Investigation on local geothermal energy attenuation after long-term operation of ground heat exchanger with considering aquifer effect

•Coaxial ground heat exchanger with adjacent aquifuge and aquifer layers is modeled.•Convection causes different ground heat exchanger reduction ratios in aquifuge and aquifer.•Groundwater flow affects temperature distribution in aquifuge adjacent to aquifer.•The worst temperature recovery in aquife...

Full description

Saved in:
Bibliographic Details
Published inGeothermics Vol. 107; p. 102608
Main Authors Ma, Z.D., Zhang, Y.P., Saw, L.H., Cui, X., Jia, G.S., Jin, L.W.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Coaxial ground heat exchanger with adjacent aquifuge and aquifer layers is modeled.•Convection causes different ground heat exchanger reduction ratios in aquifuge and aquifer.•Groundwater flow affects temperature distribution in aquifuge adjacent to aquifer.•The worst temperature recovery in aquifer is located at a fixed position downstream.•Aquifer geothermal attenuation area of the 8th year is 4.5 times that of the 1st year. The long-term operation of deep buried ground heat exchangers (GHE) for heat extraction would attenuate the local geothermal field. The variation of geothermal energy in the affected area over time is a subject worthy of dedicated study. In this paper, the heat transfer between GHE and surrounding geological strata including aquifuge and aquifer layers is modeled and numerically solved to investigate the variations of GHE performance and attenuation behaviors of ground temperature field. The results show that the reduction ratios of GHE performance in the aquifer and aquifuge layers between 1st and 8th years are 1.3% and 8.9%, respectively, due to the convective heat transfer induced by groundwater in the aquifer layer. The analysis of local temperature variation implies that the groundwater flow leads to the circumferential asymmetry of ground temperature reduction in aquifer layer, which also affects the temperature distribution in geological layers adjacent to the aquifer. The worst ground temperature recovery point appears on the borehole wall in the aquifuge layer, while it appears at a fixed position downstream in the aquifer layer. Taking the ground transient and initial temperature difference greater than 0.5°C as the threshold to characterize the attenuation region, the geothermal field attenuation area of the eighth year in the aquifer is about 4.5 times that of the first year, while it is about 5.1 ∼ 5.5 times that of the first year in the aquifuge layers. The analysis of variations of GHE performance and ground temperature field quantitatively evaluates geothermal attenuation behaviors in aquifer and aquifuge layers subject to the long-term operation of GHEs.
AbstractList •Coaxial ground heat exchanger with adjacent aquifuge and aquifer layers is modeled.•Convection causes different ground heat exchanger reduction ratios in aquifuge and aquifer.•Groundwater flow affects temperature distribution in aquifuge adjacent to aquifer.•The worst temperature recovery in aquifer is located at a fixed position downstream.•Aquifer geothermal attenuation area of the 8th year is 4.5 times that of the 1st year. The long-term operation of deep buried ground heat exchangers (GHE) for heat extraction would attenuate the local geothermal field. The variation of geothermal energy in the affected area over time is a subject worthy of dedicated study. In this paper, the heat transfer between GHE and surrounding geological strata including aquifuge and aquifer layers is modeled and numerically solved to investigate the variations of GHE performance and attenuation behaviors of ground temperature field. The results show that the reduction ratios of GHE performance in the aquifer and aquifuge layers between 1st and 8th years are 1.3% and 8.9%, respectively, due to the convective heat transfer induced by groundwater in the aquifer layer. The analysis of local temperature variation implies that the groundwater flow leads to the circumferential asymmetry of ground temperature reduction in aquifer layer, which also affects the temperature distribution in geological layers adjacent to the aquifer. The worst ground temperature recovery point appears on the borehole wall in the aquifuge layer, while it appears at a fixed position downstream in the aquifer layer. Taking the ground transient and initial temperature difference greater than 0.5°C as the threshold to characterize the attenuation region, the geothermal field attenuation area of the eighth year in the aquifer is about 4.5 times that of the first year, while it is about 5.1 ∼ 5.5 times that of the first year in the aquifuge layers. The analysis of variations of GHE performance and ground temperature field quantitatively evaluates geothermal attenuation behaviors in aquifer and aquifuge layers subject to the long-term operation of GHEs.
ArticleNumber 102608
Author Jin, L.W.
Jia, G.S.
Zhang, Y.P.
Cui, X.
Ma, Z.D.
Saw, L.H.
Author_xml – sequence: 1
  givenname: Z.D.
  surname: Ma
  fullname: Ma, Z.D.
  organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 2
  givenname: Y.P.
  surname: Zhang
  fullname: Zhang, Y.P.
  email: xazyp1@stu.xjtu.edu.cn
  organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 3
  givenname: L.H.
  surname: Saw
  fullname: Saw, L.H.
  organization: Lee Kong Chian, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor 43000, Malaysia
– sequence: 4
  givenname: X.
  surname: Cui
  fullname: Cui, X.
  organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 5
  givenname: G.S.
  surname: Jia
  fullname: Jia, G.S.
  organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 6
  givenname: L.W.
  orcidid: 0000-0002-4927-0111
  surname: Jin
  fullname: Jin, L.W.
  email: lwjin@xjtu.edu.cn
  organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
BookMark eNqNkNtKAzEQhoMo2FbfIT7A1mSP2SuR4qFQ8Eavw2x2dpvSJjVJq30CX9vUVhCvCoEMmX8-Mt-QnBtrkJAbzsac8fJ2Me7Rhjm6lVZ-nLI0je9pycQZGXBR1UlWVOU5GbCsKpKyYMUlGXq_YIxVRcUG5GtqtuiD7iFoa2g8S6tgSX-psUSDrt9RCAHN5hCDLqCLSdMnsVhRu0Z3BHS0d3ZjWjpHCBQ_1RxMH8MfOsypssbrFp02PYX3je5iA7sOVbgiFx0sPV4f7xF5e3x4nTwns5en6eR-lkCW5yFRJZSs4aLNoE4xFWVbdbxhApSAXGALIlN1g3lTtwIVx5wzrLARGSIDVpXZiNwduMpZ7x12Uunw8_XgQC8lZ3LvVS7kH69y71UevEZC_Y-wdnoFbnfS7OQwi3HFrUYnvdJoFLbaRQmytfoEyjc2i6Is
CitedBy_id crossref_primary_10_1016_j_csite_2024_105443
crossref_primary_10_1016_j_enconman_2024_118402
crossref_primary_10_1016_j_enbuild_2023_113208
crossref_primary_10_1016_j_energy_2023_128371
crossref_primary_10_1016_j_applthermaleng_2024_124442
crossref_primary_10_1016_j_apenergy_2023_122187
crossref_primary_10_1016_j_renene_2025_122619
crossref_primary_10_1016_j_applthermaleng_2025_126307
crossref_primary_10_1016_j_icheatmasstransfer_2024_108030
crossref_primary_10_1016_j_seta_2025_104283
crossref_primary_10_3390_buildings15020243
crossref_primary_10_3390_en16134874
crossref_primary_10_1016_j_geothermics_2025_103293
crossref_primary_10_1016_j_renene_2024_121809
Cites_doi 10.1016/j.ijthermalsci.2011.06.012
10.1016/j.enconman.2019.112308
10.1016/j.geothermics.2021.102342
10.1016/j.geothermics.2021.102159
10.1016/j.geothermics.2018.04.001
10.1016/j.applthermaleng.2011.09.030
10.1016/j.apenergy.2020.115453
10.1016/j.apenergy.2014.09.072
10.1016/j.renene.2016.05.048
10.1016/j.energy.2011.12.038
10.1016/j.geothermics.2014.12.005
10.1016/j.apenergy.2017.05.152
10.1016/j.enbuild.2010.12.017
10.1016/j.renene.2021.01.036
10.1115/1.1591203
10.1016/j.enbuild.2020.109829
10.1007/s12273-019-0526-4
10.1016/j.renene.2021.10.017
10.1016/j.renene.2012.10.028
10.1016/j.ijthermalsci.2014.09.007
10.1186/s40517-019-0133-8
10.1016/j.enbuild.2016.11.056
10.1016/j.renene.2009.10.039
10.1016/j.geothermics.2018.07.012
10.1016/j.geothermics.2019.101742
10.1016/j.enconman.2013.10.018
10.1016/j.geothermics.2017.09.008
10.1016/j.geothermics.2015.04.002
10.1016/j.geothermics.2013.10.002
10.1016/j.geothermics.2018.08.001
10.1016/j.energy.2012.09.056
10.1016/j.enbuild.2017.01.023
10.1016/j.ijthermalsci.2004.04.009
10.1016/j.energy.2018.08.056
10.1016/j.enbuild.2014.03.023
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.geothermics.2022.102608
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-3576
ExternalDocumentID 10_1016_j_geothermics_2022_102608
S037565052200253X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JARJE
KOM
LY3
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSR
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a344t-c6a60b18d3a92e286d7f1b08ac8a48eda83c9be4b9d8ec1e410e7eb83ee0a0763
IEDL.DBID .~1
ISSN 0375-6505
IngestDate Thu Apr 24 23:02:42 EDT 2025
Tue Jul 01 00:36:58 EDT 2025
Fri Feb 23 02:38:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ground heat exchanger
Ground temperature field
Aquifuge layer
Geothermal energy
Aquifer layer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a344t-c6a60b18d3a92e286d7f1b08ac8a48eda83c9be4b9d8ec1e410e7eb83ee0a0763
ORCID 0000-0002-4927-0111
ParticipantIDs crossref_citationtrail_10_1016_j_geothermics_2022_102608
crossref_primary_10_1016_j_geothermics_2022_102608
elsevier_sciencedirect_doi_10_1016_j_geothermics_2022_102608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Geothermics
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Song, Wang, Shi, Li, Xu, Zheng, Wang, Li (bib0036) 2018; 164
Angelotti, Alberti, La Licata, Antelmi (bib0001) 2014; 77
Wang, Liu, Yuan, Niu, Liu (bib0039) 2019; 12
Hu (bib0015) 2017; 202
Qu, Li, Jiang (bib0031) 2020; 37
Domenico, Schwartz (bib0009) 2013
Cao, Yuan, Sun, Lei, Yu, Yang (bib0004) 2015; 54
Chen, Shao, Naumov, Kong, Tu, Kolditz (bib0005) 2019
Zanchini, Lazzari, Priarone (bib0041) 2012; 38
Jia, Tao, Meng, Ma, Chai, Jin (bib0021) 2019; 77
Baba, Chandrasekharam (bib0002) 2022
Choi, Park, Lee (bib0007) 2013; 52
Lee, Lam (bib0022) 2012; 47
Yang, Zhang, Chen (bib0040) 2014; 77
Erol, François (bib0010) 2018; 71
Sakellariou, Wright, Axaopoulos (bib0032) 2021
Sutton, Nutter, Couvillion (bib0038) 2003; 125
Liuzzo-Scorpo, Nordell, Gehlin (bib0024) 2015; 56
Erol, Hashemi, François (bib0011) 2015; 88
Jalaluddin (bib0016) 2012; 33–34
Li, Xu, Li, Huang, Li, Qiao, Yang, Sun, Zhang (bib0023) 2021; 169
Gao, Li, Yu (bib0012) 2010; 35
Mohamad Ali, Charles (bib0028) 2021; 96
Luo, Yu, Yan, Zhang, Liu (bib0025) 2020; 212
Holmberg, Acuña, Næss, Sønju (bib0014) 2016; 97
Jia, Ma, Xia, Zhang, Xue, Chai, Jin (bib0019) 2022; 182
Śliwa, Kruszewski, Zare, Assadi, Sapińska-Śliwa (bib0035) 2018; 75
Jia, Ma, Xia, Wang, Zhang, Jin (bib0018) 2022; 100
Guan, Zhao, Wang, Dai, Zhang (bib0013) 2017; 139
Song, Zheng, Li, Shi, Wang, Li (bib0037) 2018; 76
Olfman, Woodbury, Bartley (bib0030) 2014; 51
Jia, Ma, Cao, Meng, Zhang, Chai, Jin (bib0017) 2019; 2018
Ma, Jia, Cui, Xia, Zhang, Jin (bib0027) 2020; 276
Jia, Ma, Zhang, Zhao, Meng, Zhang, Jin (bib0020) 2020; 84
Ma, Zhao, Yin, Zhao, Li, Wang (bib0026) 2020; 204
Shang, Li, Li (bib0034) 2011; 43
Baek, Yeo, Kim (bib0003) 2017; 136
Chen, Cai, Witte, Wang, Wang, Kolditz, Shao (bib0006) 2020; 231
Diao, Li, Fang (bib0008) 2004; 43
Molina-Giraldo, Blum, Zhu, Bayer, Fang (bib0029) 2011; 50
Zhao (bib0042) 2019
Shang, Dong, Li (bib0033) 2014; 136
Lee (10.1016/j.geothermics.2022.102608_bib0022) 2012; 47
Zhao (10.1016/j.geothermics.2022.102608_bib0042) 2019
Molina-Giraldo (10.1016/j.geothermics.2022.102608_bib0029) 2011; 50
Song (10.1016/j.geothermics.2022.102608_bib0037) 2018; 76
Sutton (10.1016/j.geothermics.2022.102608_bib0038) 2003; 125
Ma (10.1016/j.geothermics.2022.102608_bib0026) 2020; 204
Jia (10.1016/j.geothermics.2022.102608_bib0017) 2019; 2018
Gao (10.1016/j.geothermics.2022.102608_bib0012) 2010; 35
Wang (10.1016/j.geothermics.2022.102608_bib0039) 2019; 12
Erol (10.1016/j.geothermics.2022.102608_bib0011) 2015; 88
Song (10.1016/j.geothermics.2022.102608_bib0036) 2018; 164
Shang (10.1016/j.geothermics.2022.102608_bib0034) 2011; 43
Guan (10.1016/j.geothermics.2022.102608_bib0013) 2017; 139
Hu (10.1016/j.geothermics.2022.102608_bib0015) 2017; 202
Diao (10.1016/j.geothermics.2022.102608_bib0008) 2004; 43
Liuzzo-Scorpo (10.1016/j.geothermics.2022.102608_bib0024) 2015; 56
Luo (10.1016/j.geothermics.2022.102608_bib0025) 2020; 212
Angelotti (10.1016/j.geothermics.2022.102608_bib0001) 2014; 77
Erol (10.1016/j.geothermics.2022.102608_bib0010) 2018; 71
Qu (10.1016/j.geothermics.2022.102608_bib0031) 2020; 37
Baek (10.1016/j.geothermics.2022.102608_bib0003) 2017; 136
Holmberg (10.1016/j.geothermics.2022.102608_bib0014) 2016; 97
Baba (10.1016/j.geothermics.2022.102608_bib0002) 2022
Shang (10.1016/j.geothermics.2022.102608_bib0033) 2014; 136
Li (10.1016/j.geothermics.2022.102608_bib0023) 2021; 169
Śliwa (10.1016/j.geothermics.2022.102608_bib0035) 2018; 75
Sakellariou (10.1016/j.geothermics.2022.102608_bib0032) 2021
Ma (10.1016/j.geothermics.2022.102608_bib0027) 2020; 276
Jia (10.1016/j.geothermics.2022.102608_bib0019) 2022; 182
Chen (10.1016/j.geothermics.2022.102608_bib0006) 2020; 231
Olfman (10.1016/j.geothermics.2022.102608_bib0030) 2014; 51
Zanchini (10.1016/j.geothermics.2022.102608_bib0041) 2012; 38
Cao (10.1016/j.geothermics.2022.102608_bib0004) 2015; 54
Yang (10.1016/j.geothermics.2022.102608_bib0040) 2014; 77
Mohamad Ali (10.1016/j.geothermics.2022.102608_bib0028) 2021; 96
Jia (10.1016/j.geothermics.2022.102608_bib0020) 2020; 84
Jalaluddin (10.1016/j.geothermics.2022.102608_bib0016) 2012; 33–34
Chen (10.1016/j.geothermics.2022.102608_bib0005) 2019
Choi (10.1016/j.geothermics.2022.102608_bib0007) 2013; 52
Jia (10.1016/j.geothermics.2022.102608_bib0021) 2019; 77
Domenico (10.1016/j.geothermics.2022.102608_bib0009) 2013
Jia (10.1016/j.geothermics.2022.102608_bib0018) 2022; 100
References_xml – volume: 96
  year: 2021
  ident: bib0028
  article-title: Numerical investigation of long-term operation of ground-source heat pumps at neighborhood level: focus on thermal interactions and electricity consumption
  publication-title: Geothermics
– volume: 37
  start-page: 494
  year: 2020
  end-page: 499
  ident: bib0031
  article-title: CFD based method for porous medium model of finned tube bundles and flow
  publication-title: Chin. J. Appl. Mech.
– volume: 136
  start-page: 63
  year: 2017
  end-page: 72
  ident: bib0003
  article-title: Effects of the geothermal load on the ground temperature recovery in a ground heat exchanger
  publication-title: Energy Build.
– volume: 125
  start-page: 183
  year: 2003
  end-page: 189
  ident: bib0038
  article-title: A ground resistance for vertical bore heat exchangers with groundwater flow
  publication-title: J. Energy Resour. Technol. Trans. ASME
– volume: 204
  year: 2020
  ident: bib0026
  article-title: A coupled heat transfer model of medium-depth downhole coaxial heat exchanger based on the piecewise analytical solution
  publication-title: Energy Convers. Manag.
– year: 2019
  ident: bib0005
  article-title: Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating
  publication-title: Geotherm. Energy
– volume: 43
  start-page: 1203
  year: 2004
  end-page: 1211
  ident: bib0008
  article-title: Heat transfer in ground heat exchangers with groundwater advection
  publication-title: Int. J. Therm. Sci.
– volume: 97
  start-page: 65
  year: 2016
  end-page: 76
  ident: bib0014
  article-title: Thermal evaluation of coaxial deep borehole heat exchangers
  publication-title: Renew. Energy
– volume: 77
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib0021
  article-title: Review of effective thermal conductivity models of rock-soil for geothermal energy applications
  publication-title: Geothermics
– volume: 88
  start-page: 47
  year: 2015
  end-page: 58
  ident: bib0011
  article-title: Analytical solution of discontinuous heat extraction for sustainability and recovery aspects of borehole heat exchangers
  publication-title: Int. J. Therm. Sci.
– volume: 56
  start-page: 119
  year: 2015
  end-page: 127
  ident: bib0024
  article-title: Influence of regional groundwater flow on ground temperature around heat extraction boreholes
  publication-title: Geothermics
– volume: 54
  start-page: 115
  year: 2015
  end-page: 121
  ident: bib0004
  article-title: Restoration performance of vertical ground heat exchanger with various intermittent ratios
  publication-title: Geothermics
– volume: 182
  start-page: 296
  year: 2022
  end-page: 313
  ident: bib0019
  article-title: A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions
  publication-title: Renew. Energy
– volume: 212
  year: 2020
  ident: bib0025
  article-title: Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method
  publication-title: Energy Build.
– volume: 38
  start-page: 66
  year: 2012
  end-page: 77
  ident: bib0041
  article-title: Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow
  publication-title: Energy
– volume: 51
  start-page: 9
  year: 2014
  end-page: 30
  ident: bib0030
  article-title: Effects of depth and material property variations on the ground temperature response to heating by a deep vertical ground heat exchanger in purely conductive media
  publication-title: Geothermics
– volume: 75
  start-page: 58
  year: 2018
  end-page: 67
  ident: bib0035
  article-title: Potential application of vacuum insulated tubing for deep borehole heat exchangers
  publication-title: Geothermics
– volume: 2018
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib0017
  article-title: A new packed-sphere model for geological materials thermal conductivity prediction at moderate porosity range for geothermal utilization
  publication-title: Int. J. Energy Res.
– year: 2013
  ident: bib0009
  article-title: Physical and chemical Hydrogeology
– volume: 164
  start-page: 1298
  year: 2018
  end-page: 1310
  ident: bib0036
  article-title: Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system
  publication-title: Energy
– volume: 202
  start-page: 537
  year: 2017
  end-page: 549
  ident: bib0015
  article-title: An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow
  publication-title: Appl. Energy
– volume: 12
  start-page: 857
  year: 2019
  end-page: 868
  ident: bib0039
  article-title: Investigation of the influence of groundwater seepage on the heat transfer characteristics of a ground source heat pump system with a 9-well group
  publication-title: Build. Simul.
– volume: 231
  year: 2020
  ident: bib0006
  article-title: Long-term thermal imbalance in large borehole heat exchangers array – A numerical study based on the Leicester project
  publication-title: Energy Build.
– volume: 169
  start-page: 738
  year: 2021
  end-page: 751
  ident: bib0023
  article-title: Heat extraction model and characteristics of coaxial deep borehole heat exchanger
  publication-title: Renew. Energy
– volume: 77
  start-page: 700
  year: 2014
  end-page: 708
  ident: bib0001
  article-title: Energy performance and thermal impact of a borehole heat exchanger in a sandy aquifer: influence of the groundwater velocity
  publication-title: Energy Convers. Manag.
– volume: 50
  start-page: 2506
  year: 2011
  end-page: 2513
  ident: bib0029
  article-title: A moving finite line source model to simulate borehole heat exchangers with groundwater advection
  publication-title: Int. J. Therm. Sci.
– year: 2021
  ident: bib0032
  article-title: Energy, economic and emission assessment of a solar assisted shallow earth borehole field heat pump system for domestic space heating in a north European climate
  publication-title: Geothermics
– volume: 52
  start-page: 230
  year: 2013
  end-page: 240
  ident: bib0007
  article-title: Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays
  publication-title: Renew. Energy
– volume: 84
  year: 2020
  ident: bib0020
  article-title: Series-parallel resistance method based thermal conductivity model for rock-soil with low or high porosity
  publication-title: Geothermics
– volume: 77
  start-page: 17
  year: 2014
  end-page: 27
  ident: bib0040
  article-title: A dynamic simulation method of ground coupled heat pump system based on borehole heat exchange effectiveness
  publication-title: Energy Build.
– volume: 139
  start-page: 186
  year: 2017
  end-page: 196
  ident: bib0013
  article-title: 3D dynamic numerical programming and calculation of vertical buried tube heat exchanger performance of ground-source heat pumps under coupled heat transfer inside and outside of tube
  publication-title: Energy Build.
– volume: 43
  start-page: 935
  year: 2011
  end-page: 943
  ident: bib0034
  article-title: Analysis of geo-temperature recovery under intermittent operation of ground-source heat pump
  publication-title: Energy Build.
– volume: 100
  year: 2022
  ident: bib0018
  article-title: Influence of groundwater flow on the ground heat exchanger performance and ground temperature distributions: A comprehensive review of analytical, numerical and experimental studies
  publication-title: Geothermics
– volume: 136
  start-page: 628
  year: 2014
  end-page: 635
  ident: bib0033
  article-title: Intermittent experimental study of a vertical ground source heat pump system
  publication-title: Appl. Energy
– volume: 71
  start-page: 294
  year: 2018
  end-page: 305
  ident: bib0010
  article-title: Multilayer analytical model for vertical ground heat exchanger with groundwater flow
  publication-title: Geothermics
– volume: 33–34
  start-page: 167
  year: 2012
  end-page: 174
  ident: bib0016
  article-title: Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode
  publication-title: Appl. Therm. Eng.
– volume: 47
  start-page: 378
  year: 2012
  end-page: 387
  ident: bib0022
  article-title: A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow
  publication-title: Energy
– volume: 276
  year: 2020
  ident: bib0027
  article-title: Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer
  publication-title: Appl. Energy
– start-page: 1
  year: 2022
  end-page: 18
  ident: bib0002
  article-title: Geothermal resources for sustainable development: a case study
  publication-title: Int. J. Energy Res.
– year: 2019
  ident: bib0042
  article-title: Study on Medium-Deep Geothermal HeatExtraction System and Heat Transfer Model
– volume: 35
  start-page: 1169
  year: 2010
  end-page: 1174
  ident: bib0012
  article-title: Experiment and simulation of temperature characteristics of intermittently-controlled ground heat exchanges
  publication-title: Renew. Energy
– volume: 76
  start-page: 190
  year: 2018
  end-page: 200
  ident: bib0037
  article-title: Heat extraction performance of a downhole coaxial heat exchanger geothermal system by considering fluid flow in the reservoir
  publication-title: Geothermics
– volume: 50
  start-page: 2506
  year: 2011
  ident: 10.1016/j.geothermics.2022.102608_bib0029
  article-title: A moving finite line source model to simulate borehole heat exchangers with groundwater advection
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.06.012
– start-page: 1
  year: 2022
  ident: 10.1016/j.geothermics.2022.102608_bib0002
  article-title: Geothermal resources for sustainable development: a case study
  publication-title: Int. J. Energy Res.
– volume: 204
  year: 2020
  ident: 10.1016/j.geothermics.2022.102608_bib0026
  article-title: A coupled heat transfer model of medium-depth downhole coaxial heat exchanger based on the piecewise analytical solution
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112308
– volume: 100
  year: 2022
  ident: 10.1016/j.geothermics.2022.102608_bib0018
  article-title: Influence of groundwater flow on the ground heat exchanger performance and ground temperature distributions: A comprehensive review of analytical, numerical and experimental studies
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2021.102342
– year: 2021
  ident: 10.1016/j.geothermics.2022.102608_bib0032
  article-title: Energy, economic and emission assessment of a solar assisted shallow earth borehole field heat pump system for domestic space heating in a north European climate
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2021.102159
– volume: 75
  start-page: 58
  year: 2018
  ident: 10.1016/j.geothermics.2022.102608_bib0035
  article-title: Potential application of vacuum insulated tubing for deep borehole heat exchangers
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.04.001
– volume: 33–34
  start-page: 167
  year: 2012
  ident: 10.1016/j.geothermics.2022.102608_bib0016
  article-title: Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.09.030
– volume: 276
  year: 2020
  ident: 10.1016/j.geothermics.2022.102608_bib0027
  article-title: Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115453
– volume: 37
  start-page: 494
  year: 2020
  ident: 10.1016/j.geothermics.2022.102608_bib0031
  article-title: CFD based method for porous medium model of finned tube bundles and flow
  publication-title: Chin. J. Appl. Mech.
– volume: 136
  start-page: 628
  year: 2014
  ident: 10.1016/j.geothermics.2022.102608_bib0033
  article-title: Intermittent experimental study of a vertical ground source heat pump system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.09.072
– volume: 97
  start-page: 65
  year: 2016
  ident: 10.1016/j.geothermics.2022.102608_bib0014
  article-title: Thermal evaluation of coaxial deep borehole heat exchangers
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.05.048
– volume: 38
  start-page: 66
  year: 2012
  ident: 10.1016/j.geothermics.2022.102608_bib0041
  article-title: Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.038
– year: 2019
  ident: 10.1016/j.geothermics.2022.102608_bib0042
– volume: 54
  start-page: 115
  year: 2015
  ident: 10.1016/j.geothermics.2022.102608_bib0004
  article-title: Restoration performance of vertical ground heat exchanger with various intermittent ratios
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2014.12.005
– year: 2013
  ident: 10.1016/j.geothermics.2022.102608_bib0009
– volume: 202
  start-page: 537
  year: 2017
  ident: 10.1016/j.geothermics.2022.102608_bib0015
  article-title: An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.152
– volume: 43
  start-page: 935
  year: 2011
  ident: 10.1016/j.geothermics.2022.102608_bib0034
  article-title: Analysis of geo-temperature recovery under intermittent operation of ground-source heat pump
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.12.017
– volume: 169
  start-page: 738
  year: 2021
  ident: 10.1016/j.geothermics.2022.102608_bib0023
  article-title: Heat extraction model and characteristics of coaxial deep borehole heat exchanger
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.01.036
– volume: 125
  start-page: 183
  year: 2003
  ident: 10.1016/j.geothermics.2022.102608_bib0038
  article-title: A ground resistance for vertical bore heat exchangers with groundwater flow
  publication-title: J. Energy Resour. Technol. Trans. ASME
  doi: 10.1115/1.1591203
– volume: 212
  year: 2020
  ident: 10.1016/j.geothermics.2022.102608_bib0025
  article-title: Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.109829
– volume: 96
  year: 2021
  ident: 10.1016/j.geothermics.2022.102608_bib0028
  article-title: Numerical investigation of long-term operation of ground-source heat pumps at neighborhood level: focus on thermal interactions and electricity consumption
  publication-title: Geothermics
– volume: 12
  start-page: 857
  year: 2019
  ident: 10.1016/j.geothermics.2022.102608_bib0039
  article-title: Investigation of the influence of groundwater seepage on the heat transfer characteristics of a ground source heat pump system with a 9-well group
  publication-title: Build. Simul.
  doi: 10.1007/s12273-019-0526-4
– volume: 182
  start-page: 296
  year: 2022
  ident: 10.1016/j.geothermics.2022.102608_bib0019
  article-title: A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.10.017
– volume: 52
  start-page: 230
  year: 2013
  ident: 10.1016/j.geothermics.2022.102608_bib0007
  article-title: Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.10.028
– volume: 231
  year: 2020
  ident: 10.1016/j.geothermics.2022.102608_bib0006
  article-title: Long-term thermal imbalance in large borehole heat exchangers array – A numerical study based on the Leicester project
  publication-title: Energy Build.
– volume: 88
  start-page: 47
  year: 2015
  ident: 10.1016/j.geothermics.2022.102608_bib0011
  article-title: Analytical solution of discontinuous heat extraction for sustainability and recovery aspects of borehole heat exchangers
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.09.007
– year: 2019
  ident: 10.1016/j.geothermics.2022.102608_bib0005
  article-title: Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating
  publication-title: Geotherm. Energy
  doi: 10.1186/s40517-019-0133-8
– volume: 136
  start-page: 63
  year: 2017
  ident: 10.1016/j.geothermics.2022.102608_bib0003
  article-title: Effects of the geothermal load on the ground temperature recovery in a ground heat exchanger
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.11.056
– volume: 35
  start-page: 1169
  year: 2010
  ident: 10.1016/j.geothermics.2022.102608_bib0012
  article-title: Experiment and simulation of temperature characteristics of intermittently-controlled ground heat exchanges
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.10.039
– volume: 76
  start-page: 190
  year: 2018
  ident: 10.1016/j.geothermics.2022.102608_bib0037
  article-title: Heat extraction performance of a downhole coaxial heat exchanger geothermal system by considering fluid flow in the reservoir
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.07.012
– volume: 84
  year: 2020
  ident: 10.1016/j.geothermics.2022.102608_bib0020
  article-title: Series-parallel resistance method based thermal conductivity model for rock-soil with low or high porosity
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.101742
– volume: 77
  start-page: 700
  year: 2014
  ident: 10.1016/j.geothermics.2022.102608_bib0001
  article-title: Energy performance and thermal impact of a borehole heat exchanger in a sandy aquifer: influence of the groundwater velocity
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.10.018
– volume: 71
  start-page: 294
  year: 2018
  ident: 10.1016/j.geothermics.2022.102608_bib0010
  article-title: Multilayer analytical model for vertical ground heat exchanger with groundwater flow
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2017.09.008
– volume: 56
  start-page: 119
  year: 2015
  ident: 10.1016/j.geothermics.2022.102608_bib0024
  article-title: Influence of regional groundwater flow on ground temperature around heat extraction boreholes
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2015.04.002
– volume: 51
  start-page: 9
  year: 2014
  ident: 10.1016/j.geothermics.2022.102608_bib0030
  article-title: Effects of depth and material property variations on the ground temperature response to heating by a deep vertical ground heat exchanger in purely conductive media
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2013.10.002
– volume: 77
  start-page: 1
  year: 2019
  ident: 10.1016/j.geothermics.2022.102608_bib0021
  article-title: Review of effective thermal conductivity models of rock-soil for geothermal energy applications
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.08.001
– volume: 47
  start-page: 378
  year: 2012
  ident: 10.1016/j.geothermics.2022.102608_bib0022
  article-title: A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow
  publication-title: Energy
  doi: 10.1016/j.energy.2012.09.056
– volume: 139
  start-page: 186
  year: 2017
  ident: 10.1016/j.geothermics.2022.102608_bib0013
  article-title: 3D dynamic numerical programming and calculation of vertical buried tube heat exchanger performance of ground-source heat pumps under coupled heat transfer inside and outside of tube
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.01.023
– volume: 43
  start-page: 1203
  year: 2004
  ident: 10.1016/j.geothermics.2022.102608_bib0008
  article-title: Heat transfer in ground heat exchangers with groundwater advection
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2004.04.009
– volume: 164
  start-page: 1298
  year: 2018
  ident: 10.1016/j.geothermics.2022.102608_bib0036
  article-title: Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.056
– volume: 77
  start-page: 17
  year: 2014
  ident: 10.1016/j.geothermics.2022.102608_bib0040
  article-title: A dynamic simulation method of ground coupled heat pump system based on borehole heat exchange effectiveness
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.03.023
– volume: 2018
  start-page: 1
  year: 2019
  ident: 10.1016/j.geothermics.2022.102608_bib0017
  article-title: A new packed-sphere model for geological materials thermal conductivity prediction at moderate porosity range for geothermal utilization
  publication-title: Int. J. Energy Res.
SSID ssj0007570
Score 2.4087079
Snippet •Coaxial ground heat exchanger with adjacent aquifuge and aquifer layers is modeled.•Convection causes different ground heat exchanger reduction ratios in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102608
SubjectTerms Aquifer layer
Aquifuge layer
Geothermal energy
Ground heat exchanger
Ground temperature field
Title Investigation on local geothermal energy attenuation after long-term operation of ground heat exchanger with considering aquifer effect
URI https://dx.doi.org/10.1016/j.geothermics.2022.102608
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kgnoRn1hfrOA1No_tZgNeSlGqRQ8-sLewj0mtaFpLC3rx6t92J9loBUFBCCSEmSTsLDOb5ZvvI-Qw0QlPVKY9E9t_E2aU8qQE5YUhMAgCMFCAaC4ueeeWnfeavTnSrnphEFbpcn-Z04ts7e403Gg2RoNB4xrVWznqsCHOoBn1sIOdxTjLj96-YB5xsxCMQ2MPrRfIwRfGqw9Fm9PTQCNzdxgikQFHpcmfatRM3TldIctuwUhb5TetkjnI18ii0y6_f10n7zNUGcOc2qOoT7R6q72EosGPIpVmXlJ700Ib3FrmfQ-TMx2OYOwekFFs9cgNxTxN4cX1BlPcsqXaCXzaikfl8xSBMbTEhGyQ29OTm3bHc_IKnowYm3iaS-6rQJhIJiGEgps4C5QvpBaSCTBSRDpRwFRiBOgAWOBDDEpEAL70bV7aJLV8mMMWobHhmgvpQzPTLAqFtKsqYyKWmCSzGdWvE1ENaKod9zhKYDymFcjsIZ2JRYqxSMtY1En46ToqCTj-4nRcRS39NptSWyh-d9_-n_sOWUJR-nKjZpfUJuMp7Nmly0TtF3Nzn8y3zrqdSzx3r-66H0vh9to
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEB1cB-peQtq0NE3TbiBXYX2sVivIxZgGJ058iQ2-if0YuS6t7AYHml-Qv50daZW4EGghoIMQO5LYEW9Wy5v3AE5yk4tclyawmfs34VbrQCnUQRwjxyhCizWJ5moiRjN-MU_nHRi2vTBEq_TY32B6jdb-St_PZn-9XPavyb1VkA8b8QzSZP4KdkidKu3CzuB8PJo8AnKW1p5xND6ggNdw_ETzWmDd6fRraUi8O45Jy0CQ2eRzZWqr9Jztwa5fM7JB81pvoYPVO-h5-_Lvd_twv6WWsaqYO-oSxdqnulOse_wYqWlWjbo3q-3B3chqERA-s9Uab_wNSkbdHpVlBNUM__j2YEa7tsx4j09X9Jj6fUvcGNbQQt7D7OzbdDgKvMNCoBLON4ERSoQ6kjZReYyxFDYrIx1KZaTiEq2Sick1cp1biSZCHoWYoZYJYqhCB00foFutKvwILLPCCKlCTEvDk1gqt7CyNuG5zUsHquEByHZCC-Plx8kF42fR8sx-FFu5KCgXRZOLA4gfQ9eNBsf_BJ22WSv--qAKVyv-Hf7pZeFfoTeaXl0Wl-eT8SG8IY_6Zt_mM3Q3N7d45FYyG_3Ff6kP9YH36A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+local+geothermal+energy+attenuation+after+long-term+operation+of+ground+heat+exchanger+with+considering+aquifer+effect&rft.jtitle=Geothermics&rft.au=Ma%2C+Z.D.&rft.au=Zhang%2C+Y.P.&rft.au=Saw%2C+L.H.&rft.au=Cui%2C+X.&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0375-6505&rft.eissn=1879-3576&rft.volume=107&rft_id=info:doi/10.1016%2Fj.geothermics.2022.102608&rft.externalDocID=S037565052200253X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6505&client=summon