Depolarization as Driving Force in Antiferroelectric Hafnia and Ferroelectric Wake-Up
Antiferroelectricity and wake-up observed in thin hafnium-oxide-based ferroelectrics are examined from the viewpoint of a macroscopic, quantitative model incorporating depolarization effects. Depolarization fields arising from finite screening, a nonferroelectric interface, and a ferroelectric/parae...
Saved in:
Published in | ACS applied electronic materials Vol. 2; no. 6; pp. 1583 - 1595 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
23.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2637-6113 2637-6113 |
DOI | 10.1021/acsaelm.0c00184 |
Cover
Loading…
Abstract | Antiferroelectricity and wake-up observed in thin hafnium-oxide-based ferroelectrics are examined from the viewpoint of a macroscopic, quantitative model incorporating depolarization effects. Depolarization fields arising from finite screening, a nonferroelectric interface, and a ferroelectric/paraelectric phase mixture are shown to directly impact the switching properties and shape of ferroelectric hysteresis. Charge injection and trapping are used to demonstrate how the progressive stressing of a ferroelectric dead layer results in improved switching with electric-field cycling. The description of ferroelectric hysteresis is applied to HfO2-based ferroelectrics where the longstanding debate concerning wake-up cycling and antiferroelectric properties can be shown to be driven by depolarization mechanisms. The calculated hystereses combine quantitative accuracy, simplicity, and compatibility to multiple microscopic interpretations that show depolarization fields can be the driving force of a field-induced first-order phase transition underlying antiferroelectric behavior. |
---|---|
AbstractList | Antiferroelectricity and wake-up observed in thin hafnium-oxide-based ferroelectrics are examined from the viewpoint of a macroscopic, quantitative model incorporating depolarization effects. Depolarization fields arising from finite screening, a nonferroelectric interface, and a ferroelectric/paraelectric phase mixture are shown to directly impact the switching properties and shape of ferroelectric hysteresis. Charge injection and trapping are used to demonstrate how the progressive stressing of a ferroelectric dead layer results in improved switching with electric-field cycling. The description of ferroelectric hysteresis is applied to HfO2-based ferroelectrics where the longstanding debate concerning wake-up cycling and antiferroelectric properties can be shown to be driven by depolarization mechanisms. The calculated hystereses combine quantitative accuracy, simplicity, and compatibility to multiple microscopic interpretations that show depolarization fields can be the driving force of a field-induced first-order phase transition underlying antiferroelectric behavior. |
Author | Lomenzo, Patrick D Schroeder, Uwe Richter, Claudia Mikolajick, Thomas |
AuthorAffiliation | TU Dresden Chair of Nanoelectronic Materials |
AuthorAffiliation_xml | – name: TU Dresden – name: Chair of Nanoelectronic Materials |
Author_xml | – sequence: 1 givenname: Patrick D orcidid: 0000-0001-8208-3871 surname: Lomenzo fullname: Lomenzo, Patrick D email: patrick.lomenzo@namlab.com – sequence: 2 givenname: Claudia surname: Richter fullname: Richter, Claudia – sequence: 3 givenname: Thomas surname: Mikolajick fullname: Mikolajick, Thomas organization: TU Dresden – sequence: 4 givenname: Uwe orcidid: 0000-0002-6824-2386 surname: Schroeder fullname: Schroeder, Uwe |
BookMark | eNp9kEFLAzEQhYNUsNaeveYu2yabbHf3WFq3FQpeLB6X2WQiqdukJKugv97V9qCCnmbgvW-Y9y7JwHmHhFxzNuEs5VNQEbDdT5hijBfyjAzTmciTGedi8G2_IOMYd4z1SCrTjA_JdokH30Kw79BZ7yhEugz21bonWvmgkFpH566zBkPw2KLqglV0DcZZoOA0rX4Ij_CMyfZwRc4NtBHHpzki2-r2YbFONveru8V8k4CQokvUTMtGi0wLWRYlpkJqLHOuczCNVIYpnnFMeQMszwspWNb_XJhGZIXQrJRGjMj0eFcFH2NAUx-C3UN4qzmrP4upT8XUp2J6IvtFKNt9Re8C2PYf7ubI9UK98y_B9bn-dH8A-f16Tg |
CitedBy_id | crossref_primary_10_3390_electronics13061021 crossref_primary_10_1002_pssa_202000281 crossref_primary_10_1021_acsaem_0c00987 crossref_primary_10_1002_smll_202200133 crossref_primary_10_1021_acsaelm_1c00330 crossref_primary_10_1021_acsaelm_1c00171 crossref_primary_10_1109_TED_2024_3408778 crossref_primary_10_7498_aps_70_20210115 crossref_primary_10_1063_5_0083656 crossref_primary_10_1021_acsaelm_0c00680 crossref_primary_10_1002_admi_202202151 crossref_primary_10_1021_acsaelm_4c01025 crossref_primary_10_1021_acsami_3c08163 crossref_primary_10_1063_5_0021007 crossref_primary_10_1063_5_0100562 crossref_primary_10_1063_5_0129546 crossref_primary_10_1109_LED_2024_3439543 crossref_primary_10_1021_acsami_0c07809 crossref_primary_10_1002_aelm_202100931 crossref_primary_10_1016_j_fmre_2023_02_010 crossref_primary_10_1021_acsaelm_4c01988 crossref_primary_10_1007_s10854_024_12033_5 crossref_primary_10_1063_5_0238783 crossref_primary_10_1002_admi_202202232 crossref_primary_10_1002_pssr_202000589 crossref_primary_10_1038_s41467_024_44690_9 crossref_primary_10_1109_TED_2023_3254509 crossref_primary_10_1038_s41578_022_00431_2 crossref_primary_10_1039_D0TC01695K crossref_primary_10_1063_5_0238806 crossref_primary_10_1063_5_0062789 crossref_primary_10_1063_5_0026136 crossref_primary_10_1002_aelm_202400567 crossref_primary_10_1002_aelm_202100485 crossref_primary_10_1063_5_0018199 crossref_primary_10_1063_5_0232399 crossref_primary_10_35848_1347_4065_adb163 crossref_primary_10_1103_PhysRevApplied_15_034048 crossref_primary_10_3389_fnano_2022_939822 crossref_primary_10_1002_pssr_202200168 crossref_primary_10_1557_s43578_021_00415_y crossref_primary_10_1039_D1QI00167A crossref_primary_10_31613_ceramist_2023_26_1_09 crossref_primary_10_1002_apxr_202400194 crossref_primary_10_1063_5_0035714 crossref_primary_10_1021_acsaelm_2c01615 crossref_primary_10_1038_s41563_023_01619_9 crossref_primary_10_1039_D2NR02678C crossref_primary_10_1109_TUFFC_2023_3311328 crossref_primary_10_1063_5_0053185 crossref_primary_10_1016_j_jmat_2024_100968 crossref_primary_10_1021_acsami_4c15934 crossref_primary_10_1021_acsomega_2c06237 crossref_primary_10_1063_5_0119871 crossref_primary_10_1002_adfm_202311825 crossref_primary_10_1021_acsami_4c06143 crossref_primary_10_26599_JAC_2024_9220852 crossref_primary_10_1002_aelm_202100556 crossref_primary_10_1002_adfm_202201737 crossref_primary_10_1021_acsaelm_0c00304 crossref_primary_10_1016_j_jeurceramsoc_2024_02_016 crossref_primary_10_1038_s41586_022_04425_6 crossref_primary_10_1088_1361_6528_ad6871 crossref_primary_10_1109_TED_2024_3379473 crossref_primary_10_1063_5_0035687 crossref_primary_10_1088_1361_6528_acb945 crossref_primary_10_1016_j_mssp_2023_107553 crossref_primary_10_1039_D1NR01260F crossref_primary_10_1038_s41467_022_28860_1 crossref_primary_10_1038_s42005_022_00951_x crossref_primary_10_3390_condmat6010007 crossref_primary_10_1002_pssr_202100012 crossref_primary_10_1021_acsami_2c18313 crossref_primary_10_1063_5_0146593 crossref_primary_10_1063_5_0051329 crossref_primary_10_1088_1361_6463_abbc98 crossref_primary_10_1021_acsami_1c22426 crossref_primary_10_1109_TED_2022_3186869 crossref_primary_10_1002_adfm_202303636 crossref_primary_10_1021_acsaelm_3c00181 crossref_primary_10_1063_5_0147124 |
Cites_doi | 10.1063/1.346948 10.1016/0038-1098(72)91180-5 10.1103/PhysRevB.82.014109 10.1002/aelm.201600173 10.1002/9783527654864.ch7 10.1103/PhysRev.91.513 10.1103/PhysRevB.90.140103 10.1080/00150197808236770 10.1103/PhysRevB.90.064111 10.1063/1.119781 10.1016/j.tsf.2016.07.009 10.1063/1.5128502 10.1063/1.114064 10.1016/j.pmatsci.2014.01.002 10.1109/NVMTS47818.2019.9043368 10.1063/1.126786 10.1038/srep04115 10.1021/acsami.9b11146 10.1103/PhysRev.35.269 10.1103/RevModPhys.77.1083 10.1063/1.5055258 10.1021/acsami.8b13173 10.1002/adma.200901756 10.1063/1.1308276 10.1016/j.nanoen.2014.09.025 10.1063/1.1381542 10.1063/1.2786013 10.1109/IRPS.2018.8353676 10.1063/1.5037185 10.1063/1.115531 10.1063/1.3490249 10.1002/aelm.201700131 10.1063/1.5023390 10.1002/admi.201701258 10.1103/PhysRev.83.1078 10.1063/1.4916715 10.1016/0022-3697(86)90042-9 10.1038/nature05148 10.1021/nl302049k 10.1063/1.4829064 10.1063/1.4902396 10.1109/NANO.2018.8626275 10.1063/1.4983031 10.1063/1.5129318 10.1021/am504837r 10.1063/1.4985297 10.1063/1.5019308 10.1109/TED.2019.2930749 10.1016/j.actamat.2018.12.008 10.1109/IEDM.2016.7838398 10.1039/C6CP07501K 10.1063/1.364239 10.1063/1.4811483 10.1063/1.1805190 10.1063/1.121554 10.1038/s41928-019-0305-3 10.1021/acsami.5b05773 10.1088/1361-6633/ab49d6 10.1063/1.5017094 10.1063/1.1662770 10.1038/s41467-019-10530-4 10.1109/TED.2013.2283465 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acsaelm.0c00184 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2637-6113 |
EndPage | 1595 |
ExternalDocumentID | 10_1021_acsaelm_0c00184 b799718777 |
GroupedDBID | ABUCX ACS ALMA_UNASSIGNED_HOLDINGS EBS VF5 VG9 AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a343t-c6d4bd35d34989e234de971d7afb4cf0c151e21ba077843054258fb3583d094f3 |
IEDL.DBID | ACS |
ISSN | 2637-6113 |
IngestDate | Tue Jul 01 00:48:46 EDT 2025 Thu Apr 24 22:54:26 EDT 2025 Thu Aug 27 13:41:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | dead layer wake-up size effect ferroelectric HfO2 antiferroelectricity depolarization |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a343t-c6d4bd35d34989e234de971d7afb4cf0c151e21ba077843054258fb3583d094f3 |
ORCID | 0000-0001-8208-3871 0000-0002-6824-2386 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1021_acsaelm_0c00184 crossref_citationtrail_10_1021_acsaelm_0c00184 acs_journals_10_1021_acsaelm_0c00184 |
ProviderPackageCode | ACS VG9 ABUCX VF5 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-23 |
PublicationDateYYYYMMDD | 2020-06-23 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied electronic materials |
PublicationTitleAlternate | ACS Appl. Electron. Mater |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref25/cit25 doi: 10.1063/1.346948 – ident: ref39/cit39 doi: 10.1016/0038-1098(72)91180-5 – ident: ref49/cit49 doi: 10.1103/PhysRevB.82.014109 – ident: ref37/cit37 doi: 10.1002/aelm.201600173 – ident: ref45/cit45 doi: 10.1002/9783527654864.ch7 – ident: ref33/cit33 doi: 10.1103/PhysRev.91.513 – ident: ref54/cit54 doi: 10.1103/PhysRevB.90.140103 – ident: ref3/cit3 doi: 10.1080/00150197808236770 – ident: ref53/cit53 doi: 10.1103/PhysRevB.90.064111 – ident: ref34/cit34 doi: 10.1063/1.119781 – ident: ref57/cit57 doi: 10.1016/j.tsf.2016.07.009 – ident: ref58/cit58 doi: 10.1063/1.5128502 – ident: ref30/cit30 doi: 10.1063/1.114064 – ident: ref44/cit44 doi: 10.1016/j.pmatsci.2014.01.002 – ident: ref52/cit52 doi: 10.1109/NVMTS47818.2019.9043368 – ident: ref23/cit23 doi: 10.1063/1.126786 – ident: ref61/cit61 doi: 10.1038/srep04115 – ident: ref41/cit41 doi: 10.1021/acsami.9b11146 – ident: ref1/cit1 doi: 10.1103/PhysRev.35.269 – ident: ref32/cit32 doi: 10.1103/RevModPhys.77.1083 – ident: ref59/cit59 doi: 10.1063/1.5055258 – ident: ref50/cit50 doi: 10.1021/acsami.8b13173 – ident: ref35/cit35 doi: 10.1002/adma.200901756 – ident: ref27/cit27 doi: 10.1063/1.1308276 – ident: ref12/cit12 doi: 10.1016/j.nanoen.2014.09.025 – ident: ref24/cit24 doi: 10.1063/1.1381542 – ident: ref5/cit5 doi: 10.1063/1.2786013 – ident: ref7/cit7 doi: 10.1109/IRPS.2018.8353676 – ident: ref51/cit51 doi: 10.1063/1.5037185 – ident: ref31/cit31 doi: 10.1063/1.115531 – ident: ref29/cit29 doi: 10.1063/1.3490249 – ident: ref56/cit56 doi: 10.1002/aelm.201700131 – ident: ref13/cit13 doi: 10.1063/1.5023390 – ident: ref47/cit47 doi: 10.1002/admi.201701258 – ident: ref43/cit43 doi: 10.1103/PhysRev.83.1078 – ident: ref6/cit6 doi: 10.1063/1.4916715 – ident: ref28/cit28 doi: 10.1016/0022-3697(86)90042-9 – ident: ref36/cit36 doi: 10.1038/nature05148 – ident: ref21/cit21 doi: 10.1021/nl302049k – ident: ref20/cit20 doi: 10.1063/1.4829064 – ident: ref2/cit2 doi: 10.1063/1.4902396 – ident: ref10/cit10 doi: 10.1109/NANO.2018.8626275 – ident: ref9/cit9 doi: 10.1063/1.4983031 – ident: ref60/cit60 doi: 10.1063/1.5129318 – ident: ref22/cit22 doi: 10.1021/am504837r – ident: ref55/cit55 doi: 10.1063/1.4985297 – ident: ref14/cit14 doi: 10.1063/1.5019308 – ident: ref17/cit17 doi: 10.1109/TED.2019.2930749 – ident: ref62/cit62 doi: 10.1016/j.actamat.2018.12.008 – ident: ref16/cit16 doi: 10.1109/IEDM.2016.7838398 – ident: ref42/cit42 doi: 10.1039/C6CP07501K – ident: ref26/cit26 doi: 10.1063/1.364239 – ident: ref46/cit46 doi: 10.1063/1.4811483 – ident: ref40/cit40 doi: 10.1063/1.1805190 – ident: ref4/cit4 doi: 10.1063/1.121554 – ident: ref11/cit11 doi: 10.1038/s41928-019-0305-3 – ident: ref19/cit19 doi: 10.1021/acsami.5b05773 – ident: ref8/cit8 doi: 10.1088/1361-6633/ab49d6 – ident: ref18/cit18 doi: 10.1063/1.5017094 – ident: ref38/cit38 doi: 10.1063/1.1662770 – ident: ref48/cit48 doi: 10.1038/s41467-019-10530-4 – ident: ref15/cit15 doi: 10.1109/TED.2013.2283465 |
SSID | ssj0002124251 |
Score | 2.4521058 |
Snippet | Antiferroelectricity and wake-up observed in thin hafnium-oxide-based ferroelectrics are examined from the viewpoint of a macroscopic, quantitative model... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1583 |
Title | Depolarization as Driving Force in Antiferroelectric Hafnia and Ferroelectric Wake-Up |
URI | http://dx.doi.org/10.1021/acsaelm.0c00184 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgLCx8CBDf8tCBxSGxncQdq5aoQoIFIrpF9sWRqpa0StKFX4-dhFKoKpiTi6zTOfeeffcOoS5lIFKfcxIKAMJDkER52iMiCxkDDYEUtsH56TkYxfxx7I-_xaJ_3-BT715CKfXs3XHBDpDju2iPBgZkWxQ0eFkdp5g_sIk-S69oUDe-eWwl5LPxDZuJoFzLRGspJTpsirHKWonQVpJMnWWlHPjY1Gn8e7VH6KAFlrjfRMIx2tH5CYqHBl8b7to2W2JZ4mExsWcIOJoXoPEkx31bLqSLYt5MxJkAHsksn0gs8xRHPx68yakm8eIUxdHD62BE2kEKRDLOKgJBylXK_JTxnuhpyniqe6GXhjJTHDIXTNrX1FPSDUNhNcCMK0WmmC9Yauhfxs5QJ5_n-hxhoF4AgipjJbhBW0pIQ4Kk72tDbWTmXqCucUHSboQyqe-4qZe0fklav1wg58v3CbRi5HYmxmy7wd3KYNHocGx79fJ_S7hC-9RyZzcglF2jTlUs9Y0BGJW6rUPrEzelyxg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHODCQ4B4kwMHLhltkrbZcdqYxlNCMMGtStxUqjY61G4Xfj1OV8ZLSHBt68hy3dpfYn8m5IQLUEkgJYsUAJMRaGZ86zOVRkKAhVAr1-B8cxv2B_LyKXhaIN57LwwqUeJKZXWI_8Eu4J_hNW1Hz00P3Bw5uUiWMBXhroiv3bmf76rgjxid0KEsHlb9b76Y8_n8WMMFJCg_BaRPkaW3Ru7mOlUFJcPmdGKa8PqNrvE_Sq-T1TrNpO2ZX2yQBZtvkkEXs21EsnXrJdUl7RaZ21GgvXEBlmY5bbviIVsU49l8nAxoX6d5pqnOE9r7cuNRDy0bvGyRQe_8odNn9VgFpoUUEwZhIk0igkTIlmpZLmRiW5GfRDo1ElIPMAmw3DfaiyLlGMHQoio1IlAiQTCYim3SyMe53SEUuB-C4gallMTcyyiNkEgHgUWgo1Nvl5ygCeL6syjj6sSb-3Ftl7i2yy5pvr-CGGpqcjchY_S7wOlc4GXGyvHbo3t_U-GYLPcfbq7j64vbq32ywh2q9kLGxQFpTIqpPcTUY2KOKm97A2Jf03k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66gnjxgYpvc_DgJWubpG32uLiW9YmgRW8lmaSwrHaXdvfirzfpxsUHgl7bThgmk858mRdCJ5SB0BHnJBEAhCcgiQpNSESRMAYGYilcgfPtXdzP-NVz9OyLwlwtjGWitivVTRDfneqxLnyHgfDMPpfm5bUdgJslxxfRkgvauUS-7vnD_GbF_oytIjqkReOmBi5k854-P9ZwRgnqT0bpk3VJ11A256tJKhm2pxPVhrdvLRv_y_g6WvXuJu7O9GMDLZhyE2U963VbROtLMLGsca8auJsFnI4qMHhQ4q5LIjJVNZrNyRkA7suiHEgsS43TLy-e5NCQbLyFsvTi8bxP_HgFIhlnEwKx5kqzSDPeER1DGdemk4Q6kYXiUARgnQFDQyWDJBGuM5iVqigUiwTTFhQWbBu1ylFpdhAGGsYgqLJUglsfTAlpoZGMImMBjyyCXXRiRZD741HnTeSbhrmXS-7lsovaH9uQg29R7iZlvPxOcDonGM-6c_z26d7fWDhGy_e9NL-5vLveRyvUgesgJpQdoNakmppD64FM1FGjcO9h_NX8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depolarization+as+Driving+Force+in+Antiferroelectric+Hafnia+and+Ferroelectric+Wake-Up&rft.jtitle=ACS+applied+electronic+materials&rft.au=Lomenzo%2C+Patrick+D&rft.au=Richter%2C+Claudia&rft.au=Mikolajick%2C+Thomas&rft.au=Schroeder%2C+Uwe&rft.date=2020-06-23&rft.pub=American+Chemical+Society&rft.issn=2637-6113&rft.eissn=2637-6113&rft.volume=2&rft.issue=6&rft.spage=1583&rft.epage=1595&rft_id=info:doi/10.1021%2Facsaelm.0c00184&rft.externalDocID=b799718777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6113&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6113&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6113&client=summon |