Investigation on local geothermal energy attenuation after long-term operation of ground heat exchanger with considering aquifer effect
•Coaxial ground heat exchanger with adjacent aquifuge and aquifer layers is modeled.•Convection causes different ground heat exchanger reduction ratios in aquifuge and aquifer.•Groundwater flow affects temperature distribution in aquifuge adjacent to aquifer.•The worst temperature recovery in aquife...
Saved in:
Published in | Geothermics Vol. 107; p. 102608 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Coaxial ground heat exchanger with adjacent aquifuge and aquifer layers is modeled.•Convection causes different ground heat exchanger reduction ratios in aquifuge and aquifer.•Groundwater flow affects temperature distribution in aquifuge adjacent to aquifer.•The worst temperature recovery in aquifer is located at a fixed position downstream.•Aquifer geothermal attenuation area of the 8th year is 4.5 times that of the 1st year.
The long-term operation of deep buried ground heat exchangers (GHE) for heat extraction would attenuate the local geothermal field. The variation of geothermal energy in the affected area over time is a subject worthy of dedicated study. In this paper, the heat transfer between GHE and surrounding geological strata including aquifuge and aquifer layers is modeled and numerically solved to investigate the variations of GHE performance and attenuation behaviors of ground temperature field. The results show that the reduction ratios of GHE performance in the aquifer and aquifuge layers between 1st and 8th years are 1.3% and 8.9%, respectively, due to the convective heat transfer induced by groundwater in the aquifer layer. The analysis of local temperature variation implies that the groundwater flow leads to the circumferential asymmetry of ground temperature reduction in aquifer layer, which also affects the temperature distribution in geological layers adjacent to the aquifer. The worst ground temperature recovery point appears on the borehole wall in the aquifuge layer, while it appears at a fixed position downstream in the aquifer layer. Taking the ground transient and initial temperature difference greater than 0.5°C as the threshold to characterize the attenuation region, the geothermal field attenuation area of the eighth year in the aquifer is about 4.5 times that of the first year, while it is about 5.1 ∼ 5.5 times that of the first year in the aquifuge layers. The analysis of variations of GHE performance and ground temperature field quantitatively evaluates geothermal attenuation behaviors in aquifer and aquifuge layers subject to the long-term operation of GHEs. |
---|---|
AbstractList | •Coaxial ground heat exchanger with adjacent aquifuge and aquifer layers is modeled.•Convection causes different ground heat exchanger reduction ratios in aquifuge and aquifer.•Groundwater flow affects temperature distribution in aquifuge adjacent to aquifer.•The worst temperature recovery in aquifer is located at a fixed position downstream.•Aquifer geothermal attenuation area of the 8th year is 4.5 times that of the 1st year.
The long-term operation of deep buried ground heat exchangers (GHE) for heat extraction would attenuate the local geothermal field. The variation of geothermal energy in the affected area over time is a subject worthy of dedicated study. In this paper, the heat transfer between GHE and surrounding geological strata including aquifuge and aquifer layers is modeled and numerically solved to investigate the variations of GHE performance and attenuation behaviors of ground temperature field. The results show that the reduction ratios of GHE performance in the aquifer and aquifuge layers between 1st and 8th years are 1.3% and 8.9%, respectively, due to the convective heat transfer induced by groundwater in the aquifer layer. The analysis of local temperature variation implies that the groundwater flow leads to the circumferential asymmetry of ground temperature reduction in aquifer layer, which also affects the temperature distribution in geological layers adjacent to the aquifer. The worst ground temperature recovery point appears on the borehole wall in the aquifuge layer, while it appears at a fixed position downstream in the aquifer layer. Taking the ground transient and initial temperature difference greater than 0.5°C as the threshold to characterize the attenuation region, the geothermal field attenuation area of the eighth year in the aquifer is about 4.5 times that of the first year, while it is about 5.1 ∼ 5.5 times that of the first year in the aquifuge layers. The analysis of variations of GHE performance and ground temperature field quantitatively evaluates geothermal attenuation behaviors in aquifer and aquifuge layers subject to the long-term operation of GHEs. |
ArticleNumber | 102608 |
Author | Jin, L.W. Jia, G.S. Zhang, Y.P. Cui, X. Ma, Z.D. Saw, L.H. |
Author_xml | – sequence: 1 givenname: Z.D. surname: Ma fullname: Ma, Z.D. organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 2 givenname: Y.P. surname: Zhang fullname: Zhang, Y.P. email: xazyp1@stu.xjtu.edu.cn organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 3 givenname: L.H. surname: Saw fullname: Saw, L.H. organization: Lee Kong Chian, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor 43000, Malaysia – sequence: 4 givenname: X. surname: Cui fullname: Cui, X. organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 5 givenname: G.S. surname: Jia fullname: Jia, G.S. organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 6 givenname: L.W. orcidid: 0000-0002-4927-0111 surname: Jin fullname: Jin, L.W. email: lwjin@xjtu.edu.cn organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
BookMark | eNqNkNtKAzEQhoMo2FbfIT7A1mSP2SuR4qFQ8Eavw2x2dpvSJjVJq30CX9vUVhCvCoEMmX8-Mt-QnBtrkJAbzsac8fJ2Me7Rhjm6lVZ-nLI0je9pycQZGXBR1UlWVOU5GbCsKpKyYMUlGXq_YIxVRcUG5GtqtuiD7iFoa2g8S6tgSX-psUSDrt9RCAHN5hCDLqCLSdMnsVhRu0Z3BHS0d3ZjWjpHCBQ_1RxMH8MfOsypssbrFp02PYX3je5iA7sOVbgiFx0sPV4f7xF5e3x4nTwns5en6eR-lkCW5yFRJZSs4aLNoE4xFWVbdbxhApSAXGALIlN1g3lTtwIVx5wzrLARGSIDVpXZiNwduMpZ7x12Uunw8_XgQC8lZ3LvVS7kH69y71UevEZC_Y-wdnoFbnfS7OQwi3HFrUYnvdJoFLbaRQmytfoEyjc2i6Is |
CitedBy_id | crossref_primary_10_1016_j_csite_2024_105443 crossref_primary_10_1016_j_enconman_2024_118402 crossref_primary_10_1016_j_enbuild_2023_113208 crossref_primary_10_1016_j_energy_2023_128371 crossref_primary_10_1016_j_applthermaleng_2024_124442 crossref_primary_10_1016_j_apenergy_2023_122187 crossref_primary_10_1016_j_renene_2025_122619 crossref_primary_10_1016_j_applthermaleng_2025_126307 crossref_primary_10_1016_j_icheatmasstransfer_2024_108030 crossref_primary_10_1016_j_seta_2025_104283 crossref_primary_10_3390_buildings15020243 crossref_primary_10_3390_en16134874 crossref_primary_10_1016_j_geothermics_2025_103293 crossref_primary_10_1016_j_renene_2024_121809 |
Cites_doi | 10.1016/j.ijthermalsci.2011.06.012 10.1016/j.enconman.2019.112308 10.1016/j.geothermics.2021.102342 10.1016/j.geothermics.2021.102159 10.1016/j.geothermics.2018.04.001 10.1016/j.applthermaleng.2011.09.030 10.1016/j.apenergy.2020.115453 10.1016/j.apenergy.2014.09.072 10.1016/j.renene.2016.05.048 10.1016/j.energy.2011.12.038 10.1016/j.geothermics.2014.12.005 10.1016/j.apenergy.2017.05.152 10.1016/j.enbuild.2010.12.017 10.1016/j.renene.2021.01.036 10.1115/1.1591203 10.1016/j.enbuild.2020.109829 10.1007/s12273-019-0526-4 10.1016/j.renene.2021.10.017 10.1016/j.renene.2012.10.028 10.1016/j.ijthermalsci.2014.09.007 10.1186/s40517-019-0133-8 10.1016/j.enbuild.2016.11.056 10.1016/j.renene.2009.10.039 10.1016/j.geothermics.2018.07.012 10.1016/j.geothermics.2019.101742 10.1016/j.enconman.2013.10.018 10.1016/j.geothermics.2017.09.008 10.1016/j.geothermics.2015.04.002 10.1016/j.geothermics.2013.10.002 10.1016/j.geothermics.2018.08.001 10.1016/j.energy.2012.09.056 10.1016/j.enbuild.2017.01.023 10.1016/j.ijthermalsci.2004.04.009 10.1016/j.energy.2018.08.056 10.1016/j.enbuild.2014.03.023 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.geothermics.2022.102608 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-3576 |
ExternalDocumentID | 10_1016_j_geothermics_2022_102608 S037565052200253X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JARJE KOM LY3 LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SET SEW SPC SPCBC SSE SSR SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a344t-c6a60b18d3a92e286d7f1b08ac8a48eda83c9be4b9d8ec1e410e7eb83ee0a0763 |
IEDL.DBID | .~1 |
ISSN | 0375-6505 |
IngestDate | Thu Apr 24 23:02:42 EDT 2025 Tue Jul 01 00:36:58 EDT 2025 Fri Feb 23 02:38:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ground heat exchanger Ground temperature field Aquifuge layer Geothermal energy Aquifer layer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a344t-c6a60b18d3a92e286d7f1b08ac8a48eda83c9be4b9d8ec1e410e7eb83ee0a0763 |
ORCID | 0000-0002-4927-0111 |
ParticipantIDs | crossref_citationtrail_10_1016_j_geothermics_2022_102608 crossref_primary_10_1016_j_geothermics_2022_102608 elsevier_sciencedirect_doi_10_1016_j_geothermics_2022_102608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Geothermics |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Song, Wang, Shi, Li, Xu, Zheng, Wang, Li (bib0036) 2018; 164 Angelotti, Alberti, La Licata, Antelmi (bib0001) 2014; 77 Wang, Liu, Yuan, Niu, Liu (bib0039) 2019; 12 Hu (bib0015) 2017; 202 Qu, Li, Jiang (bib0031) 2020; 37 Domenico, Schwartz (bib0009) 2013 Cao, Yuan, Sun, Lei, Yu, Yang (bib0004) 2015; 54 Chen, Shao, Naumov, Kong, Tu, Kolditz (bib0005) 2019 Zanchini, Lazzari, Priarone (bib0041) 2012; 38 Jia, Tao, Meng, Ma, Chai, Jin (bib0021) 2019; 77 Baba, Chandrasekharam (bib0002) 2022 Choi, Park, Lee (bib0007) 2013; 52 Lee, Lam (bib0022) 2012; 47 Yang, Zhang, Chen (bib0040) 2014; 77 Erol, François (bib0010) 2018; 71 Sakellariou, Wright, Axaopoulos (bib0032) 2021 Sutton, Nutter, Couvillion (bib0038) 2003; 125 Liuzzo-Scorpo, Nordell, Gehlin (bib0024) 2015; 56 Erol, Hashemi, François (bib0011) 2015; 88 Jalaluddin (bib0016) 2012; 33–34 Li, Xu, Li, Huang, Li, Qiao, Yang, Sun, Zhang (bib0023) 2021; 169 Gao, Li, Yu (bib0012) 2010; 35 Mohamad Ali, Charles (bib0028) 2021; 96 Luo, Yu, Yan, Zhang, Liu (bib0025) 2020; 212 Holmberg, Acuña, Næss, Sønju (bib0014) 2016; 97 Jia, Ma, Xia, Zhang, Xue, Chai, Jin (bib0019) 2022; 182 Śliwa, Kruszewski, Zare, Assadi, Sapińska-Śliwa (bib0035) 2018; 75 Jia, Ma, Xia, Wang, Zhang, Jin (bib0018) 2022; 100 Guan, Zhao, Wang, Dai, Zhang (bib0013) 2017; 139 Song, Zheng, Li, Shi, Wang, Li (bib0037) 2018; 76 Olfman, Woodbury, Bartley (bib0030) 2014; 51 Jia, Ma, Cao, Meng, Zhang, Chai, Jin (bib0017) 2019; 2018 Ma, Jia, Cui, Xia, Zhang, Jin (bib0027) 2020; 276 Jia, Ma, Zhang, Zhao, Meng, Zhang, Jin (bib0020) 2020; 84 Ma, Zhao, Yin, Zhao, Li, Wang (bib0026) 2020; 204 Shang, Li, Li (bib0034) 2011; 43 Baek, Yeo, Kim (bib0003) 2017; 136 Chen, Cai, Witte, Wang, Wang, Kolditz, Shao (bib0006) 2020; 231 Diao, Li, Fang (bib0008) 2004; 43 Molina-Giraldo, Blum, Zhu, Bayer, Fang (bib0029) 2011; 50 Zhao (bib0042) 2019 Shang, Dong, Li (bib0033) 2014; 136 Lee (10.1016/j.geothermics.2022.102608_bib0022) 2012; 47 Zhao (10.1016/j.geothermics.2022.102608_bib0042) 2019 Molina-Giraldo (10.1016/j.geothermics.2022.102608_bib0029) 2011; 50 Song (10.1016/j.geothermics.2022.102608_bib0037) 2018; 76 Sutton (10.1016/j.geothermics.2022.102608_bib0038) 2003; 125 Ma (10.1016/j.geothermics.2022.102608_bib0026) 2020; 204 Jia (10.1016/j.geothermics.2022.102608_bib0017) 2019; 2018 Gao (10.1016/j.geothermics.2022.102608_bib0012) 2010; 35 Wang (10.1016/j.geothermics.2022.102608_bib0039) 2019; 12 Erol (10.1016/j.geothermics.2022.102608_bib0011) 2015; 88 Song (10.1016/j.geothermics.2022.102608_bib0036) 2018; 164 Shang (10.1016/j.geothermics.2022.102608_bib0034) 2011; 43 Guan (10.1016/j.geothermics.2022.102608_bib0013) 2017; 139 Hu (10.1016/j.geothermics.2022.102608_bib0015) 2017; 202 Diao (10.1016/j.geothermics.2022.102608_bib0008) 2004; 43 Liuzzo-Scorpo (10.1016/j.geothermics.2022.102608_bib0024) 2015; 56 Luo (10.1016/j.geothermics.2022.102608_bib0025) 2020; 212 Angelotti (10.1016/j.geothermics.2022.102608_bib0001) 2014; 77 Erol (10.1016/j.geothermics.2022.102608_bib0010) 2018; 71 Qu (10.1016/j.geothermics.2022.102608_bib0031) 2020; 37 Baek (10.1016/j.geothermics.2022.102608_bib0003) 2017; 136 Holmberg (10.1016/j.geothermics.2022.102608_bib0014) 2016; 97 Baba (10.1016/j.geothermics.2022.102608_bib0002) 2022 Shang (10.1016/j.geothermics.2022.102608_bib0033) 2014; 136 Li (10.1016/j.geothermics.2022.102608_bib0023) 2021; 169 Śliwa (10.1016/j.geothermics.2022.102608_bib0035) 2018; 75 Sakellariou (10.1016/j.geothermics.2022.102608_bib0032) 2021 Ma (10.1016/j.geothermics.2022.102608_bib0027) 2020; 276 Jia (10.1016/j.geothermics.2022.102608_bib0019) 2022; 182 Chen (10.1016/j.geothermics.2022.102608_bib0006) 2020; 231 Olfman (10.1016/j.geothermics.2022.102608_bib0030) 2014; 51 Zanchini (10.1016/j.geothermics.2022.102608_bib0041) 2012; 38 Cao (10.1016/j.geothermics.2022.102608_bib0004) 2015; 54 Yang (10.1016/j.geothermics.2022.102608_bib0040) 2014; 77 Mohamad Ali (10.1016/j.geothermics.2022.102608_bib0028) 2021; 96 Jia (10.1016/j.geothermics.2022.102608_bib0020) 2020; 84 Jalaluddin (10.1016/j.geothermics.2022.102608_bib0016) 2012; 33–34 Chen (10.1016/j.geothermics.2022.102608_bib0005) 2019 Choi (10.1016/j.geothermics.2022.102608_bib0007) 2013; 52 Jia (10.1016/j.geothermics.2022.102608_bib0021) 2019; 77 Domenico (10.1016/j.geothermics.2022.102608_bib0009) 2013 Jia (10.1016/j.geothermics.2022.102608_bib0018) 2022; 100 |
References_xml | – volume: 96 year: 2021 ident: bib0028 article-title: Numerical investigation of long-term operation of ground-source heat pumps at neighborhood level: focus on thermal interactions and electricity consumption publication-title: Geothermics – volume: 37 start-page: 494 year: 2020 end-page: 499 ident: bib0031 article-title: CFD based method for porous medium model of finned tube bundles and flow publication-title: Chin. J. Appl. Mech. – volume: 136 start-page: 63 year: 2017 end-page: 72 ident: bib0003 article-title: Effects of the geothermal load on the ground temperature recovery in a ground heat exchanger publication-title: Energy Build. – volume: 125 start-page: 183 year: 2003 end-page: 189 ident: bib0038 article-title: A ground resistance for vertical bore heat exchangers with groundwater flow publication-title: J. Energy Resour. Technol. Trans. ASME – volume: 204 year: 2020 ident: bib0026 article-title: A coupled heat transfer model of medium-depth downhole coaxial heat exchanger based on the piecewise analytical solution publication-title: Energy Convers. Manag. – year: 2019 ident: bib0005 article-title: Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating publication-title: Geotherm. Energy – volume: 43 start-page: 1203 year: 2004 end-page: 1211 ident: bib0008 article-title: Heat transfer in ground heat exchangers with groundwater advection publication-title: Int. J. Therm. Sci. – volume: 97 start-page: 65 year: 2016 end-page: 76 ident: bib0014 article-title: Thermal evaluation of coaxial deep borehole heat exchangers publication-title: Renew. Energy – volume: 77 start-page: 1 year: 2019 end-page: 11 ident: bib0021 article-title: Review of effective thermal conductivity models of rock-soil for geothermal energy applications publication-title: Geothermics – volume: 88 start-page: 47 year: 2015 end-page: 58 ident: bib0011 article-title: Analytical solution of discontinuous heat extraction for sustainability and recovery aspects of borehole heat exchangers publication-title: Int. J. Therm. Sci. – volume: 56 start-page: 119 year: 2015 end-page: 127 ident: bib0024 article-title: Influence of regional groundwater flow on ground temperature around heat extraction boreholes publication-title: Geothermics – volume: 54 start-page: 115 year: 2015 end-page: 121 ident: bib0004 article-title: Restoration performance of vertical ground heat exchanger with various intermittent ratios publication-title: Geothermics – volume: 182 start-page: 296 year: 2022 end-page: 313 ident: bib0019 article-title: A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions publication-title: Renew. Energy – volume: 212 year: 2020 ident: bib0025 article-title: Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method publication-title: Energy Build. – volume: 38 start-page: 66 year: 2012 end-page: 77 ident: bib0041 article-title: Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow publication-title: Energy – volume: 51 start-page: 9 year: 2014 end-page: 30 ident: bib0030 article-title: Effects of depth and material property variations on the ground temperature response to heating by a deep vertical ground heat exchanger in purely conductive media publication-title: Geothermics – volume: 75 start-page: 58 year: 2018 end-page: 67 ident: bib0035 article-title: Potential application of vacuum insulated tubing for deep borehole heat exchangers publication-title: Geothermics – volume: 2018 start-page: 1 year: 2019 end-page: 15 ident: bib0017 article-title: A new packed-sphere model for geological materials thermal conductivity prediction at moderate porosity range for geothermal utilization publication-title: Int. J. Energy Res. – year: 2013 ident: bib0009 article-title: Physical and chemical Hydrogeology – volume: 164 start-page: 1298 year: 2018 end-page: 1310 ident: bib0036 article-title: Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system publication-title: Energy – volume: 202 start-page: 537 year: 2017 end-page: 549 ident: bib0015 article-title: An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow publication-title: Appl. Energy – volume: 12 start-page: 857 year: 2019 end-page: 868 ident: bib0039 article-title: Investigation of the influence of groundwater seepage on the heat transfer characteristics of a ground source heat pump system with a 9-well group publication-title: Build. Simul. – volume: 231 year: 2020 ident: bib0006 article-title: Long-term thermal imbalance in large borehole heat exchangers array – A numerical study based on the Leicester project publication-title: Energy Build. – volume: 169 start-page: 738 year: 2021 end-page: 751 ident: bib0023 article-title: Heat extraction model and characteristics of coaxial deep borehole heat exchanger publication-title: Renew. Energy – volume: 77 start-page: 700 year: 2014 end-page: 708 ident: bib0001 article-title: Energy performance and thermal impact of a borehole heat exchanger in a sandy aquifer: influence of the groundwater velocity publication-title: Energy Convers. Manag. – volume: 50 start-page: 2506 year: 2011 end-page: 2513 ident: bib0029 article-title: A moving finite line source model to simulate borehole heat exchangers with groundwater advection publication-title: Int. J. Therm. Sci. – year: 2021 ident: bib0032 article-title: Energy, economic and emission assessment of a solar assisted shallow earth borehole field heat pump system for domestic space heating in a north European climate publication-title: Geothermics – volume: 52 start-page: 230 year: 2013 end-page: 240 ident: bib0007 article-title: Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays publication-title: Renew. Energy – volume: 84 year: 2020 ident: bib0020 article-title: Series-parallel resistance method based thermal conductivity model for rock-soil with low or high porosity publication-title: Geothermics – volume: 77 start-page: 17 year: 2014 end-page: 27 ident: bib0040 article-title: A dynamic simulation method of ground coupled heat pump system based on borehole heat exchange effectiveness publication-title: Energy Build. – volume: 139 start-page: 186 year: 2017 end-page: 196 ident: bib0013 article-title: 3D dynamic numerical programming and calculation of vertical buried tube heat exchanger performance of ground-source heat pumps under coupled heat transfer inside and outside of tube publication-title: Energy Build. – volume: 43 start-page: 935 year: 2011 end-page: 943 ident: bib0034 article-title: Analysis of geo-temperature recovery under intermittent operation of ground-source heat pump publication-title: Energy Build. – volume: 100 year: 2022 ident: bib0018 article-title: Influence of groundwater flow on the ground heat exchanger performance and ground temperature distributions: A comprehensive review of analytical, numerical and experimental studies publication-title: Geothermics – volume: 136 start-page: 628 year: 2014 end-page: 635 ident: bib0033 article-title: Intermittent experimental study of a vertical ground source heat pump system publication-title: Appl. Energy – volume: 71 start-page: 294 year: 2018 end-page: 305 ident: bib0010 article-title: Multilayer analytical model for vertical ground heat exchanger with groundwater flow publication-title: Geothermics – volume: 33–34 start-page: 167 year: 2012 end-page: 174 ident: bib0016 article-title: Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode publication-title: Appl. Therm. Eng. – volume: 47 start-page: 378 year: 2012 end-page: 387 ident: bib0022 article-title: A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow publication-title: Energy – volume: 276 year: 2020 ident: bib0027 article-title: Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer publication-title: Appl. Energy – start-page: 1 year: 2022 end-page: 18 ident: bib0002 article-title: Geothermal resources for sustainable development: a case study publication-title: Int. J. Energy Res. – year: 2019 ident: bib0042 article-title: Study on Medium-Deep Geothermal HeatExtraction System and Heat Transfer Model – volume: 35 start-page: 1169 year: 2010 end-page: 1174 ident: bib0012 article-title: Experiment and simulation of temperature characteristics of intermittently-controlled ground heat exchanges publication-title: Renew. Energy – volume: 76 start-page: 190 year: 2018 end-page: 200 ident: bib0037 article-title: Heat extraction performance of a downhole coaxial heat exchanger geothermal system by considering fluid flow in the reservoir publication-title: Geothermics – volume: 50 start-page: 2506 year: 2011 ident: 10.1016/j.geothermics.2022.102608_bib0029 article-title: A moving finite line source model to simulate borehole heat exchangers with groundwater advection publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.06.012 – start-page: 1 year: 2022 ident: 10.1016/j.geothermics.2022.102608_bib0002 article-title: Geothermal resources for sustainable development: a case study publication-title: Int. J. Energy Res. – volume: 204 year: 2020 ident: 10.1016/j.geothermics.2022.102608_bib0026 article-title: A coupled heat transfer model of medium-depth downhole coaxial heat exchanger based on the piecewise analytical solution publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112308 – volume: 100 year: 2022 ident: 10.1016/j.geothermics.2022.102608_bib0018 article-title: Influence of groundwater flow on the ground heat exchanger performance and ground temperature distributions: A comprehensive review of analytical, numerical and experimental studies publication-title: Geothermics doi: 10.1016/j.geothermics.2021.102342 – year: 2021 ident: 10.1016/j.geothermics.2022.102608_bib0032 article-title: Energy, economic and emission assessment of a solar assisted shallow earth borehole field heat pump system for domestic space heating in a north European climate publication-title: Geothermics doi: 10.1016/j.geothermics.2021.102159 – volume: 75 start-page: 58 year: 2018 ident: 10.1016/j.geothermics.2022.102608_bib0035 article-title: Potential application of vacuum insulated tubing for deep borehole heat exchangers publication-title: Geothermics doi: 10.1016/j.geothermics.2018.04.001 – volume: 33–34 start-page: 167 year: 2012 ident: 10.1016/j.geothermics.2022.102608_bib0016 article-title: Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.09.030 – volume: 276 year: 2020 ident: 10.1016/j.geothermics.2022.102608_bib0027 article-title: Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115453 – volume: 37 start-page: 494 year: 2020 ident: 10.1016/j.geothermics.2022.102608_bib0031 article-title: CFD based method for porous medium model of finned tube bundles and flow publication-title: Chin. J. Appl. Mech. – volume: 136 start-page: 628 year: 2014 ident: 10.1016/j.geothermics.2022.102608_bib0033 article-title: Intermittent experimental study of a vertical ground source heat pump system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.09.072 – volume: 97 start-page: 65 year: 2016 ident: 10.1016/j.geothermics.2022.102608_bib0014 article-title: Thermal evaluation of coaxial deep borehole heat exchangers publication-title: Renew. Energy doi: 10.1016/j.renene.2016.05.048 – volume: 38 start-page: 66 year: 2012 ident: 10.1016/j.geothermics.2022.102608_bib0041 article-title: Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow publication-title: Energy doi: 10.1016/j.energy.2011.12.038 – year: 2019 ident: 10.1016/j.geothermics.2022.102608_bib0042 – volume: 54 start-page: 115 year: 2015 ident: 10.1016/j.geothermics.2022.102608_bib0004 article-title: Restoration performance of vertical ground heat exchanger with various intermittent ratios publication-title: Geothermics doi: 10.1016/j.geothermics.2014.12.005 – year: 2013 ident: 10.1016/j.geothermics.2022.102608_bib0009 – volume: 202 start-page: 537 year: 2017 ident: 10.1016/j.geothermics.2022.102608_bib0015 article-title: An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.152 – volume: 43 start-page: 935 year: 2011 ident: 10.1016/j.geothermics.2022.102608_bib0034 article-title: Analysis of geo-temperature recovery under intermittent operation of ground-source heat pump publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.12.017 – volume: 169 start-page: 738 year: 2021 ident: 10.1016/j.geothermics.2022.102608_bib0023 article-title: Heat extraction model and characteristics of coaxial deep borehole heat exchanger publication-title: Renew. Energy doi: 10.1016/j.renene.2021.01.036 – volume: 125 start-page: 183 year: 2003 ident: 10.1016/j.geothermics.2022.102608_bib0038 article-title: A ground resistance for vertical bore heat exchangers with groundwater flow publication-title: J. Energy Resour. Technol. Trans. ASME doi: 10.1115/1.1591203 – volume: 212 year: 2020 ident: 10.1016/j.geothermics.2022.102608_bib0025 article-title: Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.109829 – volume: 96 year: 2021 ident: 10.1016/j.geothermics.2022.102608_bib0028 article-title: Numerical investigation of long-term operation of ground-source heat pumps at neighborhood level: focus on thermal interactions and electricity consumption publication-title: Geothermics – volume: 12 start-page: 857 year: 2019 ident: 10.1016/j.geothermics.2022.102608_bib0039 article-title: Investigation of the influence of groundwater seepage on the heat transfer characteristics of a ground source heat pump system with a 9-well group publication-title: Build. Simul. doi: 10.1007/s12273-019-0526-4 – volume: 182 start-page: 296 year: 2022 ident: 10.1016/j.geothermics.2022.102608_bib0019 article-title: A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions publication-title: Renew. Energy doi: 10.1016/j.renene.2021.10.017 – volume: 52 start-page: 230 year: 2013 ident: 10.1016/j.geothermics.2022.102608_bib0007 article-title: Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays publication-title: Renew. Energy doi: 10.1016/j.renene.2012.10.028 – volume: 231 year: 2020 ident: 10.1016/j.geothermics.2022.102608_bib0006 article-title: Long-term thermal imbalance in large borehole heat exchangers array – A numerical study based on the Leicester project publication-title: Energy Build. – volume: 88 start-page: 47 year: 2015 ident: 10.1016/j.geothermics.2022.102608_bib0011 article-title: Analytical solution of discontinuous heat extraction for sustainability and recovery aspects of borehole heat exchangers publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2014.09.007 – year: 2019 ident: 10.1016/j.geothermics.2022.102608_bib0005 article-title: Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating publication-title: Geotherm. Energy doi: 10.1186/s40517-019-0133-8 – volume: 136 start-page: 63 year: 2017 ident: 10.1016/j.geothermics.2022.102608_bib0003 article-title: Effects of the geothermal load on the ground temperature recovery in a ground heat exchanger publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.11.056 – volume: 35 start-page: 1169 year: 2010 ident: 10.1016/j.geothermics.2022.102608_bib0012 article-title: Experiment and simulation of temperature characteristics of intermittently-controlled ground heat exchanges publication-title: Renew. Energy doi: 10.1016/j.renene.2009.10.039 – volume: 76 start-page: 190 year: 2018 ident: 10.1016/j.geothermics.2022.102608_bib0037 article-title: Heat extraction performance of a downhole coaxial heat exchanger geothermal system by considering fluid flow in the reservoir publication-title: Geothermics doi: 10.1016/j.geothermics.2018.07.012 – volume: 84 year: 2020 ident: 10.1016/j.geothermics.2022.102608_bib0020 article-title: Series-parallel resistance method based thermal conductivity model for rock-soil with low or high porosity publication-title: Geothermics doi: 10.1016/j.geothermics.2019.101742 – volume: 77 start-page: 700 year: 2014 ident: 10.1016/j.geothermics.2022.102608_bib0001 article-title: Energy performance and thermal impact of a borehole heat exchanger in a sandy aquifer: influence of the groundwater velocity publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.10.018 – volume: 71 start-page: 294 year: 2018 ident: 10.1016/j.geothermics.2022.102608_bib0010 article-title: Multilayer analytical model for vertical ground heat exchanger with groundwater flow publication-title: Geothermics doi: 10.1016/j.geothermics.2017.09.008 – volume: 56 start-page: 119 year: 2015 ident: 10.1016/j.geothermics.2022.102608_bib0024 article-title: Influence of regional groundwater flow on ground temperature around heat extraction boreholes publication-title: Geothermics doi: 10.1016/j.geothermics.2015.04.002 – volume: 51 start-page: 9 year: 2014 ident: 10.1016/j.geothermics.2022.102608_bib0030 article-title: Effects of depth and material property variations on the ground temperature response to heating by a deep vertical ground heat exchanger in purely conductive media publication-title: Geothermics doi: 10.1016/j.geothermics.2013.10.002 – volume: 77 start-page: 1 year: 2019 ident: 10.1016/j.geothermics.2022.102608_bib0021 article-title: Review of effective thermal conductivity models of rock-soil for geothermal energy applications publication-title: Geothermics doi: 10.1016/j.geothermics.2018.08.001 – volume: 47 start-page: 378 year: 2012 ident: 10.1016/j.geothermics.2022.102608_bib0022 article-title: A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow publication-title: Energy doi: 10.1016/j.energy.2012.09.056 – volume: 139 start-page: 186 year: 2017 ident: 10.1016/j.geothermics.2022.102608_bib0013 article-title: 3D dynamic numerical programming and calculation of vertical buried tube heat exchanger performance of ground-source heat pumps under coupled heat transfer inside and outside of tube publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.01.023 – volume: 43 start-page: 1203 year: 2004 ident: 10.1016/j.geothermics.2022.102608_bib0008 article-title: Heat transfer in ground heat exchangers with groundwater advection publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2004.04.009 – volume: 164 start-page: 1298 year: 2018 ident: 10.1016/j.geothermics.2022.102608_bib0036 article-title: Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system publication-title: Energy doi: 10.1016/j.energy.2018.08.056 – volume: 77 start-page: 17 year: 2014 ident: 10.1016/j.geothermics.2022.102608_bib0040 article-title: A dynamic simulation method of ground coupled heat pump system based on borehole heat exchange effectiveness publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.03.023 – volume: 2018 start-page: 1 year: 2019 ident: 10.1016/j.geothermics.2022.102608_bib0017 article-title: A new packed-sphere model for geological materials thermal conductivity prediction at moderate porosity range for geothermal utilization publication-title: Int. J. Energy Res. |
SSID | ssj0007570 |
Score | 2.4087079 |
Snippet | •Coaxial ground heat exchanger with adjacent aquifuge and aquifer layers is modeled.•Convection causes different ground heat exchanger reduction ratios in... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102608 |
SubjectTerms | Aquifer layer Aquifuge layer Geothermal energy Ground heat exchanger Ground temperature field |
Title | Investigation on local geothermal energy attenuation after long-term operation of ground heat exchanger with considering aquifer effect |
URI | https://dx.doi.org/10.1016/j.geothermics.2022.102608 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kgnoRn1hfrOA1No_tZgNeSlGqRQ8-sLewj0mtaFpLC3rx6t92J9loBUFBCCSEmSTsLDOb5ZvvI-Qw0QlPVKY9E9t_E2aU8qQE5YUhMAgCMFCAaC4ueeeWnfeavTnSrnphEFbpcn-Z04ts7e403Gg2RoNB4xrVWznqsCHOoBn1sIOdxTjLj96-YB5xsxCMQ2MPrRfIwRfGqw9Fm9PTQCNzdxgikQFHpcmfatRM3TldIctuwUhb5TetkjnI18ii0y6_f10n7zNUGcOc2qOoT7R6q72EosGPIpVmXlJ700Ib3FrmfQ-TMx2OYOwekFFs9cgNxTxN4cX1BlPcsqXaCXzaikfl8xSBMbTEhGyQ29OTm3bHc_IKnowYm3iaS-6rQJhIJiGEgps4C5QvpBaSCTBSRDpRwFRiBOgAWOBDDEpEAL70bV7aJLV8mMMWobHhmgvpQzPTLAqFtKsqYyKWmCSzGdWvE1ENaKod9zhKYDymFcjsIZ2JRYqxSMtY1En46ToqCTj-4nRcRS39NptSWyh-d9_-n_sOWUJR-nKjZpfUJuMp7Nmly0TtF3Nzn8y3zrqdSzx3r-66H0vh9to |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEB1cB-peQtq0NE3TbiBXYX2sVivIxZgGJ058iQ2-if0YuS6t7AYHml-Qv50daZW4EGghoIMQO5LYEW9Wy5v3AE5yk4tclyawmfs34VbrQCnUQRwjxyhCizWJ5moiRjN-MU_nHRi2vTBEq_TY32B6jdb-St_PZn-9XPavyb1VkA8b8QzSZP4KdkidKu3CzuB8PJo8AnKW1p5xND6ggNdw_ETzWmDd6fRraUi8O45Jy0CQ2eRzZWqr9Jztwa5fM7JB81pvoYPVO-h5-_Lvd_twv6WWsaqYO-oSxdqnulOse_wYqWlWjbo3q-3B3chqERA-s9Uab_wNSkbdHpVlBNUM__j2YEa7tsx4j09X9Jj6fUvcGNbQQt7D7OzbdDgKvMNCoBLON4ERSoQ6kjZReYyxFDYrIx1KZaTiEq2Sick1cp1biSZCHoWYoZYJYqhCB00foFutKvwILLPCCKlCTEvDk1gqt7CyNuG5zUsHquEByHZCC-Plx8kF42fR8sx-FFu5KCgXRZOLA4gfQ9eNBsf_BJ22WSv--qAKVyv-Hf7pZeFfoTeaXl0Wl-eT8SG8IY_6Zt_mM3Q3N7d45FYyG_3Ff6kP9YH36A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+local+geothermal+energy+attenuation+after+long-term+operation+of+ground+heat+exchanger+with+considering+aquifer+effect&rft.jtitle=Geothermics&rft.au=Ma%2C+Z.D.&rft.au=Zhang%2C+Y.P.&rft.au=Saw%2C+L.H.&rft.au=Cui%2C+X.&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0375-6505&rft.eissn=1879-3576&rft.volume=107&rft_id=info:doi/10.1016%2Fj.geothermics.2022.102608&rft.externalDocID=S037565052200253X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6505&client=summon |