Toward Chemically Resolved Computer Simulations of Dynamics and Remodeling of Biological Membranes

Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations wh...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 8; no. 15; pp. 3586 - 3594
Main Authors Soares, Thereza A, Vanni, Stefano, Milano, Giuseppe, Cascella, Michele
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations when subject to specific environmental changes, including gel–liquid phase transitions, change of aggregation structure, formation of microtubules, or rupture into vesicles. All of these processes are dependent on a delicate interplay between intermolecular forces, molecular crowding, and entropy, and their understanding requires approaches that are able to capture and rationalize the details of all of the involved interactions. Molecular dynamics-based computational models at atom-level resolution are, in principle, the best way to perform such investigations. Unfortunately, the relevant spatial and time dimensionalities involved in membrane remodeling phenomena would require computational costs that are today unaffordable on a routinely basis. Such hurdles can be removed by coarse-graining the representations of the individual molecular components of the systems. This procedure anyway reduces the possibility of describing the chemical variations in the lipid mixtures composing biological membranes. New hybrid particle field multiscale approaches offer today a promising alternative to the more traditional particle-based simulations methods. By combining chemically distinguishable molecular representations with mesoscale-based computationally affordable potentials, they appear as one of the most promising ways to keep an accurate description of the chemical complexity of biological membranes and, at the same time, cover the required scales to describe remodeling events.
AbstractList Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations when subject to specific environmental changes, including gel-liquid phase transitions, change of aggregation structure, formation of microtubules, or rupture into vesicles. All of these processes are dependent on a delicate interplay between intermolecular forces, molecular crowding, and entropy, and their understanding requires approaches that are able to capture and rationalize the details of all of the involved interactions. Molecular dynamics-based computational models at atom-level resolution are, in principle, the best way to perform such investigations. Unfortunately, the relevant spatial and time dimensionalities involved in membrane remodeling phenomena would require computational costs that are today unaffordable on a routinely basis. Such hurdles can be removed by coarse-graining the representations of the individual molecular components of the systems. This procedure anyway reduces the possibility of describing the chemical variations in the lipid mixtures composing biological membranes. New hybrid particle field multiscale approaches offer today a promising alternative to the more traditional particle-based simulations methods. By combining chemically distinguishable molecular representations with mesoscale-based computationally affordable potentials, they appear as one of the most promising ways to keep an accurate description of the chemical complexity of biological membranes and, at the same time, cover the required scales to describe remodeling events.
Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations when subject to specific environmental changes, including gel-liquid phase transitions, change of aggregation structure, formation of microtubules, or rupture into vesicles. All of these processes are dependent on a delicate interplay between intermolecular forces, molecular crowding, and entropy, and their understanding requires approaches that are able to capture and rationalize the details of all of the involved interactions. Molecular dynamics-based computational models at atom-level resolution are, in principle, the best way to perform such investigations. Unfortunately, the relevant spatial and time dimensionalities involved in membrane remodeling phenomena would require computational costs that are today unaffordable on a routinely basis. Such hurdles can be removed by coarse-graining the representations of the individual molecular components of the systems. This procedure anyway reduces the possibility of describing the chemical variations in the lipid mixtures composing biological membranes. New hybrid particle field multiscale approaches offer today a promising alternative to the more traditional particle-based simulations methods. By combining chemically distinguishable molecular representations with mesoscale-based computationally affordable potentials, they appear as one of the most promising ways to keep an accurate description of the chemical complexity of biological membranes and, at the same time, cover the required scales to describe remodeling events.Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations when subject to specific environmental changes, including gel-liquid phase transitions, change of aggregation structure, formation of microtubules, or rupture into vesicles. All of these processes are dependent on a delicate interplay between intermolecular forces, molecular crowding, and entropy, and their understanding requires approaches that are able to capture and rationalize the details of all of the involved interactions. Molecular dynamics-based computational models at atom-level resolution are, in principle, the best way to perform such investigations. Unfortunately, the relevant spatial and time dimensionalities involved in membrane remodeling phenomena would require computational costs that are today unaffordable on a routinely basis. Such hurdles can be removed by coarse-graining the representations of the individual molecular components of the systems. This procedure anyway reduces the possibility of describing the chemical variations in the lipid mixtures composing biological membranes. New hybrid particle field multiscale approaches offer today a promising alternative to the more traditional particle-based simulations methods. By combining chemically distinguishable molecular representations with mesoscale-based computationally affordable potentials, they appear as one of the most promising ways to keep an accurate description of the chemical complexity of biological membranes and, at the same time, cover the required scales to describe remodeling events.
Author Vanni, Stefano
Milano, Giuseppe
Soares, Thereza A
Cascella, Michele
AuthorAffiliation Federal University of Pernambuco, Cidade Universitária
Department of Biology
Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC)
Department of Fundamental Chemistry
Università di Salerno
Dipartimento di Chimica e Biologia
AuthorAffiliation_xml – name: Department of Fundamental Chemistry
– name: Federal University of Pernambuco, Cidade Universitária
– name: Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC)
– name: Dipartimento di Chimica e Biologia
– name: Università di Salerno
– name: Department of Biology
Author_xml – sequence: 1
  givenname: Thereza A
  surname: Soares
  fullname: Soares, Thereza A
  organization: Federal University of Pernambuco, Cidade Universitária
– sequence: 2
  givenname: Stefano
  surname: Vanni
  fullname: Vanni, Stefano
  organization: Department of Biology
– sequence: 3
  givenname: Giuseppe
  surname: Milano
  fullname: Milano, Giuseppe
  organization: Università di Salerno
– sequence: 4
  givenname: Michele
  orcidid: 0000-0003-2266-5399
  surname: Cascella
  fullname: Cascella, Michele
  email: michele.cascella@kjemi.uio.no
  organization: Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28707901$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOwzAQRS0EgrbwBUgoSzZt7SSukyWUpwRCgrKOJvYEXDlxsRNQ_x73AUIsYDYeec4djU6f7Da2QUKOGR0xGrMxSD-aL6TBth2JktI0T3ZIj-VpNhQs47s_-gPS935O6SSnmdgnB3EmqMgp65FyZj_AqWj6irWWYMwyekRvzTuGP1svuhZd9KTrzkCrbeMjW0UXywYC7CNoVKBrq9Do5mU1OtfW2JfVouge69JBg_6Q7FVgPB5t3wF5vrqcTW-Gdw_Xt9OzuyEkKW-HEMc0FSXjClKmJBcVLeMsERUHLnjFQ5UJzyHFFOIMFahEoZR0UpUwyXJIBuR0s3fh7FuHvi1q7SUaE46wnS9YHtOYJpyygJ5s0a6sURULp2twy-LLSwCSDSCd9d5h9Y0wWqzsF8F-sbVfbO2HVP4rJXW79tY60Oaf7HiTXQ9t55rg6s_EJxMXn_s
CitedBy_id crossref_primary_10_1039_C9SM02339A
crossref_primary_10_1063_5_0007445
crossref_primary_10_1021_acs_jcim_7b00271
crossref_primary_10_1039_D0FD00058B
crossref_primary_10_1038_s43588_021_00060_9
crossref_primary_10_1021_acs_jpcb_3c02848
crossref_primary_10_1039_C8NR05135F
crossref_primary_10_1080_00268976_2020_1785571
crossref_primary_10_1021_acs_jpcb_4c05035
crossref_primary_10_1063_5_0020733
crossref_primary_10_1063_5_0153104
crossref_primary_10_1039_C7CP03871B
crossref_primary_10_1016_j_bbagen_2020_129570
crossref_primary_10_3389_fmolb_2019_00124
crossref_primary_10_3390_molecules25215120
crossref_primary_10_1021_acs_jctc_8b01201
crossref_primary_10_1021_acs_jcim_9b00569
crossref_primary_10_1021_acs_jcim_3c00186
crossref_primary_10_1002_anie_202004522
crossref_primary_10_1016_j_bbrc_2017_10_132
crossref_primary_10_1021_acs_jpclett_4c00806
crossref_primary_10_1021_acs_jpclett_8b03399
crossref_primary_10_1021_acs_jctc_2c00107
crossref_primary_10_1021_acs_jpcb_0c04842
crossref_primary_10_1021_acs_jctc_7b01160
crossref_primary_10_1007_s00232_018_0050_y
crossref_primary_10_1063_5_0145142
crossref_primary_10_1016_j_bbamem_2018_04_015
crossref_primary_10_1002_ange_202004522
crossref_primary_10_1021_acs_jctc_9b01140
crossref_primary_10_1021_acsanm_1c00171
crossref_primary_10_1039_D0SM02270E
crossref_primary_10_1038_s41467_020_16424_0
crossref_primary_10_1021_acs_jctc_8b00466
Cites_doi 10.1038/nature04396
10.1039/B608631D
10.1039/b818782g
10.1002/anie.201406489
10.1016/j.jsb.2016.05.010
10.1063/1.4960433
10.1038/nchembio.1941
10.1126/science.1255288
10.1016/S0091-679X(08)00802-9
10.1016/j.bbamem.2006.02.030
10.1371/journal.pcbi.0030220
10.1007/978-3-662-10024-0
10.1039/a608417f
10.1016/S0006-3495(04)74227-7
10.1063/1.2364506
10.1021/acs.biochem.5b00718
10.1016/S1063-5823(08)00001-X
10.1063/1.3142103
10.1021/ct400137q
10.1016/j.bbamem.2014.01.006
10.1021/ma980727w
10.1039/c3cp54242d
10.1146/annurev.biophys.34.040204.144637
10.1016/j.ceb.2014.03.006
10.1103/PhysRevLett.83.4317
10.1021/acs.jctc.5b00485
10.1063/1.466213
10.1038/nrmicro3525
10.1007/12_2013_258
10.1088/0953-8984/6/32/003
10.1039/C5CP06856H
10.1021/jp071097f
10.1016/j.bbamem.2016.01.026
10.1021/acs.jpclett.6b02818
10.1016/S0006-3495(03)75102-9
10.1063/1.4933087
10.1002/jcc.22883
10.1021/acs.jpcb.6b01870
10.1038/nature04394
10.1038/nrm1784
10.1021/ja036138+
10.1039/C6SM02252A
10.1038/ncb0107-7
10.1103/PhysRevLett.72.2660
10.1007/s00214-012-1167-1
10.7554/eLife.16988
10.1002/jcc.23365
10.1073/pnas.0603917103
10.1021/jacs.5b06800
10.1021/acs.jpcb.5b04878
10.1021/acs.jpcb.6b02016
10.1021/ct800122x
10.1016/j.bpj.2014.02.037
10.1038/ncomms5916
10.1016/j.physrep.2006.08.003
10.1088/1478-3975/10/4/045007
10.1103/PhysRevE.49.3199
10.1039/c3cs60093a
10.1021/ct200132n
10.1529/biophysj.108.132563
10.1063/1.476482
10.1063/1.3506776
10.1021/ct900457z
10.1016/j.devcel.2012.10.009
10.1201/b11712
10.1016/j.bpj.2011.01.036
10.1038/nature05840
10.1016/j.bbamem.2016.03.012
10.1371/journal.pone.0028637
10.1016/0378-4371(90)90287-3
10.1126/science.1157834
10.1021/jp101759q
10.1371/journal.pbio.2002214
10.1021/ct3003157
10.1063/1.2216960
10.1016/0009-2614(96)00997-9
10.1038/nrm2330
10.1063/1.4808077
10.1021/ma702514v
10.1038/ncomms8292
10.1021/jz200167q
10.1021/jp9107206
10.1242/jcs.176040
10.1146/annurev-biochem-052809-155121
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.jpclett.7b00493
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 3594
ExternalDocumentID 28707901
10_1021_acs_jpclett_7b00493
a795483196
Genre Journal Article
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
DU5
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a345t-a22047b15da41dc57f0b2837f5a575f5555b359a4e4a28edad3decc06fba689a3
IEDL.DBID ACS
ISSN 1948-7185
IngestDate Thu Jul 10 22:46:42 EDT 2025
Wed Feb 19 02:42:28 EST 2025
Tue Jul 01 03:24:18 EDT 2025
Thu Apr 24 23:00:53 EDT 2025
Thu Aug 27 13:42:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a345t-a22047b15da41dc57f0b2837f5a575f5555b359a4e4a28edad3decc06fba689a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2266-5399
PMID 28707901
PQID 1920203501
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1920203501
pubmed_primary_28707901
crossref_primary_10_1021_acs_jpclett_7b00493
crossref_citationtrail_10_1021_acs_jpclett_7b00493
acs_journals_10_1021_acs_jpclett_7b00493
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170803
2017-08-03
2017-Aug-03
PublicationDateYYYYMMDD 2017-08-03
PublicationDate_xml – month: 08
  year: 2017
  text: 20170803
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
Kawakatsu T. (ref57/cit57) 2004
ref53/cit53
ref19/cit19
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
Müller M. (ref4700/cit4700) 2006; 434
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
Marsh D. (ref21/cit21) 2013
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
Deserno M. (ref4600/cit4600) 2014; 260
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1038/nature04396
– ident: ref12/cit12
  doi: 10.1039/B608631D
– ident: ref48/cit48
  doi: 10.1039/b818782g
– ident: ref77/cit77
  doi: 10.1002/anie.201406489
– ident: ref17/cit17
  doi: 10.1016/j.jsb.2016.05.010
– ident: ref50/cit50
  doi: 10.1063/1.4960433
– ident: ref20/cit20
  doi: 10.1038/nchembio.1941
– ident: ref53/cit53
  doi: 10.1126/science.1255288
– ident: ref42/cit42
  doi: 10.1016/S0091-679X(08)00802-9
– ident: ref27/cit27
  doi: 10.1016/j.bbamem.2006.02.030
– ident: ref55/cit55
  doi: 10.1371/journal.pcbi.0030220
– volume-title: Statistical Physics of Polymers
  year: 2004
  ident: ref57/cit57
  doi: 10.1007/978-3-662-10024-0
– ident: ref61/cit61
  doi: 10.1039/a608417f
– ident: ref26/cit26
  doi: 10.1016/S0006-3495(04)74227-7
– ident: ref66/cit66
  doi: 10.1063/1.2364506
– ident: ref33/cit33
  doi: 10.1021/acs.biochem.5b00718
– ident: ref28/cit28
  doi: 10.1016/S1063-5823(08)00001-X
– ident: ref68/cit68
  doi: 10.1063/1.3142103
– ident: ref83/cit83
  doi: 10.1021/ct400137q
– ident: ref13/cit13
  doi: 10.1016/j.bbamem.2014.01.006
– ident: ref60/cit60
  doi: 10.1021/ma980727w
– ident: ref73/cit73
  doi: 10.1039/c3cp54242d
– ident: ref14/cit14
  doi: 10.1146/annurev.biophys.34.040204.144637
– ident: ref5/cit5
  doi: 10.1016/j.ceb.2014.03.006
– ident: ref59/cit59
  doi: 10.1103/PhysRevLett.83.4317
– ident: ref74/cit74
  doi: 10.1021/acs.jctc.5b00485
– ident: ref63/cit63
  doi: 10.1063/1.466213
– ident: ref16/cit16
  doi: 10.1038/nrmicro3525
– volume: 260
  start-page: 237
  year: 2014
  ident: ref4600/cit4600
  publication-title: Adv. Polymer Sci.
  doi: 10.1007/12_2013_258
– ident: ref64/cit64
  doi: 10.1088/0953-8984/6/32/003
– ident: ref79/cit79
  doi: 10.1039/C5CP06856H
– ident: ref43/cit43
  doi: 10.1021/jp071097f
– ident: ref39/cit39
  doi: 10.1016/j.bbamem.2016.01.026
– ident: ref41/cit41
  doi: 10.1021/acs.jpclett.6b02818
– ident: ref25/cit25
  doi: 10.1016/S0006-3495(03)75102-9
– ident: ref56/cit56
  doi: 10.1063/1.4933087
– ident: ref70/cit70
  doi: 10.1002/jcc.22883
– ident: ref32/cit32
  doi: 10.1021/acs.jpcb.6b01870
– ident: ref3/cit3
  doi: 10.1038/nature04394
– ident: ref15/cit15
  doi: 10.1038/nrm1784
– ident: ref47/cit47
  doi: 10.1021/ja036138+
– ident: ref75/cit75
  doi: 10.1039/C6SM02252A
– ident: ref1/cit1
  doi: 10.1038/ncb0107-7
– ident: ref58/cit58
  doi: 10.1103/PhysRevLett.72.2660
– ident: ref72/cit72
  doi: 10.1007/s00214-012-1167-1
– ident: ref52/cit52
  doi: 10.7554/eLife.16988
– ident: ref80/cit80
  doi: 10.1002/jcc.23365
– ident: ref34/cit34
  doi: 10.1073/pnas.0603917103
– ident: ref49/cit49
  doi: 10.1021/jacs.5b06800
– ident: ref22/cit22
  doi: 10.1021/acs.jpcb.5b04878
– ident: ref40/cit40
  doi: 10.1021/acs.jpcb.6b02016
– ident: ref81/cit81
  doi: 10.1021/ct800122x
– ident: ref10/cit10
– ident: ref38/cit38
  doi: 10.1016/j.bpj.2014.02.037
– ident: ref51/cit51
  doi: 10.1038/ncomms5916
– volume: 434
  start-page: 113
  year: 2006
  ident: ref4700/cit4700
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.08.003
– ident: ref9/cit9
  doi: 10.1088/1478-3975/10/4/045007
– ident: ref65/cit65
  doi: 10.1103/PhysRevE.49.3199
– ident: ref6/cit6
  doi: 10.1039/c3cs60093a
– ident: ref71/cit71
  doi: 10.1021/ct200132n
– ident: ref35/cit35
  doi: 10.1529/biophysj.108.132563
– ident: ref24/cit24
  doi: 10.1063/1.476482
– ident: ref69/cit69
  doi: 10.1063/1.3506776
– ident: ref82/cit82
  doi: 10.1021/ct900457z
– ident: ref4/cit4
  doi: 10.1016/j.devcel.2012.10.009
– volume-title: Handbook of Lipid Bilayers
  year: 2013
  ident: ref21/cit21
  doi: 10.1201/b11712
– ident: ref36/cit36
  doi: 10.1016/j.bpj.2011.01.036
– ident: ref46/cit46
  doi: 10.1038/nature05840
– ident: ref54/cit54
  doi: 10.1016/j.bbamem.2016.03.012
– ident: ref45/cit45
  doi: 10.1371/journal.pone.0028637
– ident: ref62/cit62
  doi: 10.1016/0378-4371(90)90287-3
– ident: ref8/cit8
  doi: 10.1126/science.1157834
– ident: ref29/cit29
  doi: 10.1021/jp101759q
– ident: ref78/cit78
  doi: 10.1371/journal.pbio.2002214
– ident: ref31/cit31
  doi: 10.1021/ct3003157
– ident: ref76/cit76
  doi: 10.1063/1.2216960
– ident: ref23/cit23
  doi: 10.1016/0009-2614(96)00997-9
– ident: ref2/cit2
  doi: 10.1038/nrm2330
– ident: ref37/cit37
  doi: 10.1063/1.4808077
– ident: ref67/cit67
  doi: 10.1021/ma702514v
– ident: ref18/cit18
  doi: 10.1038/ncomms8292
– ident: ref30/cit30
  doi: 10.1021/jz200167q
– ident: ref44/cit44
  doi: 10.1021/jp9107206
– ident: ref7/cit7
  doi: 10.1242/jcs.176040
– ident: ref19/cit19
  doi: 10.1146/annurev-biochem-052809-155121
SSID ssj0069087
Score 2.3751366
SecondaryResourceType review_article
Snippet Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3586
SubjectTerms Algorithms
Cell Membrane - chemistry
Computer Simulation
Models, Biological
Models, Chemical
Molecular Dynamics Simulation
Polymorphism, Genetic
Title Toward Chemically Resolved Computer Simulations of Dynamics and Remodeling of Biological Membranes
URI http://dx.doi.org/10.1021/acs.jpclett.7b00493
https://www.ncbi.nlm.nih.gov/pubmed/28707901
https://www.proquest.com/docview/1920203501
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNRuLAgYTEibMcUaGqkNpLW6m3yFskoE0rkiLB1zN2kopdzdFxrHg8tt94xvMQuoxFzGEe-RYRxNNHN74VC7Ba0xTQfyglcwwlS7cXdIb-w4iOPl1W_-bBJ-4NE7n9NAMZFoUdmsgcbxWtkQCmsUZCrX698IKdZ_jwwCyPLFhyaZ1k6PdG9HYk8q_b0R8Y0-w17S3Uq2_slCEmz_a84LZ4_5nAcblubKPNCnXi21JNdtCKynbReqsme9tDfGDCZ3GdP2D8hvXB_vhVQVlF_ID7j5OK7CvH0xTflWT2OWaZhNqGUwc2Qv2qZLjUDeGumoBBDgvqPhq27wetjlXRL1jM82lhMUIcP-Qulcx3paBh6nCdKyelDDBeSuHhHo2Zr3xGIiWZ9CQohBOknAVRzLwD1MimmTpCWJBIp6ZTUCzB_hQR49wFNVCKpTHjThNdgXySavrkifGMEzcxhaXQkkpoTUTqAUtElcZcs2mM___oevHRrMzi8X_1i1oTEhgH7UIBOU3n8GMx0a5b6rhNdFiqyKJB7TIOAV4dL9-ZE7RBNEzQISjeKWoUL3N1BiCn4OdGtT8AAH_5_w
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODC-zGeQeLAgY42bdb2OA3QeIwLm8StyqsSMDZEOyT49ThpOwQCBD2miZU4TmzHiT-Ag1jGAtdR4FBJfXN0EzixRK81TdH6D5XiroVk6V43O_3g4pbdlo_CzFsY7ESGlDIbxP_ILuAdm7L7J2RlnjdCe0HHn4YZNEeoketW-6baf9Hds7B46J1HDu68rMo19D0Ro5Vk9lkr_WBqWpVztgD9SWftTZOHxjgXDfn2JY_jf0ezCPOlDUpahdAswZQeLsNsu4J-WwHRs5dpSZVNYPBKzDH_4EVjWQkDQW7uHkvor4yMUnJSQNtnhA8V1rYIO6gWza8C79IQIl39iO45bq-r0D877bU7TgnG4HA_YLnDKXWDUHhM8cBTkoWpK0zmnJRxtPhShp_wWcwDHXAaacWVr1A83GYqeDOKub8GteFoqDeASBqZRHUaixV6ozLiQngoFFrzNObCrcMh8icpF1OW2Dg59RJbWDAtKZlWB1rNWyLLpOYGW2Pwe6OjSaOnIqfH79X3K4FIcB5MQAX5NBpjx2JqArnM9eqwXkjKhKAJIIdobG3-fTB7MNvpda-Sq_Pryy2Yo8aAMJdT_G2o5c9jvYPmTy52rbS_AxvBAm8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFouPNoCy6O4Ug89NEvixJvkiBZW9AGqBEj0FPkpAcvuimSR4Ncz4yQrFRWEmuPEGdnjsT3jmcwH8CXXucJ1lARc85iubpIg1-i1OofWf2qMDD0ky_FJ7-g8-XEhLuYga_-FwU6UyKn0QXxa1RPjmgoD0R7RryYozqrqpj5JJ34DCxS4I93e75-2ezC6fB4aDz30LMDdV7T1hv7NhE4mXf59Mj1jbvpjZ7AMf2Yd9tkm191ppbr64Uktx_8Z0QosNbYo26-VZxXm7Og9vOu3EHAfQJ35pFrWVhUY3jO67h_eWaQ1cBDs9PKmgQAr2dixgxrivmRyZLC1R9rB45Fe1biXxIgd2xt003Gb_Qjng8Oz_lHQgDIEMk5EFUjOwyRVkTAyiYwWqQsVVdBxQqLl5wQ-Kha5TGwieWaNNLFBNQl7Tslelst4DeZH45HdAKZ5RgXrLJINeqU6k0pFqBzWSpdLFXbgK8qnaBZVWfh4OY8KT6yFVjRC6wBv567QTXFzwtgYvvzRt9lHk7q2x8vNP7dKUeA8UGAF5TSeYsdyTgFdEUYdWK-1ZcaQAskpGl2brx_MLrz9fTAofn0_-bkFi5zsCMpRibdhvrqd2h20gir1ySv8I1-zBPI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Chemically+Resolved+Computer+Simulations+of+Dynamics+and+Remodeling+of+Biological+Membranes&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Soares%2C+Thereza+A&rft.au=Vanni%2C+Stefano&rft.au=Milano%2C+Giuseppe&rft.au=Cascella%2C+Michele&rft.date=2017-08-03&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=8&rft.issue=15&rft.spage=3586&rft_id=info:doi/10.1021%2Facs.jpclett.7b00493&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon