Nanoparticle Traffic on Helical Tracks: Thermophoretic Mass Transport through Carbon Nanotubes
Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move “on tracks” in a pred...
Saved in:
Published in | Nano letters Vol. 6; no. 9; pp. 1910 - 1917 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.09.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move “on tracks” in a predictable fashion as they follow unique helical orbits depending on the geometry of the carbon nanotubes. These findings markedly advance our knowledge of mass transport mechanisms relevant to nanoscale applications. |
---|---|
AbstractList | Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move "on tracks" in a predictable fashion as they follow unique helical orbits depending on the geometry of the carbon nanotubes. These findings markedly advance our knowledge of mass transport mechanisms relevant to nanoscale applications. Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move "on tracks" in a predictable fashion as they follow unique helical orbits depending on the geometry of the carbon nanotubes. These findings markedly advance our knowledge of mass transport mechanisms relevant to nanoscale applications.Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move "on tracks" in a predictable fashion as they follow unique helical orbits depending on the geometry of the carbon nanotubes. These findings markedly advance our knowledge of mass transport mechanisms relevant to nanoscale applications. |
Author | Arcidiacono, Salvatore Schoen, Philipp A. E Koumoutsakos, Petros Poulikakos, Dimos Walther, Jens H |
Author_xml | – sequence: 1 givenname: Philipp A. E surname: Schoen fullname: Schoen, Philipp A. E – sequence: 2 givenname: Jens H surname: Walther fullname: Walther, Jens H – sequence: 3 givenname: Salvatore surname: Arcidiacono fullname: Arcidiacono, Salvatore – sequence: 4 givenname: Dimos surname: Poulikakos fullname: Poulikakos, Dimos – sequence: 5 givenname: Petros surname: Koumoutsakos fullname: Koumoutsakos, Petros |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18120979$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16968000$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1OGzEUhS0EakjaBS-AZgNSFyH2TMZjs0NR21Si7SZdW3f8QwwTe7A9C3Zs-5o8CY6SplKVle3r7xzde-4YnTrvNEIXBN8QXJKZ6zDFnJXhBJ2TusJTynl5eriz-QiNY3zEGPOqxh_QiFBOWX6eI_gJzvcQkpWdLlYBjLGy8K5Y6s5K6LYl-RRv317_FKu1Dhvfr33QGS9-QIzbbxd7H1KR1sEPD-tiAaHN-q1vGlodP6IzA13Un_bnBP3--mW1WE7vf337vri7n0I1r9I0t0NNDZqQeat0SSnlquY1lbIpDVWykbViONdqyVVTK9myyhilCWWqgYpVE3S98-2Dfx50TGJjo9RdB077IQrKGK1oQzN4uQeHdqOV6IPdQHgRf0PJwNUegJgjMHlEaeM_jpES84ZnbrbjZPAxBm2EtAmS9S4FsJ0gWGzXIw7ryYrP_ykOpkfYfRcgo3j0Q3A5vSPcO7i2nRE |
CitedBy_id | crossref_primary_10_1007_s11708_010_0111_0 crossref_primary_10_1021_jacs_4c05902 crossref_primary_10_1088_1361_6528_aa6290 crossref_primary_10_1016_j_apmt_2019_100520 crossref_primary_10_1039_C9NR10108J crossref_primary_10_1039_D2RA01846B crossref_primary_10_1080_08927022_2012_659181 crossref_primary_10_1021_acsanm_3c00816 crossref_primary_10_1039_C8CP05521A crossref_primary_10_3389_fphy_2022_823284 crossref_primary_10_1063_5_0106866 crossref_primary_10_1103_PhysRevApplied_22_054066 crossref_primary_10_1039_C7CP05749K crossref_primary_10_1021_acs_nanolett_5b04014 crossref_primary_10_1088_0957_4484_25_50_505701 crossref_primary_10_1109_TMECH_2011_2165078 crossref_primary_10_1021_acs_jpcc_9b09197 crossref_primary_10_1088_0957_4484_20_49_495503 crossref_primary_10_1021_acs_jpclett_8b00703 crossref_primary_10_1039_C7NR07226K crossref_primary_10_1021_acs_jpcc_5b02235 crossref_primary_10_18654_1000_0569_2020_01_11 crossref_primary_10_1088_1361_6528_aab3a3 crossref_primary_10_1088_0957_4484_27_15_155501 crossref_primary_10_1021_acs_nanolett_6b02815 crossref_primary_10_1088_0957_4484_22_48_485702 crossref_primary_10_1021_acsnano_7b04177 crossref_primary_10_1103_PhysRevLett_125_176802 crossref_primary_10_1016_j_jmps_2022_104871 crossref_primary_10_1063_1_3281642 crossref_primary_10_1021_acs_jpcc_9b04131 crossref_primary_10_1021_cr200244h crossref_primary_10_1063_1_3276546 crossref_primary_10_1115_1_4052152 crossref_primary_10_1016_j_apm_2020_12_037 crossref_primary_10_1016_j_commatsci_2024_113620 crossref_primary_10_1021_ct400963d crossref_primary_10_1039_D2CP04093J crossref_primary_10_1103_PhysRevB_78_233405 crossref_primary_10_1088_0957_4484_24_50_505504 crossref_primary_10_1016_j_jmps_2012_04_013 crossref_primary_10_1021_jp311028e crossref_primary_10_1155_2019_8263843 crossref_primary_10_1016_j_jsv_2009_12_017 crossref_primary_10_1021_jp900862t crossref_primary_10_1080_08927022_2020_1838511 crossref_primary_10_1039_D0CP00048E crossref_primary_10_1115_1_4005640 crossref_primary_10_1007_s00894_012_1403_6 crossref_primary_10_1016_j_commatsci_2021_110305 crossref_primary_10_1063_1_4793533 crossref_primary_10_1007_s00707_015_1367_6 crossref_primary_10_1115_1_4031085 crossref_primary_10_1016_j_commatsci_2018_08_014 crossref_primary_10_1016_j_cplett_2010_07_081 crossref_primary_10_1186_1556_276X_7_154 crossref_primary_10_1073_pnas_2220500120 crossref_primary_10_1007_s00707_010_0362_1 crossref_primary_10_1016_j_ijthermalsci_2015_08_004 crossref_primary_10_1021_jz201614m crossref_primary_10_1134_S106378342104020X crossref_primary_10_1063_1_5046059 crossref_primary_10_1139_cjp_2017_0139 crossref_primary_10_1103_PhysRevLett_114_015504 crossref_primary_10_1021_acsanm_3c03623 crossref_primary_10_1088_1674_1056_ad14ff crossref_primary_10_1115_1_4043142 crossref_primary_10_1021_nl504236g crossref_primary_10_1088_0957_4484_20_5_055708 crossref_primary_10_1103_PhysRevE_83_042601 crossref_primary_10_1016_j_commatsci_2023_112725 crossref_primary_10_1021_ja403722t crossref_primary_10_3390_molecules26175199 crossref_primary_10_1103_PhysRevB_100_035430 crossref_primary_10_1039_C7NR07971K crossref_primary_10_1073_pnas_1708098114 crossref_primary_10_1115_1_4064269 crossref_primary_10_4028_p_wj60p1 crossref_primary_10_1021_acs_nanolett_4c02106 crossref_primary_10_1063_1_2748367 crossref_primary_10_1063_1_4922713 crossref_primary_10_1103_PhysRevB_108_115410 crossref_primary_10_1007_s40997_023_00676_4 crossref_primary_10_1021_acs_jpcc_9b10706 crossref_primary_10_1021_ja105712w crossref_primary_10_1021_acs_jpcc_1c08146 crossref_primary_10_1016_j_physleta_2015_03_001 crossref_primary_10_1126_science_1155559 crossref_primary_10_1021_acs_jpcb_3c03132 |
Cites_doi | 10.1103/PhysRevLett.82.3835 10.1017/S0022112080001905 10.1038/438044a 10.1002/9783527618040 10.1021/nl0503126 10.1016/j.cplett.2003.12.049 10.1016/0095-8522(62)90051-X 10.1103/PhysRevLett.94.209701 10.1038/416495a 10.1126/science.283.5402.661 10.1103/PhysRevLett.94.105502 10.1021/jp056911i 10.1080/00268970500108403 10.1063/1.2151173 10.1080/01418618808205184 10.1103/PhysRevLett.90.214501 10.1103/PhysRevLett.89.185901 10.1038/35102535 10.1038/361333a0 10.1126/science.1126298 10.1038/386162a0 10.1021/nl051915k 10.1002/smll.200400009 10.1126/science.1124594 10.1073/pnas.072089599 10.1021/jp011344u 10.1038/nature02496 10.1103/PhysRevB.68.035425 10.1016/S0009-2614(00)00971-4 10.1016/j.ssc.2003.12.033 |
ContentType | Journal Article |
Copyright | Copyright © 2006 American Chemical Society 2007 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2006 American Chemical Society – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/nl060982r |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 1917 |
ExternalDocumentID | 16968000 18120979 10_1021_nl060982r d09960508 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G 6P2 IQODW AAYOK CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-a343t-8006f5ae114bde26669d5956cc72f6dc7c5d809d55c9d75dcb83ffde168d7a383 |
IEDL.DBID | ACS |
ISSN | 1530-6984 |
IngestDate | Fri Jul 11 12:19:14 EDT 2025 Wed Feb 19 01:42:55 EST 2025 Mon Jul 21 09:15:56 EDT 2025 Tue Jul 01 00:42:20 EDT 2025 Thu Apr 24 23:03:00 EDT 2025 Thu Aug 27 13:42:05 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Nanoparticles Gold Inorganic compounds Transition elements Temperature gradients Digital simulation Molecular dynamics method Theoretical study Carbon nanotubes Nanostructures Diffusion Nanostructured materials |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a343t-8006f5ae114bde26669d5956cc72f6dc7c5d809d55c9d75dcb83ffde168d7a383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 16968000 |
PQID | 68863676 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68863676 pubmed_primary_16968000 pascalfrancis_primary_18120979 crossref_citationtrail_10_1021_nl060982r crossref_primary_10_1021_nl060982r acs_journals_10_1021_nl060982r |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-09-00 |
PublicationDateYYYYMMDD | 2006-09-01 |
PublicationDate_xml | – month: 09 year: 2006 text: 2006-09-00 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2006 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kwon Y.-K. (nl060982rb00040/nl060982rb00040_1) 2004; 92 Walther J. H. (nl060982rb00026/nl060982rb00026_1) 2001; 105 Lee J. (nl060982rb00035/nl060982rb00035_1) 2005; 40 Regan B. C. (nl060982rb00005/nl060982rb00005_1) 2004; 428 Talbot L. (nl060982rb00038/nl060982rb00038_1) 1980; 101 Skoulidas A. I. (nl060982rb00008/nl060982rb00008_1) 2006; 124 Maxwell J. C. (nl060982rb00037/nl060982rb00037_1) 1879; 170 Schelling P. K. (nl060982rb00041/nl060982rb00041_1) 2003; 68 Chung S.-W. (nl060982rb00014/nl060982rb00014_1) 2005; 1 Berendsen H. J. C. (nl060982rb00029/nl060982rb00029_1) 1984; 81 Bhatia S. (nl060982rb00006/nl060982rb00006_1) 2005; 31 Lozovik Y. E. (nl060982rb00034/nl060982rb00034_1) 2002; 44 Gu Z. (nl060982rb00022/nl060982rb00022_1) 2004; 20 Lee L. (nl060982rb00021/nl060982rb00021_1) 2000; 9 Ercolessi F. (nl060982rb00027/nl060982rb00027_1) 1988; 58 Brock J. R. (nl060982rb00036/nl060982rb00036_1) 1962; 17 Skoulidas A. I. (nl060982rb00009/nl060982rb00009_1) 2002; 89 Lozovik Y. E. (nl060982rb00033/nl060982rb00033_1) 2000; 328 MacGillivary L. R. (nl060982rb00020/nl060982rb00020_1) 1997; 389 nl060982rb00032/nl060982rb00032_1 Luedtke W. D. (nl060982rb00028/nl060982rb00028_1) 1999; 82 Majumdar M. (nl060982rb00002/nl060982rb00002_1) 2005; 438 Vauthey S. (nl060982rb00016/nl060982rb00016_1) 2002; 99 Terfort A. (nl060982rb00015/nl060982rb00015_1) 1997; 386 Hwang H. J. (nl060982rb00025/nl060982rb00025_1) 2004; 129 Yoshida Y. (nl060982rb00042/nl060982rb00042_1) 2002; 19 Chen H. (nl060982rb00007/nl060982rb00007_1) 2006; 110 Ajayan P. M. (nl060982rb00024/nl060982rb00024_1) 1993; 361 Keblinski P. (nl060982rb00039/nl060982rb00039_1) 2005; 94 Raut V. P. (nl060982rb00023/nl060982rb00023_1) 2005; 21 Seo H. W. (nl060982rb00019/nl060982rb00019_1) 2005; 81 Zimmerli U. (nl060982rb00004/nl060982rb00004_1) 2005; 5 Sun L. (nl060982rb00011/nl060982rb00011_1) 2006; 312 Holt J. K. (nl060982rb00010/nl060982rb00010_1) 2006; 312 Wei B. Q. (nl060982rb00012/nl060982rb00012_1) 2002; 416 Choi Y. S. (nl060982rb00018/nl060982rb00018_1) 2001; 371 Supple S. (nl060982rb00003/nl060982rb00003_1) 2003; 90 Hummer G. (nl060982rb00001/nl060982rb00001_1) 2001; 414 Piner R. D. (nl060982rb00013/nl060982rb00013_1) 1999; 283 Belikov A. V. (nl060982rb00031/nl060982rb00031_1) 2004; 385 Shirai Y. (nl060982rb00017/nl060982rb00017_1) 2005; 5 Arcidiacono S. (nl060982rb00030/nl060982rb00030_1) 2005; 94 |
References_xml | – volume: 82 start-page: 3838 year: 1999 ident: nl060982rb00028/nl060982rb00028_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.3835 – volume: 101 start-page: 758 year: 1980 ident: nl060982rb00038/nl060982rb00038_1 publication-title: J. Fluid. Mech. doi: 10.1017/S0022112080001905 – volume: 438 start-page: 44 year: 2005 ident: nl060982rb00002/nl060982rb00002_1 publication-title: J. Nature doi: 10.1038/438044a – ident: nl060982rb00032/nl060982rb00032_1 doi: 10.1002/9783527618040 – volume: 5 start-page: 1022 year: 2005 ident: nl060982rb00004/nl060982rb00004_1 publication-title: Nano Lett. doi: 10.1021/nl0503126 – volume: 385 start-page: 78 year: 2004 ident: nl060982rb00031/nl060982rb00031_1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2003.12.049 – volume: 40 start-page: 2171 year: 2005 ident: nl060982rb00035/nl060982rb00035_1 publication-title: J. Mater. Sci. – volume: 92 start-page: 1 year: 2004 ident: nl060982rb00040/nl060982rb00040_1 publication-title: Phys. Rev. Lett. – volume: 81 start-page: 3690 year: 1984 ident: nl060982rb00029/nl060982rb00029_1 publication-title: J. Chem. Phys. – volume: 17 start-page: 768 year: 1962 ident: nl060982rb00036/nl060982rb00036_1 publication-title: J. Colloid Sci. doi: 10.1016/0095-8522(62)90051-X – volume: 94 start-page: 209701 year: 2005 ident: nl060982rb00039/nl060982rb00039_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.209701 – volume: 416 start-page: 495 year: 2002 ident: nl060982rb00012/nl060982rb00012_1 publication-title: Nature doi: 10.1038/416495a – volume: 283 start-page: 663 year: 1999 ident: nl060982rb00013/nl060982rb00013_1 publication-title: Science doi: 10.1126/science.283.5402.661 – volume: 21 start-page: 1639 year: 2005 ident: nl060982rb00023/nl060982rb00023_1 publication-title: Langmuir – volume: 81 start-page: 89 year: 2005 ident: nl060982rb00019/nl060982rb00019_1 publication-title: Microlelectron. Eng. – volume: 19 start-page: 46 year: 2002 ident: nl060982rb00042/nl060982rb00042_1 publication-title: Rigaku J. – volume: 94 start-page: 105502 year: 2005 ident: nl060982rb00030/nl060982rb00030_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.105502 – volume: 110 start-page: 1971 year: 2006 ident: nl060982rb00007/nl060982rb00007_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp056911i – volume: 31 start-page: 643 year: 2005 ident: nl060982rb00006/nl060982rb00006_1 publication-title: Mol. Sim. doi: 10.1080/00268970500108403 – volume: 124 start-page: 054708 year: 2006 ident: nl060982rb00008/nl060982rb00008_1 publication-title: J. Chem. Phys. doi: 10.1063/1.2151173 – volume: 170 start-page: 256 year: 1879 ident: nl060982rb00037/nl060982rb00037_1 publication-title: Philos. Trans. R. Soc. – volume: 58 start-page: 226 year: 1988 ident: nl060982rb00027/nl060982rb00027_1 publication-title: Philos. Mag. A doi: 10.1080/01418618808205184 – volume: 90 start-page: 214501 year: 2003 ident: nl060982rb00003/nl060982rb00003_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.214501 – volume: 89 start-page: 185901 year: 2002 ident: nl060982rb00009/nl060982rb00009_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.185901 – volume: 414 start-page: 190 year: 2001 ident: nl060982rb00001/nl060982rb00001_1 publication-title: Nature doi: 10.1038/35102535 – volume: 44 start-page: 194 year: 2002 ident: nl060982rb00034/nl060982rb00034_1 publication-title: Phys. Solid State – volume: 371 start-page: 410 year: 2001 ident: nl060982rb00018/nl060982rb00018_1 publication-title: Mol. Cryst. Liq. Cryst. – volume: 361 start-page: 334 year: 1993 ident: nl060982rb00024/nl060982rb00024_1 publication-title: Nature doi: 10.1038/361333a0 – volume: 312 start-page: 1034 year: 2006 ident: nl060982rb00010/nl060982rb00010_1 publication-title: Science doi: 10.1126/science.1126298 – volume: 386 start-page: 164 year: 1997 ident: nl060982rb00015/nl060982rb00015_1 publication-title: Nature doi: 10.1038/386162a0 – volume: 5 start-page: 2330 year: 2005 ident: nl060982rb00017/nl060982rb00017_1 publication-title: Nano Lett. doi: 10.1021/nl051915k – volume: 1 start-page: 69 year: 2005 ident: nl060982rb00014/nl060982rb00014_1 publication-title: Small doi: 10.1002/smll.200400009 – volume: 312 start-page: 1199 year: 2006 ident: nl060982rb00011/nl060982rb00011_1 publication-title: Science doi: 10.1126/science.1124594 – volume: 99 start-page: 5360 year: 2002 ident: nl060982rb00016/nl060982rb00016_1 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.072089599 – volume: 105 start-page: 9987 year: 2001 ident: nl060982rb00026/nl060982rb00026_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp011344u – volume: 428 start-page: 927 year: 2004 ident: nl060982rb00005/nl060982rb00005_1 publication-title: Nature doi: 10.1038/nature02496 – volume: 389 start-page: 472 year: 1997 ident: nl060982rb00020/nl060982rb00020_1 publication-title: Nature – volume: 68 start-page: 035425 year: 2003 ident: nl060982rb00041/nl060982rb00041_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.035425 – volume: 328 start-page: 362 year: 2000 ident: nl060982rb00033/nl060982rb00033_1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00971-4 – volume: 9 start-page: 180 year: 2000 ident: nl060982rb00021/nl060982rb00021_1 publication-title: J. Microelectromech. Syst. – volume: 20 start-page: 11311 year: 2004 ident: nl060982rb00022/nl060982rb00022_1 publication-title: Langmuir – volume: 129 start-page: 690 year: 2004 ident: nl060982rb00025/nl060982rb00025_1 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2003.12.033 |
SSID | ssj0009350 |
Score | 2.2199192 |
Snippet | Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1910 |
SubjectTerms | Computer Simulation Cross-disciplinary physics: materials science; rheology Diffusion Exact sciences and technology Hot Temperature Materials science Models, Chemical Models, Molecular Motion Nanoscale materials and structures: fabrication and characterization Nanostructures - chemistry Nanostructures - ultrastructure Nanotubes Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure Particle Size Physics Thermodynamics |
Title | Nanoparticle Traffic on Helical Tracks: Thermophoretic Mass Transport through Carbon Nanotubes |
URI | http://dx.doi.org/10.1021/nl060982r https://www.ncbi.nlm.nih.gov/pubmed/16968000 https://www.proquest.com/docview/68863676 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsNADLUKXECIfSlLGQEHLi1plpkJN1RACKlcoFJv0WwREpBWSXrhxJXf5EvwNOkmtmtkR5qxnWdnxs8Apx6zOCJZPdTKqfvMszGntb0JYJSkMaPKNie37-ltx7_rBt0KnPxygu82z5MXhzohd9M5WHApZ7bCumw9TJh1veEYVoxcrINC7o_og6ZVLfSobAZ6lvsiw12Ii_EVv-eXQ5y5WYWrUbdOcb3kuTHIZUO9fSdv_GsJa7BS5pnksnCMdaiYZAOWptgHN0HglxVL5kKCIGhZNgnSSwhCkTWdfaSes4vP9w-C3pS-9vpPRdMjaWPKTca86KQc9kNaIpWob9-bD6TJtqBzc_3Yuq2XExfqwvO9HOHKoXEgDBZJUhvEbhrqACsopZgbU62YCjR38FmgQs0CrST34libJuWaCSx2t2E-6SVmF4inmWsCymighG8cKWKfCUeHnBqO6qYKNTRJVEZMFg0Pw91mNN6rKpyNrBWpkq_cjs14-Un0eCzaL0g6fhKqzZh8Islt_zALq3A08oEIY8wenIjE9AZZRDmnltmuCjuFa0x0LbcQOuHef6vZh8Xi5429nXYA83k6MIeYzuSyNnTnLxUA8HY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xOJQKQd-YQrKqeugl4Pixu-4NRY3SNuFSkLhZ-7KQoE4UO5eeuPI3-0s6YzsxVKnKdTW72seMvxnvzjcAH0NBOKJFL7HG70UiJJuzll4COKN5Jrih5OTJOR9dRt-u4quGJodyYXASBY5UVJf4LbtA_zS_9bmfyGC-CdvohAQUaJ0NfrQEu2FVjRUNGMOhREZLFqGHXQmBTPEIgXZnqsDNyOoqFv92Myu4Ge7XdYuqiVavTG5OFqU-Mb_-4nB82kpewF7jdbKzWk1ewobLX8HzB1yEr0HhdxYD6FqCIYQRtwSb5gyBiQ6SmsxN8fn33T1D3Zr_nM6u6xRINkEHnK1Y0llT-ocN1Fxjfxq3XGhXvIHL4ZeLwajX1F_oqTAKSwQvn2exchgyaesQyXliY4ynjBFBxq0RJrbSx7bYJFbE1mgZZpl1fS6tUBj6voWtfJq7A2ChFYGLueCxUZHztcoioXybSO4kdncedHCr0sZ-irS6Gg_66WqvPPi0PLTUNOzlVETjdp3oh5XorKbsWCfUeXTyraSkbGKReNBdqkKKFkfXKCp300WRcik58dx58K7WkLYvMQ2hLh7-bzVdeDa6mIzT8dfz7-9hp_6tQ-_WjmCrnC_cMTo6pe5UGv4HR3j41w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BkBAIFdrySKHJCvXQS1ontnfXvUWBqEBbkNpIvVn7spBaHMt2Lpy48jf5JZ2xnUerVPS6mlntY8Yz49n5BmDPF2RHtOhF1ni9QPikc9bSSwBnNE8EN1ScfHrGjyfB18vwsgkUqRYGF1HgTEWVxCetzmzSIAz0D9Nrj3uRHOSP4Qml6yjYGo7OlyC7ftWRFZUYQ6JIBnMkoVVWskKmuGWFXmSqwANJ6k4W97ualckZv4Tvi8VWL02uDmalPjC_7-A4Pnw3r2Cj8T7ZsBaXTXjk0i14voJJuA0Kv7cYSNcUDE0ZYUywacrQQNGF0pC5Ko7-_fnLUMbyX9PsZ10KyU7REWcLtHTWtABiI5Vr5Kd5y5l2xWuYjD9fjI57TR-GnvIDv0Qj5vEkVA5DJ20dWnQe2RDjKmPEIOHWCBNa6eFYaCIrQmu09JPEuj6XVigMgd9AK52m7h0w34qBC7ngoVGB87RKAqE8G0nuJLK7NnTwuOJGj4q4SpEP-vHirNqwP7-42DQo5tRM43od6ccFaVZDd6wj6ty6_SWlpKpiEbWhOxeHGDWP0ikqddNZEXMpOeHdteFtLSVLXkIcQnnc-d9uuvD0x6dxfPLl7Nt7eFb_3aHnax-gVeYzt4v-Tqk7lZDfAFaI-1o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticle+Traffic+on+Helical+Tracks%3A%E2%80%89+Thermophoretic+Mass+Transport+through+Carbon+Nanotubes&rft.jtitle=Nano+letters&rft.au=Schoen%2C+Philipp+A.+E.&rft.au=Walther%2C+Jens+H.&rft.au=Arcidiacono%2C+Salvatore&rft.au=Poulikakos%2C+Dimos&rft.date=2006-09-01&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=6&rft.issue=9&rft.spage=1910&rft.epage=1917&rft_id=info:doi/10.1021%2Fnl060982r&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nl060982r |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |