039/c3cp54242d 10.1146/annurev.biophys.34.040204.144637 10.1016/j.ceb.2014.03.006 10.1103/PhysRevLett.83.4317 10.1021/acs.jctc.5b00485 10.1063/1.466213 10.1038/nrmicro3525 10.1007/12_2013_258 10.1088/0953-8984/6/32/003 10.1039/C5CP06856H 10.1021/jp071097f 10.1016/j.bbamem.2016.01.026 10.1021/acs.jpclett.6b02818 10.1016/S0006-3495(03)75102-9 10.1063/1.4933087 10.1002/jcc.22883 10.1021/acs.jpcb.6b01870 10.1038/nature04394 10.1038/nrm1784 10.1021/ja036138+ 10.1039/C6SM02252A 10.1038/ncb0107-7 10.1103/PhysRevLett.72.2660 10.1007/s00214-012-1167-1 10.7554/eLife.16988 10.1002/jcc.23365 10.1073/pnas.0603917103 10.1021/jacs.5b06800 10.1021/acs.jpcb.5b04878 10.1021/acs.jpcb.6b02016 10.1021/ct800122x 10.1016/j.bpj.2014.02.037 10.1038/ncomms5916 10.1016/j.physrep.2006.08.003 10.1088/1478-3975/10/4/045007 10.1103/PhysRevE.49.3199 10.1039/c3cs60093a 10.1021/ct200132n 10.1529/biophysj.108.132563 10.1063/1.476482 10.1063/1.3506776 10.1021/ct900457z 10.1016/j.devcel.2012.10.009 10.1201/b11712 10.1016/j.bpj.2011.01.036 10.1038/nature05840 10.1016/j.bbamem.2016.03.012 10.1371/journal.pone.0028637 10.1016/0378-4371(90)90287-3 10.1126/science.1157834 10.1021/jp101759q 10.1371/journal.pbio.2002214 10.1021/ct3003157 10.1063/1.2216960 10.1016/0009-2614(96)00997-9 10.1038/nrm2330 10.1063/1.4808077 10.1021/ma702514v 10.1038/ncomms8292 10.1021/jz200167q 10.1021/jp9107206 10.1242/jcs.176040 10.1146/annurev-biochem-052809-155121 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American
Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acs.jpclett.7b00493 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1948-7185 |
EndPage | 3594 |
ExternalDocumentID | 28707901 10_1021_acs_jpclett_7b00493 a795483196 |
Genre | Journal Article |
GroupedDBID | 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ DU5 EBS ED ED~ EJD GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a345t-a22047b15da41dc57f0b2837f5a575f5555b359a4e4a28edad3decc06fba689a3 |
IEDL.DBID | ACS |
ISSN | 1948-7185 |
IngestDate | Thu Jul 10 22:46:42 EDT 2025 Wed Feb 19 02:42:28 EST 2025 Tue Jul 01 03:24:18 EDT 2025 Thu Apr 24 23:00:53 EDT 2025 Thu Aug 27 13:42:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a345t-a22047b15da41dc57f0b2837f5a575f5555b359a4e4a28edad3decc06fba689a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2266-5399 |
PMID | 28707901 |
PQID | 1920203501 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1920203501 pubmed_primary_28707901 crossref_primary_10_1021_acs_jpclett_7b00493 crossref_citationtrail_10_1021_acs_jpclett_7b00493 acs_journals_10_1021_acs_jpclett_7b00493 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170803 2017-08-03 2017-Aug-03 |
PublicationDateYYYYMMDD | 2017-08-03 |
PublicationDate_xml | – month: 08 year: 2017 text: 20170803 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry letters |
PublicationTitleAlternate | J. Phys. Chem. Lett |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 Kawakatsu T. (ref57/cit57) 2004 ref53/cit53 ref19/cit19 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 Müller M. (ref4700/cit4700) 2006; 434 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 Marsh D. (ref21/cit21) 2013 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 Deserno M. (ref4600/cit4600) 2014; 260 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1038/nature04396 – ident: ref12/cit12 doi: 10.1039/B608631D – ident: ref48/cit48 doi: 10.1039/b818782g – ident: ref77/cit77 doi: 10.1002/anie.201406489 – ident: ref17/cit17 doi: 10.1016/j.jsb.2016.05.010 – ident: ref50/cit50 doi: 10.1063/1.4960433 – ident: ref20/cit20 doi: 10.1038/nchembio.1941 – ident: ref53/cit53 doi: 10.1126/science.1255288 – ident: ref42/cit42 doi: 10.1016/S0091-679X(08)00802-9 – ident: ref27/cit27 doi: 10.1016/j.bbamem.2006.02.030 – ident: ref55/cit55 doi: 10.1371/journal.pcbi.0030220 – volume-title: Statistical Physics of Polymers year: 2004 ident: ref57/cit57 doi: 10.1007/978-3-662-10024-0 – ident: ref61/cit61 doi: 10.1039/a608417f – ident: ref26/cit26 doi: 10.1016/S0006-3495(04)74227-7 – ident: ref66/cit66 doi: 10.1063/1.2364506 – ident: ref33/cit33 doi: 10.1021/acs.biochem.5b00718 – ident: ref28/cit28 doi: 10.1016/S1063-5823(08)00001-X – ident: ref68/cit68 doi: 10.1063/1.3142103 – ident: ref83/cit83 doi: 10.1021/ct400137q – ident: ref13/cit13 doi: 10.1016/j.bbamem.2014.01.006 – ident: ref60/cit60 doi: 10.1021/ma980727w – ident: ref73/cit73 doi: 10.1039/c3cp54242d – ident: ref14/cit14 doi: 10.1146/annurev.biophys.34.040204.144637 – ident: ref5/cit5 doi: 10.1016/j.ceb.2014.03.006 – ident: ref59/cit59 doi: 10.1103/PhysRevLett.83.4317 – ident: ref74/cit74 doi: 10.1021/acs.jctc.5b00485 – ident: ref63/cit63 doi: 10.1063/1.466213 – ident: ref16/cit16 doi: 10.1038/nrmicro3525 – volume: 260 start-page: 237 year: 2014 ident: ref4600/cit4600 publication-title: Adv. Polymer Sci. doi: 10.1007/12_2013_258 – ident: ref64/cit64 doi: 10.1088/0953-8984/6/32/003 – ident: ref79/cit79 doi: 10.1039/C5CP06856H – ident: ref43/cit43 doi: 10.1021/jp071097f – ident: ref39/cit39 doi: 10.1016/j.bbamem.2016.01.026 – ident: ref41/cit41 doi: 10.1021/acs.jpclett.6b02818 – ident: ref25/cit25 doi: 10.1016/S0006-3495(03)75102-9 – ident: ref56/cit56 doi: 10.1063/1.4933087 – ident: ref70/cit70 doi: 10.1002/jcc.22883 – ident: ref32/cit32 doi: 10.1021/acs.jpcb.6b01870 – ident: ref3/cit3 doi: 10.1038/nature04394 – ident: ref15/cit15 doi: 10.1038/nrm1784 – ident: ref47/cit47 doi: 10.1021/ja036138+ – ident: ref75/cit75 doi: 10.1039/C6SM02252A – ident: ref1/cit1 doi: 10.1038/ncb0107-7 – ident: ref58/cit58 doi: 10.1103/PhysRevLett.72.2660 – ident: ref72/cit72 doi: 10.1007/s00214-012-1167-1 – ident: ref52/cit52 doi: 10.7554/eLife.16988 – ident: ref80/cit80 doi: 10.1002/jcc.23365 – ident: ref34/cit34 doi: 10.1073/pnas.0603917103 – ident: ref49/cit49 doi: 10.1021/jacs.5b06800 – ident: ref22/cit22 doi: 10.1021/acs.jpcb.5b04878 – ident: ref40/cit40 doi: 10.1021/acs.jpcb.6b02016 – ident: ref81/cit81 doi: 10.1021/ct800122x – ident: ref10/cit10 – ident: ref38/cit38 doi: 10.1016/j.bpj.2014.02.037 – ident: ref51/cit51 doi: 10.1038/ncomms5916 – volume: 434 start-page: 113 year: 2006 ident: ref4700/cit4700 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2006.08.003 – ident: ref9/cit9 doi: 10.1088/1478-3975/10/4/045007 – ident: ref65/cit65 doi: 10.1103/PhysRevE.49.3199 – ident: ref6/cit6 doi: 10.1039/c3cs60093a – ident: ref71/cit71 doi: 10.1021/ct200132n – ident: ref35/cit35 doi: 10.1529/biophysj.108.132563 – ident: ref24/cit24 doi: 10.1063/1.476482 – ident: ref69/cit69 doi: 10.1063/1.3506776 – ident: ref82/cit82 doi: 10.1021/ct900457z – ident: ref4/cit4 doi: 10.1016/j.devcel.2012.10.009 – volume-title: Handbook of Lipid Bilayers year: 2013 ident: ref21/cit21 doi: 10.1201/b11712 – ident: ref36/cit36 doi: 10.1016/j.bpj.2011.01.036 – ident: ref46/cit46 doi: 10.1038/nature05840 – ident: ref54/cit54 doi: 10.1016/j.bbamem.2016.03.012 – ident: ref45/cit45 doi: 10.1371/journal.pone.0028637 – ident: ref62/cit62 doi: 10.1016/0378-4371(90)90287-3 – ident: ref8/cit8 doi: 10.1126/science.1157834 – ident: ref29/cit29 doi: 10.1021/jp101759q – ident: ref78/cit78 doi: 10.1371/journal.pbio.2002214 – ident: ref31/cit31 doi: 10.1021/ct3003157 – ident: ref76/cit76 doi: 10.1063/1.2216960 – ident: ref23/cit23 doi: 10.1016/0009-2614(96)00997-9 – ident: ref2/cit2 doi: 10.1038/nrm2330 – ident: ref37/cit37 doi: 10.1063/1.4808077 – ident: ref67/cit67 doi: 10.1021/ma702514v – ident: ref18/cit18 doi: 10.1038/ncomms8292 – ident: ref30/cit30 doi: 10.1021/jz200167q – ident: ref44/cit44 doi: 10.1021/jp9107206 – ident: ref7/cit7 doi: 10.1242/jcs.176040 – ident: ref19/cit19 doi: 10.1146/annurev-biochem-052809-155121 |
SSID | ssj0069087 |
Score | 2.3751366 |
SecondaryResourceType | review_article |
Snippet | Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3586 |
SubjectTerms | Algorithms Cell Membrane - chemistry Computer Simulation Models, Biological Models, Chemical Molecular Dynamics Simulation Polymorphism, Genetic |
Title | Toward Chemically Resolved Computer Simulations of Dynamics and Remodeling of Biological Membranes |
URI | http://dx.doi.org/10.1021/acs.jpclett.7b00493 https://www.ncbi.nlm.nih.gov/pubmed/28707901 https://www.proquest.com/docview/1920203501 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNRuLAgYTEibMcUaGqkNpLW6m3yFskoE0rkiLB1zN2kopdzdFxrHg8tt94xvMQuoxFzGEe-RYRxNNHN74VC7Ba0xTQfyglcwwlS7cXdIb-w4iOPl1W_-bBJ-4NE7n9NAMZFoUdmsgcbxWtkQCmsUZCrX698IKdZ_jwwCyPLFhyaZ1k6PdG9HYk8q_b0R8Y0-w17S3Uq2_slCEmz_a84LZ4_5nAcblubKPNCnXi21JNdtCKynbReqsme9tDfGDCZ3GdP2D8hvXB_vhVQVlF_ID7j5OK7CvH0xTflWT2OWaZhNqGUwc2Qv2qZLjUDeGumoBBDgvqPhq27wetjlXRL1jM82lhMUIcP-Qulcx3paBh6nCdKyelDDBeSuHhHo2Zr3xGIiWZ9CQohBOknAVRzLwD1MimmTpCWJBIp6ZTUCzB_hQR49wFNVCKpTHjThNdgXySavrkifGMEzcxhaXQkkpoTUTqAUtElcZcs2mM___oevHRrMzi8X_1i1oTEhgH7UIBOU3n8GMx0a5b6rhNdFiqyKJB7TIOAV4dL9-ZE7RBNEzQISjeKWoUL3N1BiCn4OdGtT8AAH_5_w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODC-zGeQeLAgY42bdb2OA3QeIwLm8StyqsSMDZEOyT49ThpOwQCBD2miZU4TmzHiT-Ag1jGAtdR4FBJfXN0EzixRK81TdH6D5XiroVk6V43O_3g4pbdlo_CzFsY7ESGlDIbxP_ILuAdm7L7J2RlnjdCe0HHn4YZNEeoketW-6baf9Hds7B46J1HDu68rMo19D0Ro5Vk9lkr_WBqWpVztgD9SWftTZOHxjgXDfn2JY_jf0ezCPOlDUpahdAswZQeLsNsu4J-WwHRs5dpSZVNYPBKzDH_4EVjWQkDQW7uHkvor4yMUnJSQNtnhA8V1rYIO6gWza8C79IQIl39iO45bq-r0D877bU7TgnG4HA_YLnDKXWDUHhM8cBTkoWpK0zmnJRxtPhShp_wWcwDHXAaacWVr1A83GYqeDOKub8GteFoqDeASBqZRHUaixV6ozLiQngoFFrzNObCrcMh8icpF1OW2Dg59RJbWDAtKZlWB1rNWyLLpOYGW2Pwe6OjSaOnIqfH79X3K4FIcB5MQAX5NBpjx2JqArnM9eqwXkjKhKAJIIdobG3-fTB7MNvpda-Sq_Pryy2Yo8aAMJdT_G2o5c9jvYPmTy52rbS_AxvBAm8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFouPNoCy6O4Ug89NEvixJvkiBZW9AGqBEj0FPkpAcvuimSR4Ncz4yQrFRWEmuPEGdnjsT3jmcwH8CXXucJ1lARc85iubpIg1-i1OofWf2qMDD0ky_FJ7-g8-XEhLuYga_-FwU6UyKn0QXxa1RPjmgoD0R7RryYozqrqpj5JJ34DCxS4I93e75-2ezC6fB4aDz30LMDdV7T1hv7NhE4mXf59Mj1jbvpjZ7AMf2Yd9tkm191ppbr64Uktx_8Z0QosNbYo26-VZxXm7Og9vOu3EHAfQJ35pFrWVhUY3jO67h_eWaQ1cBDs9PKmgQAr2dixgxrivmRyZLC1R9rB45Fe1biXxIgd2xt003Gb_Qjng8Oz_lHQgDIEMk5EFUjOwyRVkTAyiYwWqQsVVdBxQqLl5wQ-Kha5TGwieWaNNLFBNQl7Tslelst4DeZH45HdAKZ5RgXrLJINeqU6k0pFqBzWSpdLFXbgK8qnaBZVWfh4OY8KT6yFVjRC6wBv567QTXFzwtgYvvzRt9lHk7q2x8vNP7dKUeA8UGAF5TSeYsdyTgFdEUYdWK-1ZcaQAskpGl2brx_MLrz9fTAofn0_-bkFi5zsCMpRibdhvrqd2h20gir1ySv8I1-zBPI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Chemically+Resolved+Computer+Simulations+of+Dynamics+and+Remodeling+of+Biological+Membranes&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Soares%2C+Thereza+A&rft.au=Vanni%2C+Stefano&rft.au=Milano%2C+Giuseppe&rft.au=Cascella%2C+Michele&rft.date=2017-08-03&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=8&rft.issue=15&rft.spage=3586&rft_id=info:doi/10.1021%2Facs.jpclett.7b00493&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |