Characterization of the Direct Interaction between Hybrid Sensor Kinases PA1611 and RetS That Controls Biofilm Formation and the Type III Secretion System in Pseudomonas aeruginosa
One of the leading causes of morbidity and mortality in cystic fibrosis (CF) patients is pulmonary infection with Pseudomonas aeruginosa, and the pathophysiology of pulmonary infection in CF is affected by the lifestyle of this micro-organism. RetS-GacS/A-RsmA is a key regulatory pathway in P. aerug...
Saved in:
Published in | ACS infectious diseases Vol. 3; no. 2; pp. 162 - 175 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the leading causes of morbidity and mortality in cystic fibrosis (CF) patients is pulmonary infection with Pseudomonas aeruginosa, and the pathophysiology of pulmonary infection in CF is affected by the lifestyle of this micro-organism. RetS-GacS/A-RsmA is a key regulatory pathway in P. aeruginosa that determines the bacterium’s lifestyle choice. Previously, we identified PA1611, a hybrid sensor kinase, as a new player in this pathway that interacts with RetS and influences biofilm formation and type III secretion system. In this study, we explored the structural and mechanistic basis of the interaction between PA1611 and RetS. We identified the amino acid residues critical for PA1611–RetS interactions by molecular modeling. These residues were then targeted for site-directed mutagenesis. Amino acid substitutions were carried out at seven key positions in PA1611 and at six corresponding key positions in RetS. The influence of such substitutions in PA1611 on the interaction was analyzed by bacterial two-hybrid assays. We carried out functional analysis of these mutants in P. aeruginosa for their effect on specific phenotypes. Two residues, F269 and E276, located within the histidine kinase A and histidine kinase-like ATPase domains of PA1611 were found to play crucial roles in the PA1611–RetS interaction and had profound effects on phenotypes. Corresponding mutations in RetS demonstrated similar results. We further confirmed that these mutations in PA1611 function through the GacS/GacA-RsmY/Z signaling pathway. Collectively, our findings provide a noncognate sensor kinase direct interaction model for a signaling pathway, key for lifestyle selection in P. aeruginosa, and targeting such interaction may serve as a novel way of controlling infections with P. aeruginosa. |
---|---|
AbstractList | One of the leading causes of morbidity and mortality in cystic fibrosis (CF) patients is pulmonary infection with Pseudomonas aeruginosa, and the pathophysiology of pulmonary infection in CF is affected by the lifestyle of this micro-organism. RetS-GacS/A-RsmA is a key regulatory pathway in P. aeruginosa that determines the bacterium’s lifestyle choice. Previously, we identified PA1611, a hybrid sensor kinase, as a new player in this pathway that interacts with RetS and influences biofilm formation and type III secretion system. In this study, we explored the structural and mechanistic basis of the interaction between PA1611 and RetS. We identified the amino acid residues critical for PA1611–RetS interactions by molecular modeling. These residues were then targeted for site-directed mutagenesis. Amino acid substitutions were carried out at seven key positions in PA1611 and at six corresponding key positions in RetS. The influence of such substitutions in PA1611 on the interaction was analyzed by bacterial two-hybrid assays. We carried out functional analysis of these mutants in P. aeruginosa for their effect on specific phenotypes. Two residues, F269 and E276, located within the histidine kinase A and histidine kinase-like ATPase domains of PA1611 were found to play crucial roles in the PA1611–RetS interaction and had profound effects on phenotypes. Corresponding mutations in RetS demonstrated similar results. We further confirmed that these mutations in PA1611 function through the GacS/GacA-RsmY/Z signaling pathway. Collectively, our findings provide a noncognate sensor kinase direct interaction model for a signaling pathway, key for lifestyle selection in P. aeruginosa, and targeting such interaction may serve as a novel way of controlling infections with P. aeruginosa. One of the leading causes of morbidity and mortality in cystic fibrosis (CF) patients is pulmonary infection with Pseudomonas aeruginosa, and the pathophysiology of pulmonary infection in CF is affected by the lifestyle of this micro-organism. RetS-GacS/A-RsmA is a key regulatory pathway in P. aeruginosa that determines the bacterium's lifestyle choice. Previously, we identified PA1611, a hybrid sensor kinase, as a new player in this pathway that interacts with RetS and influences biofilm formation and type III secretion system. In this study, we explored the structural and mechanistic basis of the interaction between PA1611 and RetS. We identified the amino acid residues critical for PA1611-RetS interactions by molecular modeling. These residues were then targeted for site-directed mutagenesis. Amino acid substitutions were carried out at seven key positions in PA1611 and at six corresponding key positions in RetS. The influence of such substitutions in PA1611 on the interaction was analyzed by bacterial two-hybrid assays. We carried out functional analysis of these mutants in P. aeruginosa for their effect on specific phenotypes. Two residues, F269 and E276, located within the histidine kinase A and histidine kinase-like ATPase domains of PA1611 were found to play crucial roles in the PA1611-RetS interaction and had profound effects on phenotypes. Corresponding mutations in RetS demonstrated similar results. We further confirmed that these mutations in PA1611 function through the GacS/GacA-RsmY/Z signaling pathway. Collectively, our findings provide a noncognate sensor kinase direct interaction model for a signaling pathway, key for lifestyle selection in P. aeruginosa, and targeting such interaction may serve as a novel way of controlling infections with P. aeruginosa.One of the leading causes of morbidity and mortality in cystic fibrosis (CF) patients is pulmonary infection with Pseudomonas aeruginosa, and the pathophysiology of pulmonary infection in CF is affected by the lifestyle of this micro-organism. RetS-GacS/A-RsmA is a key regulatory pathway in P. aeruginosa that determines the bacterium's lifestyle choice. Previously, we identified PA1611, a hybrid sensor kinase, as a new player in this pathway that interacts with RetS and influences biofilm formation and type III secretion system. In this study, we explored the structural and mechanistic basis of the interaction between PA1611 and RetS. We identified the amino acid residues critical for PA1611-RetS interactions by molecular modeling. These residues were then targeted for site-directed mutagenesis. Amino acid substitutions were carried out at seven key positions in PA1611 and at six corresponding key positions in RetS. The influence of such substitutions in PA1611 on the interaction was analyzed by bacterial two-hybrid assays. We carried out functional analysis of these mutants in P. aeruginosa for their effect on specific phenotypes. Two residues, F269 and E276, located within the histidine kinase A and histidine kinase-like ATPase domains of PA1611 were found to play crucial roles in the PA1611-RetS interaction and had profound effects on phenotypes. Corresponding mutations in RetS demonstrated similar results. We further confirmed that these mutations in PA1611 function through the GacS/GacA-RsmY/Z signaling pathway. Collectively, our findings provide a noncognate sensor kinase direct interaction model for a signaling pathway, key for lifestyle selection in P. aeruginosa, and targeting such interaction may serve as a novel way of controlling infections with P. aeruginosa. |
Author | Li, Yanqi Lin, Chen Kong, Weina Duan, Kangmin Chelikani, Prashen Pydi, Sai P Bhagirath, Anjali Y |
AuthorAffiliation | Biology of Breathing Group Department of Medical Microbiology and Infectious Diseases Max Rady College of Medicine, Rady Faculty of Health Sciences Rady Faculty of Health Sciences Department of Oral Biology and Manitoba Chemosensory Biology Research Group, College of Dentistry |
AuthorAffiliation_xml | – name: Biology of Breathing Group – name: Rady Faculty of Health Sciences – name: Department of Oral Biology and Manitoba Chemosensory Biology Research Group, College of Dentistry – name: Max Rady College of Medicine, Rady Faculty of Health Sciences – name: Department of Medical Microbiology and Infectious Diseases |
Author_xml | – sequence: 1 givenname: Anjali Y surname: Bhagirath fullname: Bhagirath, Anjali Y – sequence: 2 givenname: Sai P surname: Pydi fullname: Pydi, Sai P – sequence: 3 givenname: Yanqi surname: Li fullname: Li, Yanqi – sequence: 4 givenname: Chen surname: Lin fullname: Lin, Chen – sequence: 5 givenname: Weina surname: Kong fullname: Kong, Weina – sequence: 6 givenname: Prashen surname: Chelikani fullname: Chelikani, Prashen – sequence: 7 givenname: Kangmin orcidid: 0000-0002-3016-786X surname: Duan fullname: Duan, Kangmin email: Kangmin.Duan@umanitoba.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27957853$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1q3DAUhUVJadI0T1AoWnYziX4sy16mkyYZGmjoTNfiWr7uKNjSVJIp0-fqA8aTmUDoIisJznfOhXPekyMfPBLykbNzzgS_AJuc79C2Lp2XDWNcyTfkREgtZ5UQ-ujF_5icpfTAJkZWqijUO3IsdK10peQJ-TdfQwSbMbq_kF3wNHQ0r5FeuYg204WfpEnfKQ3mP4ie3m6b6Fq6RJ9CpN-ch4SJ3l_yknMKvqU_MC_pag2ZzoPPMfSJfnGhc_1Ar0Mc9nd24O7QartBulgspjwb8UlablPGgTpP7xOObRjCdIICxvGX8yHBB_K2gz7h2eE9JT-vv67mt7O77zeL-eXdDGSh8qzWwEUjVFWqTmvVWC0YbwrRcgm2lQXUjdSgurqtodJtVTOmeFFVjEMntQJ5Sj7vczcx_B4xZTO4ZLHvwWMYk-GVEmWpy0JN6KcDOjYDtmYT3QBxa56bnoB6D9gYUorYGevyUxM5gusNZ2Y3rHkxrDkMO3nlf97n-NddF3vXJJqHMEY_dfWq4xE-obwS |
CitedBy_id | crossref_primary_10_1021_acs_biochem_3c00187 crossref_primary_10_12688_f1000research_20094_1 crossref_primary_10_3390_molecules26061497 crossref_primary_10_3390_molecules29092091 crossref_primary_10_1038_s41467_018_04640_8 crossref_primary_10_1016_j_mib_2023_102399 crossref_primary_10_3390_genes13020375 crossref_primary_10_3389_fmicb_2022_983149 crossref_primary_10_1007_s11030_021_10320_5 crossref_primary_10_1016_j_str_2019_02_006 crossref_primary_10_3390_microorganisms8111746 crossref_primary_10_1146_annurev_micro_020518_115846 crossref_primary_10_1111_mmi_14101 crossref_primary_10_3390_ijms222212152 crossref_primary_10_1111_1462_2920_15558 crossref_primary_10_3389_fmicb_2020_01096 crossref_primary_10_1038_s41598_017_11361_3 crossref_primary_10_1371_journal_pbio_3001988 crossref_primary_10_3389_fmicb_2017_02671 crossref_primary_10_1128_aem_02094_22 crossref_primary_10_3390_ijms22168632 crossref_primary_10_1016_j_jbc_2021_101193 crossref_primary_10_1246_cl_200945 crossref_primary_10_1016_j_str_2022_06_002 crossref_primary_10_1128_AEM_02171_20 crossref_primary_10_1016_j_biocontrol_2025_105699 crossref_primary_10_1128_JB_00277_18 crossref_primary_10_1007_s00232_017_9994_6 crossref_primary_10_3389_fmicb_2019_00560 crossref_primary_10_3390_ijms222312892 crossref_primary_10_1016_j_engmic_2022_100051 crossref_primary_10_3390_ijms20071781 crossref_primary_10_1093_femsle_fnx104 crossref_primary_10_1093_femsle_fnx125 |
Cites_doi | 10.1073/pnas.95.11.5857 10.1038/nbt1183-784 10.1111/j.1365-2958.2009.06982.x 10.1186/1471-2156-16-S2-S2 10.1103/PhysRevE.70.061908 10.1111/1462-2920.12024 10.1093/nar/gkv599 10.1016/S0378-1119(98)00130-9 10.1016/j.devcel.2004.08.020 10.1111/mmi.12223 10.1186/s12866-015-0387-7 10.1128/JB.00868-07 10.3390/pathogens4010066 10.1371/journal.pgen.1006032 10.1093/oxfordjournals.molbev.a026297 10.1111/mmi.12932 10.1074/jbc.M606571200 10.1073/pnas.060030097 10.1111/j.1462-2920.2010.02264.x 10.12688/f1000research.5512.2 10.1371/journal.pone.0024657 10.1111/j.1365-2958.2009.06670.x 10.1128/IAI.02738-14 10.1074/jbc.L109.075721 10.1111/j.1365-2958.2009.06782.x 10.1002/prot.10286 10.1002/prot.22679 10.2217/17460913.2.2.153 10.1385/1-59259-762-9:231 10.1128/IAI.67.10.5386-5394.1999 10.1111/j.1365-2958.2007.06042.x 10.1097/MOP.0b013e3280123a5d 10.2144/00295bm04 10.1046/j.1365-2958.1998.00797.x 10.1164/rccm.200909-1421OC 10.1101/gad.1739009 10.1099/mic.0.000092 10.2144/000113539 10.1128/jb.179.11.3729-3735.1997 10.1111/j.1365-2958.2010.07146.x 10.1111/j.1574-6976.1995.tb00178.x 10.1016/j.str.2010.01.013 10.1093/bioinformatics/btq662 10.1128/MCB.00725-12 10.1128/mBio.00616-15 10.1111/j.1365-2958.2005.04743.x 10.1074/jbc.M109.075721 10.1371/journal.ppat.1003179 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsinfecdis.6b00153 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2373-8227 |
EndPage | 175 |
ExternalDocumentID | 27957853 10_1021_acsinfecdis_6b00153 a113626976 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | ABMVS ABUCX ACGFS ACS AEESW AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS EJD UI2 VF5 VG9 W1F 53G AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a345t-97a12b25865f775bc7201b42d13acd34a9b37a5f9d9a87d89005148801af375a3 |
IEDL.DBID | ACS |
ISSN | 2373-8227 |
IngestDate | Fri Jul 11 12:16:51 EDT 2025 Wed Feb 19 02:42:16 EST 2025 Tue Jul 01 01:32:26 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Thu Aug 27 13:41:58 EDT 2020 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | Pseudomonas aeruginosa site-directed mutagenesis (SDM) biofilms two-component regulatory systems (TCS) bacterial two-hybrid assays (BTH) type three secretion system (T3SS) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a345t-97a12b25865f775bc7201b42d13acd34a9b37a5f9d9a87d89005148801af375a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3016-786X |
PMID | 27957853 |
PQID | 1852667645 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1852667645 pubmed_primary_27957853 crossref_citationtrail_10_1021_acsinfecdis_6b00153 crossref_primary_10_1021_acsinfecdis_6b00153 acs_journals_10_1021_acsinfecdis_6b00153 |
ProviderPackageCode | ACS AEESW AFEFF VF5 VG9 ABMVS ABUCX AQSVZ W1F UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-10 |
PublicationDateYYYYMMDD | 2017-02-10 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS infectious diseases |
PublicationTitleAlternate | ACS Infect. Dis |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 Becher A. (ref45/cit45) 2000; 29 Motley S. T. (ref49/cit49) 1999; 67 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref40/cit40 doi: 10.1073/pnas.95.11.5857 – ident: ref46/cit46 doi: 10.1038/nbt1183-784 – ident: ref11/cit11 doi: 10.1111/j.1365-2958.2009.06982.x – ident: ref16/cit16 doi: 10.1186/1471-2156-16-S2-S2 – ident: ref24/cit24 doi: 10.1103/PhysRevE.70.061908 – ident: ref6/cit6 doi: 10.1111/1462-2920.12024 – ident: ref15/cit15 doi: 10.1093/nar/gkv599 – ident: ref47/cit47 doi: 10.1016/S0378-1119(98)00130-9 – ident: ref9/cit9 doi: 10.1016/j.devcel.2004.08.020 – ident: ref14/cit14 doi: 10.1111/mmi.12223 – ident: ref25/cit25 doi: 10.1186/s12866-015-0387-7 – ident: ref39/cit39 doi: 10.1128/JB.00868-07 – ident: ref5/cit5 doi: 10.3390/pathogens4010066 – ident: ref7/cit7 doi: 10.1371/journal.pgen.1006032 – ident: ref27/cit27 doi: 10.1093/oxfordjournals.molbev.a026297 – ident: ref28/cit28 doi: 10.1111/mmi.12932 – ident: ref38/cit38 doi: 10.1074/jbc.M606571200 – ident: ref48/cit48 doi: 10.1073/pnas.060030097 – ident: ref30/cit30 doi: 10.1111/j.1462-2920.2010.02264.x – ident: ref34/cit34 doi: 10.12688/f1000research.5512.2 – ident: ref42/cit42 doi: 10.1371/journal.pone.0024657 – ident: ref8/cit8 doi: 10.1111/j.1365-2958.2009.06670.x – ident: ref37/cit37 doi: 10.1128/IAI.02738-14 – ident: ref18/cit18 doi: 10.1074/jbc.L109.075721 – ident: ref22/cit22 doi: 10.1111/j.1365-2958.2009.06782.x – ident: ref41/cit41 doi: 10.1002/prot.10286 – ident: ref29/cit29 doi: 10.1002/prot.22679 – ident: ref1/cit1 doi: 10.2217/17460913.2.2.153 – ident: ref20/cit20 doi: 10.1385/1-59259-762-9:231 – volume: 67 start-page: 5386 year: 1999 ident: ref49/cit49 publication-title: Infect. Immun. doi: 10.1128/IAI.67.10.5386-5394.1999 – ident: ref12/cit12 doi: 10.1111/j.1365-2958.2007.06042.x – ident: ref3/cit3 doi: 10.1097/MOP.0b013e3280123a5d – volume: 29 start-page: 948 year: 2000 ident: ref45/cit45 publication-title: Biotechniques doi: 10.2144/00295bm04 – ident: ref50/cit50 doi: 10.1046/j.1365-2958.1998.00797.x – ident: ref2/cit2 doi: 10.1164/rccm.200909-1421OC – ident: ref13/cit13 doi: 10.1101/gad.1739009 – ident: ref26/cit26 doi: 10.1099/mic.0.000092 – ident: ref44/cit44 doi: 10.2144/000113539 – ident: ref35/cit35 doi: 10.1093/nar/gkv599 – ident: ref31/cit31 doi: 10.1128/jb.179.11.3729-3735.1997 – ident: ref10/cit10 doi: 10.1111/j.1365-2958.2007.06042.x – ident: ref21/cit21 doi: 10.1111/j.1365-2958.2010.07146.x – ident: ref23/cit23 doi: 10.1111/j.1574-6976.1995.tb00178.x – ident: ref17/cit17 doi: 10.1016/j.str.2010.01.013 – ident: ref19/cit19 doi: 10.1093/bioinformatics/btq662 – ident: ref43/cit43 doi: 10.1128/MCB.00725-12 – ident: ref32/cit32 doi: 10.1128/mBio.00616-15 – ident: ref4/cit4 doi: 10.1111/j.1365-2958.2005.04743.x – ident: ref33/cit33 doi: 10.1074/jbc.M109.075721 – ident: ref36/cit36 doi: 10.1371/journal.ppat.1003179 |
SSID | ssj0001385445 |
Score | 2.2002723 |
Snippet | One of the leading causes of morbidity and mortality in cystic fibrosis (CF) patients is pulmonary infection with Pseudomonas aeruginosa, and the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 162 |
SubjectTerms | Amino Acid Substitution Bacterial Proteins - chemistry Bacterial Proteins - metabolism Binding Sites Biofilms Gene Expression Regulation, Bacterial Histidine Kinase - chemistry Histidine Kinase - genetics Histidine Kinase - metabolism Models, Molecular Mutagenesis, Site-Directed Protein Binding Protein Domains Pseudomonas aeruginosa - chemistry Pseudomonas aeruginosa - metabolism Pseudomonas aeruginosa - physiology Two-Hybrid System Techniques Type III Secretion Systems - metabolism |
Title | Characterization of the Direct Interaction between Hybrid Sensor Kinases PA1611 and RetS That Controls Biofilm Formation and the Type III Secretion System in Pseudomonas aeruginosa |
URI | http://dx.doi.org/10.1021/acsinfecdis.6b00153 https://www.ncbi.nlm.nih.gov/pubmed/27957853 https://www.proquest.com/docview/1852667645 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIhLedPlpUHiwIEstR3HybGsWO2CWlVsK_UW-amugARtkgP8Ln4gYydZyqvqObaT2B7PN56Zbwh5mWVGm32HlqrhaZJq6lGktE8k18qqPHU-MvAdHmWL0_T9mTi7kKz-hwef0TfKNDEuya6baRZ1PL9ObrAMxTggodnq15UKzwO1TCwnJ3mCqk-OPEP_HidoJNP8rpH-AzOjupnfJkdj0k4fZfJp2rV6ar7_zeF4tT-5Q3YH4AkH_U65S6656h65eTi41u-TH7MtdXOfmQm1B0SH0B-KEK8O-ywIGIK7YPEt5HvBCk3hegMf1hWqxAaODxDfUVCVhY-uXcHJuWph1ofEN_B2HYqEf4H5mDUZG4YXBZMYlssljmdCbiU-6vnUYV3BceM6W6PMqAaU23Q4D3WjHpDT-buT2SIZSjokiqeiTQqpKNNM5JnwUgptJAIQnTJLuTKWp6rQXCrhC1uoXNq8iPzseMZQ5bkUij8kO1VduT0ClgbTS1uPS479bOEo2nKZSgvvhXR8Ql7hhJeDSDZl9LYzWl5YhXJYhQlh4w4ozUCNHip0fL680-ttp689M8jlzV-MW6tECQ5uGVW5usMPywULkcapmJBH_Z7bDshkEdiI-OOr_8wTcosF6BGK1uw_JTvtpnPPEDi1-nkUl5-1mhY7 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkWAvvB_lOUgcOJDuOnbi5Fgqqpbdrla0lfYW2bEtKpYE1ckBfhc_kLGTdgHBCq5JPPFjxjNjz3xDyKs0LVV5aNBTLRmPuKIWRUrZSDAltcy4sQGBb36STlf8_Vly1ieF-VwY7IRDSi5c4l-gC9ADfBbCk_TaDdOg6tlVcg3Nkdjz9Wi8uDhZYZlHmAlV5QSLUAOKLdzQn-l4xVS6XxXTX6zNoHUmt8hq198QbPJp2DZqWH77Dcrxfwd0m9zszVAYdXxzh1wx1V1yfd5ftN8j38c7IOcuTxNqC2grQrdFQjhI7HIioA_1gulXn_0FC3SM6w0crStUkA5OR2jtUZCVhg-mWcDyo2xg3AXIO3i79iXDP8Nkm0MZPvQ_8g4yzGYzpFf6TEt81aGrw7qCU2daXaMESQfSbFqcjtrJ-2Q1ebccT6O-wEMkGU-aKBeSxipOsjSxQiSqFGiOKB5rymSpGZe5YkImNte5zITO8oDWjjsOlZaJRLIHZK-qK_OIgKbeEVPa4spjO50bip5dKnlubSIMG5DXOOFFL6CuCHfvMS1-WoWiX4UBibeMUJQ9ULqv13F-eaM3u0ZfOpyQyz9_ueWwAuXZX9LIytQtdixDjk5FypMBedix3o5gLHKPTcQe__tgXpAb0-X8uDienRw9IfuxN0p8OZvDp2Sv2bTmGZpUjXoeJOgH-mkenA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkSouvB_Lc5A4cCDbOo7j5LgsrHYprVZsK5VTZMe2WAFJtU4O8Lv4gYydZHkIKsQ1iR0_ZjwznplvCHmWpqUqDwxaqiVLokRRiyylbCSYklpmibEBge_oOJ2fJm_O-NkOyYZcGByEw55ccOJ7rj7XtkcYoPv4PIQo6bUbp0Hcs0vksnfcedqeTFc_bldY5lFmQmU5wSKUgmKAHPpzP144le5X4fQXjTNIntk18n475hBw8nHcNmpcfv0NzvF_JnWdXO3VUZh09HOD7JjqJtk76h3ut8i36RbQucvXhNoC6ozQHZUQLhS73AjoQ75g_sVngcEKDeR6A4frCgWlg-UEtT4KstLwzjQrOPkgG5h2gfIOXq596fDPMBtyKcOH_kfeUIbFYoH9lT7jEl91KOuwrmDpTKtr5CTpQJpNi0tSO3mbnM5en0znUV_oIZIs4U2UC0ljFfMs5VYIrkqBaolKYk2ZLDVLZK6YkNzmOpeZ0FkeUNvx5KHSMsElu0N2q7oy9who6g0ypS3uPrbTuaFo4aUyya3lwrAReY4LXvSM6orgg49p8dMuFP0ujEg8EENR9oDpvm7Hp4sbvdg2Ou_wQi7-_OlAZQXytXfWyMrULQ4s47GPP074iNztyG_bYSxyj1HE7v_7ZJ6QveWrWfF2cXz4gFyJvW7iq9ocPCS7zaY1j1CzatTjwETfARqhIR8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+the+Direct+Interaction+between+Hybrid+Sensor+Kinases+PA1611+and+RetS+That+Controls+Biofilm+Formation+and+the+Type+III+Secretion+System+in+Pseudomonas+aeruginosa&rft.jtitle=ACS+infectious+diseases&rft.au=Bhagirath%2C+Anjali+Y&rft.au=Pydi%2C+Sai+P&rft.au=Li%2C+Yanqi&rft.au=Lin%2C+Chen&rft.date=2017-02-10&rft.issn=2373-8227&rft.eissn=2373-8227&rft.volume=3&rft.issue=2&rft.spage=162&rft_id=info:doi/10.1021%2Facsinfecdis.6b00153&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-8227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-8227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-8227&client=summon |