Depolarization as Driving Force in Antiferroelectric Hafnia and Ferroelectric Wake-Up

Antiferroelectricity and wake-up observed in thin hafnium-oxide-based ferroelectrics are examined from the viewpoint of a macroscopic, quantitative model incorporating depolarization effects. Depolarization fields arising from finite screening, a nonferroelectric interface, and a ferroelectric/parae...

Full description

Saved in:
Bibliographic Details
Published inACS applied electronic materials Vol. 2; no. 6; pp. 1583 - 1595
Main Authors Lomenzo, Patrick D, Richter, Claudia, Mikolajick, Thomas, Schroeder, Uwe
Format Journal Article
LanguageEnglish
Published American Chemical Society 23.06.2020
Subjects
Online AccessGet full text
ISSN2637-6113
2637-6113
DOI10.1021/acsaelm.0c00184

Cover

Loading…
Abstract Antiferroelectricity and wake-up observed in thin hafnium-oxide-based ferroelectrics are examined from the viewpoint of a macroscopic, quantitative model incorporating depolarization effects. Depolarization fields arising from finite screening, a nonferroelectric interface, and a ferroelectric/paraelectric phase mixture are shown to directly impact the switching properties and shape of ferroelectric hysteresis. Charge injection and trapping are used to demonstrate how the progressive stressing of a ferroelectric dead layer results in improved switching with electric-field cycling. The description of ferroelectric hysteresis is applied to HfO2-based ferroelectrics where the longstanding debate concerning wake-up cycling and antiferroelectric properties can be shown to be driven by depolarization mechanisms. The calculated hystereses combine quantitative accuracy, simplicity, and compatibility to multiple microscopic interpretations that show depolarization fields can be the driving force of a field-induced first-order phase transition underlying antiferroelectric behavior.
AbstractList Antiferroelectricity and wake-up observed in thin hafnium-oxide-based ferroelectrics are examined from the viewpoint of a macroscopic, quantitative model incorporating depolarization effects. Depolarization fields arising from finite screening, a nonferroelectric interface, and a ferroelectric/paraelectric phase mixture are shown to directly impact the switching properties and shape of ferroelectric hysteresis. Charge injection and trapping are used to demonstrate how the progressive stressing of a ferroelectric dead layer results in improved switching with electric-field cycling. The description of ferroelectric hysteresis is applied to HfO2-based ferroelectrics where the longstanding debate concerning wake-up cycling and antiferroelectric properties can be shown to be driven by depolarization mechanisms. The calculated hystereses combine quantitative accuracy, simplicity, and compatibility to multiple microscopic interpretations that show depolarization fields can be the driving force of a field-induced first-order phase transition underlying antiferroelectric behavior.
Author Lomenzo, Patrick D
Schroeder, Uwe
Richter, Claudia
Mikolajick, Thomas
AuthorAffiliation TU Dresden
Chair of Nanoelectronic Materials
AuthorAffiliation_xml – name: TU Dresden
– name: Chair of Nanoelectronic Materials
Author_xml – sequence: 1
  givenname: Patrick D
  orcidid: 0000-0001-8208-3871
  surname: Lomenzo
  fullname: Lomenzo, Patrick D
  email: patrick.lomenzo@namlab.com
– sequence: 2
  givenname: Claudia
  surname: Richter
  fullname: Richter, Claudia
– sequence: 3
  givenname: Thomas
  surname: Mikolajick
  fullname: Mikolajick, Thomas
  organization: TU Dresden
– sequence: 4
  givenname: Uwe
  orcidid: 0000-0002-6824-2386
  surname: Schroeder
  fullname: Schroeder, Uwe
BookMark eNp9kEFLAzEQhYNUsNaeveYu2yabbHf3WFq3FQpeLB6X2WQiqdukJKugv97V9qCCnmbgvW-Y9y7JwHmHhFxzNuEs5VNQEbDdT5hijBfyjAzTmciTGedi8G2_IOMYd4z1SCrTjA_JdokH30Kw79BZ7yhEugz21bonWvmgkFpH566zBkPw2KLqglV0DcZZoOA0rX4Ij_CMyfZwRc4NtBHHpzki2-r2YbFONveru8V8k4CQokvUTMtGi0wLWRYlpkJqLHOuczCNVIYpnnFMeQMszwspWNb_XJhGZIXQrJRGjMj0eFcFH2NAUx-C3UN4qzmrP4upT8XUp2J6IvtFKNt9Re8C2PYf7ubI9UK98y_B9bn-dH8A-f16Tg
CitedBy_id crossref_primary_10_3390_electronics13061021
crossref_primary_10_1002_pssa_202000281
crossref_primary_10_1021_acsaem_0c00987
crossref_primary_10_1002_smll_202200133
crossref_primary_10_1021_acsaelm_1c00330
crossref_primary_10_1021_acsaelm_1c00171
crossref_primary_10_1109_TED_2024_3408778
crossref_primary_10_7498_aps_70_20210115
crossref_primary_10_1063_5_0083656
crossref_primary_10_1021_acsaelm_0c00680
crossref_primary_10_1002_admi_202202151
crossref_primary_10_1021_acsaelm_4c01025
crossref_primary_10_1021_acsami_3c08163
crossref_primary_10_1063_5_0021007
crossref_primary_10_1063_5_0100562
crossref_primary_10_1063_5_0129546
crossref_primary_10_1109_LED_2024_3439543
crossref_primary_10_1021_acsami_0c07809
crossref_primary_10_1002_aelm_202100931
crossref_primary_10_1016_j_fmre_2023_02_010
crossref_primary_10_1021_acsaelm_4c01988
crossref_primary_10_1007_s10854_024_12033_5
crossref_primary_10_1063_5_0238783
crossref_primary_10_1002_admi_202202232
crossref_primary_10_1002_pssr_202000589
crossref_primary_10_1038_s41467_024_44690_9
crossref_primary_10_1109_TED_2023_3254509
crossref_primary_10_1038_s41578_022_00431_2
crossref_primary_10_1039_D0TC01695K
crossref_primary_10_1063_5_0238806
crossref_primary_10_1063_5_0062789
crossref_primary_10_1063_5_0026136
crossref_primary_10_1002_aelm_202400567
crossref_primary_10_1002_aelm_202100485
crossref_primary_10_1063_5_0018199
crossref_primary_10_1063_5_0232399
crossref_primary_10_35848_1347_4065_adb163
crossref_primary_10_1103_PhysRevApplied_15_034048
crossref_primary_10_3389_fnano_2022_939822
crossref_primary_10_1002_pssr_202200168
crossref_primary_10_1557_s43578_021_00415_y
crossref_primary_10_1039_D1QI00167A
crossref_primary_10_31613_ceramist_2023_26_1_09
crossref_primary_10_1002_apxr_202400194
crossref_primary_10_1063_5_0035714
crossref_primary_10_1021_acsaelm_2c01615
crossref_primary_10_1038_s41563_023_01619_9
crossref_primary_10_1039_D2NR02678C
crossref_primary_10_1109_TUFFC_2023_3311328
crossref_primary_10_1063_5_0053185
crossref_primary_10_1016_j_jmat_2024_100968
crossref_primary_10_1021_acsami_4c15934
crossref_primary_10_1021_acsomega_2c06237
crossref_primary_10_1063_5_0119871
crossref_primary_10_1002_adfm_202311825
crossref_primary_10_1021_acsami_4c06143
crossref_primary_10_26599_JAC_2024_9220852
crossref_primary_10_1002_aelm_202100556
crossref_primary_10_1002_adfm_202201737
crossref_primary_10_1021_acsaelm_0c00304
crossref_primary_10_1016_j_jeurceramsoc_2024_02_016
crossref_primary_10_1038_s41586_022_04425_6
crossref_primary_10_1088_1361_6528_ad6871
crossref_primary_10_1109_TED_2024_3379473
crossref_primary_10_1063_5_0035687
crossref_primary_10_1088_1361_6528_acb945
crossref_primary_10_1016_j_mssp_2023_107553
crossref_primary_10_1039_D1NR01260F
crossref_primary_10_1038_s41467_022_28860_1
crossref_primary_10_1038_s42005_022_00951_x
crossref_primary_10_3390_condmat6010007
crossref_primary_10_1002_pssr_202100012
crossref_primary_10_1021_acsami_2c18313
crossref_primary_10_1063_5_0146593
crossref_primary_10_1063_5_0051329
crossref_primary_10_1088_1361_6463_abbc98
crossref_primary_10_1021_acsami_1c22426
crossref_primary_10_1109_TED_2022_3186869
crossref_primary_10_1002_adfm_202303636
crossref_primary_10_1021_acsaelm_3c00181
crossref_primary_10_1063_5_0147124
Cites_doi 10.1063/1.346948
10.1016/0038-1098(72)91180-5
10.1103/PhysRevB.82.014109
10.1002/aelm.201600173
10.1002/9783527654864.ch7
10.1103/PhysRev.91.513
10.1103/PhysRevB.90.140103
10.1080/00150197808236770
10.1103/PhysRevB.90.064111
10.1063/1.119781
10.1016/j.tsf.2016.07.009
10.1063/1.5128502
10.1063/1.114064
10.1016/j.pmatsci.2014.01.002
10.1109/NVMTS47818.2019.9043368
10.1063/1.126786
10.1038/srep04115
10.1021/acsami.9b11146
10.1103/PhysRev.35.269
10.1103/RevModPhys.77.1083
10.1063/1.5055258
10.1021/acsami.8b13173
10.1002/adma.200901756
10.1063/1.1308276
10.1016/j.nanoen.2014.09.025
10.1063/1.1381542
10.1063/1.2786013
10.1109/IRPS.2018.8353676
10.1063/1.5037185
10.1063/1.115531
10.1063/1.3490249
10.1002/aelm.201700131
10.1063/1.5023390
10.1002/admi.201701258
10.1103/PhysRev.83.1078
10.1063/1.4916715
10.1016/0022-3697(86)90042-9
10.1038/nature05148
10.1021/nl302049k
10.1063/1.4829064
10.1063/1.4902396
10.1109/NANO.2018.8626275
10.1063/1.4983031
10.1063/1.5129318
10.1021/am504837r
10.1063/1.4985297
10.1063/1.5019308
10.1109/TED.2019.2930749
10.1016/j.actamat.2018.12.008
10.1109/IEDM.2016.7838398
10.1039/C6CP07501K
10.1063/1.364239
10.1063/1.4811483
10.1063/1.1805190
10.1063/1.121554
10.1038/s41928-019-0305-3
10.1021/acsami.5b05773
10.1088/1361-6633/ab49d6
10.1063/1.5017094
10.1063/1.1662770
10.1038/s41467-019-10530-4
10.1109/TED.2013.2283465
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acsaelm.0c00184
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2637-6113
EndPage 1595
ExternalDocumentID 10_1021_acsaelm_0c00184
b799718777
GroupedDBID ABUCX
ACS
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a343t-c6d4bd35d34989e234de971d7afb4cf0c151e21ba077843054258fb3583d094f3
IEDL.DBID ACS
ISSN 2637-6113
IngestDate Tue Jul 01 00:48:46 EDT 2025
Thu Apr 24 22:54:26 EDT 2025
Thu Aug 27 13:41:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords dead layer
wake-up
size effect
ferroelectric HfO2
antiferroelectricity
depolarization
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a343t-c6d4bd35d34989e234de971d7afb4cf0c151e21ba077843054258fb3583d094f3
ORCID 0000-0001-8208-3871
0000-0002-6824-2386
PageCount 13
ParticipantIDs crossref_primary_10_1021_acsaelm_0c00184
crossref_citationtrail_10_1021_acsaelm_0c00184
acs_journals_10_1021_acsaelm_0c00184
ProviderPackageCode ACS
VG9
ABUCX
VF5
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-23
PublicationDateYYYYMMDD 2020-06-23
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-23
  day: 23
PublicationDecade 2020
PublicationTitle ACS applied electronic materials
PublicationTitleAlternate ACS Appl. Electron. Mater
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref25/cit25
  doi: 10.1063/1.346948
– ident: ref39/cit39
  doi: 10.1016/0038-1098(72)91180-5
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.82.014109
– ident: ref37/cit37
  doi: 10.1002/aelm.201600173
– ident: ref45/cit45
  doi: 10.1002/9783527654864.ch7
– ident: ref33/cit33
  doi: 10.1103/PhysRev.91.513
– ident: ref54/cit54
  doi: 10.1103/PhysRevB.90.140103
– ident: ref3/cit3
  doi: 10.1080/00150197808236770
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.90.064111
– ident: ref34/cit34
  doi: 10.1063/1.119781
– ident: ref57/cit57
  doi: 10.1016/j.tsf.2016.07.009
– ident: ref58/cit58
  doi: 10.1063/1.5128502
– ident: ref30/cit30
  doi: 10.1063/1.114064
– ident: ref44/cit44
  doi: 10.1016/j.pmatsci.2014.01.002
– ident: ref52/cit52
  doi: 10.1109/NVMTS47818.2019.9043368
– ident: ref23/cit23
  doi: 10.1063/1.126786
– ident: ref61/cit61
  doi: 10.1038/srep04115
– ident: ref41/cit41
  doi: 10.1021/acsami.9b11146
– ident: ref1/cit1
  doi: 10.1103/PhysRev.35.269
– ident: ref32/cit32
  doi: 10.1103/RevModPhys.77.1083
– ident: ref59/cit59
  doi: 10.1063/1.5055258
– ident: ref50/cit50
  doi: 10.1021/acsami.8b13173
– ident: ref35/cit35
  doi: 10.1002/adma.200901756
– ident: ref27/cit27
  doi: 10.1063/1.1308276
– ident: ref12/cit12
  doi: 10.1016/j.nanoen.2014.09.025
– ident: ref24/cit24
  doi: 10.1063/1.1381542
– ident: ref5/cit5
  doi: 10.1063/1.2786013
– ident: ref7/cit7
  doi: 10.1109/IRPS.2018.8353676
– ident: ref51/cit51
  doi: 10.1063/1.5037185
– ident: ref31/cit31
  doi: 10.1063/1.115531
– ident: ref29/cit29
  doi: 10.1063/1.3490249
– ident: ref56/cit56
  doi: 10.1002/aelm.201700131
– ident: ref13/cit13
  doi: 10.1063/1.5023390
– ident: ref47/cit47
  doi: 10.1002/admi.201701258
– ident: ref43/cit43
  doi: 10.1103/PhysRev.83.1078
– ident: ref6/cit6
  doi: 10.1063/1.4916715
– ident: ref28/cit28
  doi: 10.1016/0022-3697(86)90042-9
– ident: ref36/cit36
  doi: 10.1038/nature05148
– ident: ref21/cit21
  doi: 10.1021/nl302049k
– ident: ref20/cit20
  doi: 10.1063/1.4829064
– ident: ref2/cit2
  doi: 10.1063/1.4902396
– ident: ref10/cit10
  doi: 10.1109/NANO.2018.8626275
– ident: ref9/cit9
  doi: 10.1063/1.4983031
– ident: ref60/cit60
  doi: 10.1063/1.5129318
– ident: ref22/cit22
  doi: 10.1021/am504837r
– ident: ref55/cit55
  doi: 10.1063/1.4985297
– ident: ref14/cit14
  doi: 10.1063/1.5019308
– ident: ref17/cit17
  doi: 10.1109/TED.2019.2930749
– ident: ref62/cit62
  doi: 10.1016/j.actamat.2018.12.008
– ident: ref16/cit16
  doi: 10.1109/IEDM.2016.7838398
– ident: ref42/cit42
  doi: 10.1039/C6CP07501K
– ident: ref26/cit26
  doi: 10.1063/1.364239
– ident: ref46/cit46
  doi: 10.1063/1.4811483
– ident: ref40/cit40
  doi: 10.1063/1.1805190
– ident: ref4/cit4
  doi: 10.1063/1.121554
– ident: ref11/cit11
  doi: 10.1038/s41928-019-0305-3
– ident: ref19/cit19
  doi: 10.1021/acsami.5b05773
– ident: ref8/cit8
  doi: 10.1088/1361-6633/ab49d6
– ident: ref18/cit18
  doi: 10.1063/1.5017094
– ident: ref38/cit38
  doi: 10.1063/1.1662770
– ident: ref48/cit48
  doi: 10.1038/s41467-019-10530-4
– ident: ref15/cit15
  doi: 10.1109/TED.2013.2283465
SSID ssj0002124251
Score 2.4521058
Snippet Antiferroelectricity and wake-up observed in thin hafnium-oxide-based ferroelectrics are examined from the viewpoint of a macroscopic, quantitative model...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 1583
Title Depolarization as Driving Force in Antiferroelectric Hafnia and Ferroelectric Wake-Up
URI http://dx.doi.org/10.1021/acsaelm.0c00184
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgLCx8CBDf8tCBxSGxncQdq5aoQoIFIrpF9sWRqpa0StKFX4-dhFKoKpiTi6zTOfeeffcOoS5lIFKfcxIKAMJDkER52iMiCxkDDYEUtsH56TkYxfxx7I-_xaJ_3-BT715CKfXs3XHBDpDju2iPBgZkWxQ0eFkdp5g_sIk-S69oUDe-eWwl5LPxDZuJoFzLRGspJTpsirHKWonQVpJMnWWlHPjY1Gn8e7VH6KAFlrjfRMIx2tH5CYqHBl8b7to2W2JZ4mExsWcIOJoXoPEkx31bLqSLYt5MxJkAHsksn0gs8xRHPx68yakm8eIUxdHD62BE2kEKRDLOKgJBylXK_JTxnuhpyniqe6GXhjJTHDIXTNrX1FPSDUNhNcCMK0WmmC9Yauhfxs5QJ5_n-hxhoF4AgipjJbhBW0pIQ4Kk72tDbWTmXqCucUHSboQyqe-4qZe0fklav1wg58v3CbRi5HYmxmy7wd3KYNHocGx79fJ_S7hC-9RyZzcglF2jTlUs9Y0BGJW6rUPrEzelyxg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHODCQ4B4kwMHLhltkrbZcdqYxlNCMMGtStxUqjY61G4Xfj1OV8ZLSHBt68hy3dpfYn8m5IQLUEkgJYsUAJMRaGZ86zOVRkKAhVAr1-B8cxv2B_LyKXhaIN57LwwqUeJKZXWI_8Eu4J_hNW1Hz00P3Bw5uUiWMBXhroiv3bmf76rgjxid0KEsHlb9b76Y8_n8WMMFJCg_BaRPkaW3Ru7mOlUFJcPmdGKa8PqNrvE_Sq-T1TrNpO2ZX2yQBZtvkkEXs21EsnXrJdUl7RaZ21GgvXEBlmY5bbviIVsU49l8nAxoX6d5pqnOE9r7cuNRDy0bvGyRQe_8odNn9VgFpoUUEwZhIk0igkTIlmpZLmRiW5GfRDo1ElIPMAmw3DfaiyLlGMHQoio1IlAiQTCYim3SyMe53SEUuB-C4gallMTcyyiNkEgHgUWgo1Nvl5ygCeL6syjj6sSb-3Ftl7i2yy5pvr-CGGpqcjchY_S7wOlc4GXGyvHbo3t_U-GYLPcfbq7j64vbq32ywh2q9kLGxQFpTIqpPcTUY2KOKm97A2Jf03k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66gnjxgYpvc_DgJWubpG32uLiW9YmgRW8lmaSwrHaXdvfirzfpxsUHgl7bThgmk858mRdCJ5SB0BHnJBEAhCcgiQpNSESRMAYGYilcgfPtXdzP-NVz9OyLwlwtjGWitivVTRDfneqxLnyHgfDMPpfm5bUdgJslxxfRkgvauUS-7vnD_GbF_oytIjqkReOmBi5k854-P9ZwRgnqT0bpk3VJ11A256tJKhm2pxPVhrdvLRv_y_g6WvXuJu7O9GMDLZhyE2U963VbROtLMLGsca8auJsFnI4qMHhQ4q5LIjJVNZrNyRkA7suiHEgsS43TLy-e5NCQbLyFsvTi8bxP_HgFIhlnEwKx5kqzSDPeER1DGdemk4Q6kYXiUARgnQFDQyWDJBGuM5iVqigUiwTTFhQWbBu1ylFpdhAGGsYgqLJUglsfTAlpoZGMImMBjyyCXXRiRZD741HnTeSbhrmXS-7lsovaH9uQg29R7iZlvPxOcDonGM-6c_z26d7fWDhGy_e9NL-5vLveRyvUgesgJpQdoNakmppD64FM1FGjcO9h_NX8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depolarization+as+Driving+Force+in+Antiferroelectric+Hafnia+and+Ferroelectric+Wake-Up&rft.jtitle=ACS+applied+electronic+materials&rft.au=Lomenzo%2C+Patrick+D&rft.au=Richter%2C+Claudia&rft.au=Mikolajick%2C+Thomas&rft.au=Schroeder%2C+Uwe&rft.date=2020-06-23&rft.pub=American+Chemical+Society&rft.issn=2637-6113&rft.eissn=2637-6113&rft.volume=2&rft.issue=6&rft.spage=1583&rft.epage=1595&rft_id=info:doi/10.1021%2Facsaelm.0c00184&rft.externalDocID=b799718777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6113&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6113&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6113&client=summon