Influence of Positional Isomers on the Macroscale and Nanoscale Architectures of Aggregates of Racemic Hydroxyoctadecanoic Acids in Their Molecular Gel, Dispersion, and Solid States

Inter/intramolecular hydrogen bonding of a series of hydroxystearic acids (HSAs) are investigated. Self-assembly of molecular gels obtained from these fatty acids with isomeric hydroxyl groups is influenced by the position of the secondary hydroxyl group. 2-Hydroxystearic acid (2HSA) does not form a...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 28; no. 11; pp. 4955 - 4964
Main Authors Abraham, Shibu, Lan, Yaqi, Lam, Ricky S. H, Grahame, Douglas A. S, Kim, Jennifer Jae Hee, Weiss, Richard G, Rogers, Michael A
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 20.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inter/intramolecular hydrogen bonding of a series of hydroxystearic acids (HSAs) are investigated. Self-assembly of molecular gels obtained from these fatty acids with isomeric hydroxyl groups is influenced by the position of the secondary hydroxyl group. 2-Hydroxystearic acid (2HSA) does not form a molecular dimer, as indicated by FT-IR, and growth along the secondary axis is inhibited because the secondary hydroxyl group is unable to form intermolecular H-bonds. As well, the XRD long spacing is shorter than the dimer length of hydroxystearic acid. 3-Hydroxystearic acid (3HSA) forms an acyclic dimer, and the hydroxyl groups are unable to hydrogen bond, preventing the crystal structure from growing along the secondary axis. Finally, isomers 6HSA, 8HSA, 10HSA, 12HSA, and 14HSA have similar XRD and FT-IR patterns, suggesting that these molecules all self-assemble in a similar fashion. The monomers form a carboxylic cyclic dimer, and the secondary hydroxyl group promotes growth along the secondary axis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
DOI:10.1021/la204412t