Nanoparticle Traffic on Helical Tracks:  Thermophoretic Mass Transport through Carbon Nanotubes

Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move “on tracks” in a pred...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 6; no. 9; pp. 1910 - 1917
Main Authors Schoen, Philipp A. E, Walther, Jens H, Arcidiacono, Salvatore, Poulikakos, Dimos, Koumoutsakos, Petros
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.09.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move “on tracks” in a predictable fashion as they follow unique helical orbits depending on the geometry of the carbon nanotubes. These findings markedly advance our knowledge of mass transport mechanisms relevant to nanoscale applications.
AbstractList Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move "on tracks" in a predictable fashion as they follow unique helical orbits depending on the geometry of the carbon nanotubes. These findings markedly advance our knowledge of mass transport mechanisms relevant to nanoscale applications.
Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move "on tracks" in a predictable fashion as they follow unique helical orbits depending on the geometry of the carbon nanotubes. These findings markedly advance our knowledge of mass transport mechanisms relevant to nanoscale applications.Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move "on tracks" in a predictable fashion as they follow unique helical orbits depending on the geometry of the carbon nanotubes. These findings markedly advance our knowledge of mass transport mechanisms relevant to nanoscale applications.
Author Arcidiacono, Salvatore
Schoen, Philipp A. E
Koumoutsakos, Petros
Poulikakos, Dimos
Walther, Jens H
Author_xml – sequence: 1
  givenname: Philipp A. E
  surname: Schoen
  fullname: Schoen, Philipp A. E
– sequence: 2
  givenname: Jens H
  surname: Walther
  fullname: Walther, Jens H
– sequence: 3
  givenname: Salvatore
  surname: Arcidiacono
  fullname: Arcidiacono, Salvatore
– sequence: 4
  givenname: Dimos
  surname: Poulikakos
  fullname: Poulikakos, Dimos
– sequence: 5
  givenname: Petros
  surname: Koumoutsakos
  fullname: Koumoutsakos, Petros
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18120979$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16968000$$D View this record in MEDLINE/PubMed
BookMark eNptkc1OGzEUhS0EakjaBS-AZgNSFyH2TMZjs0NR21Si7SZdW3f8QwwTe7A9C3Zs-5o8CY6SplKVle3r7xzde-4YnTrvNEIXBN8QXJKZ6zDFnJXhBJ2TusJTynl5eriz-QiNY3zEGPOqxh_QiFBOWX6eI_gJzvcQkpWdLlYBjLGy8K5Y6s5K6LYl-RRv317_FKu1Dhvfr33QGS9-QIzbbxd7H1KR1sEPD-tiAaHN-q1vGlodP6IzA13Un_bnBP3--mW1WE7vf337vri7n0I1r9I0t0NNDZqQeat0SSnlquY1lbIpDVWykbViONdqyVVTK9myyhilCWWqgYpVE3S98-2Dfx50TGJjo9RdB077IQrKGK1oQzN4uQeHdqOV6IPdQHgRf0PJwNUegJgjMHlEaeM_jpES84ZnbrbjZPAxBm2EtAmS9S4FsJ0gWGzXIw7ryYrP_ykOpkfYfRcgo3j0Q3A5vSPcO7i2nRE
CitedBy_id crossref_primary_10_1007_s11708_010_0111_0
crossref_primary_10_1021_jacs_4c05902
crossref_primary_10_1088_1361_6528_aa6290
crossref_primary_10_1016_j_apmt_2019_100520
crossref_primary_10_1039_C9NR10108J
crossref_primary_10_1039_D2RA01846B
crossref_primary_10_1080_08927022_2012_659181
crossref_primary_10_1021_acsanm_3c00816
crossref_primary_10_1039_C8CP05521A
crossref_primary_10_3389_fphy_2022_823284
crossref_primary_10_1063_5_0106866
crossref_primary_10_1103_PhysRevApplied_22_054066
crossref_primary_10_1039_C7CP05749K
crossref_primary_10_1021_acs_nanolett_5b04014
crossref_primary_10_1088_0957_4484_25_50_505701
crossref_primary_10_1109_TMECH_2011_2165078
crossref_primary_10_1021_acs_jpcc_9b09197
crossref_primary_10_1088_0957_4484_20_49_495503
crossref_primary_10_1021_acs_jpclett_8b00703
crossref_primary_10_1039_C7NR07226K
crossref_primary_10_1021_acs_jpcc_5b02235
crossref_primary_10_18654_1000_0569_2020_01_11
crossref_primary_10_1088_1361_6528_aab3a3
crossref_primary_10_1088_0957_4484_27_15_155501
crossref_primary_10_1021_acs_nanolett_6b02815
crossref_primary_10_1088_0957_4484_22_48_485702
crossref_primary_10_1021_acsnano_7b04177
crossref_primary_10_1103_PhysRevLett_125_176802
crossref_primary_10_1016_j_jmps_2022_104871
crossref_primary_10_1063_1_3281642
crossref_primary_10_1021_acs_jpcc_9b04131
crossref_primary_10_1021_cr200244h
crossref_primary_10_1063_1_3276546
crossref_primary_10_1115_1_4052152
crossref_primary_10_1016_j_apm_2020_12_037
crossref_primary_10_1016_j_commatsci_2024_113620
crossref_primary_10_1021_ct400963d
crossref_primary_10_1039_D2CP04093J
crossref_primary_10_1103_PhysRevB_78_233405
crossref_primary_10_1088_0957_4484_24_50_505504
crossref_primary_10_1016_j_jmps_2012_04_013
crossref_primary_10_1021_jp311028e
crossref_primary_10_1155_2019_8263843
crossref_primary_10_1016_j_jsv_2009_12_017
crossref_primary_10_1021_jp900862t
crossref_primary_10_1080_08927022_2020_1838511
crossref_primary_10_1039_D0CP00048E
crossref_primary_10_1115_1_4005640
crossref_primary_10_1007_s00894_012_1403_6
crossref_primary_10_1016_j_commatsci_2021_110305
crossref_primary_10_1063_1_4793533
crossref_primary_10_1007_s00707_015_1367_6
crossref_primary_10_1115_1_4031085
crossref_primary_10_1016_j_commatsci_2018_08_014
crossref_primary_10_1016_j_cplett_2010_07_081
crossref_primary_10_1186_1556_276X_7_154
crossref_primary_10_1073_pnas_2220500120
crossref_primary_10_1007_s00707_010_0362_1
crossref_primary_10_1016_j_ijthermalsci_2015_08_004
crossref_primary_10_1021_jz201614m
crossref_primary_10_1134_S106378342104020X
crossref_primary_10_1063_1_5046059
crossref_primary_10_1139_cjp_2017_0139
crossref_primary_10_1103_PhysRevLett_114_015504
crossref_primary_10_1021_acsanm_3c03623
crossref_primary_10_1088_1674_1056_ad14ff
crossref_primary_10_1115_1_4043142
crossref_primary_10_1021_nl504236g
crossref_primary_10_1088_0957_4484_20_5_055708
crossref_primary_10_1103_PhysRevE_83_042601
crossref_primary_10_1016_j_commatsci_2023_112725
crossref_primary_10_1021_ja403722t
crossref_primary_10_3390_molecules26175199
crossref_primary_10_1103_PhysRevB_100_035430
crossref_primary_10_1039_C7NR07971K
crossref_primary_10_1073_pnas_1708098114
crossref_primary_10_1115_1_4064269
crossref_primary_10_4028_p_wj60p1
crossref_primary_10_1021_acs_nanolett_4c02106
crossref_primary_10_1063_1_2748367
crossref_primary_10_1063_1_4922713
crossref_primary_10_1103_PhysRevB_108_115410
crossref_primary_10_1007_s40997_023_00676_4
crossref_primary_10_1021_acs_jpcc_9b10706
crossref_primary_10_1021_ja105712w
crossref_primary_10_1021_acs_jpcc_1c08146
crossref_primary_10_1016_j_physleta_2015_03_001
crossref_primary_10_1126_science_1155559
crossref_primary_10_1021_acs_jpcb_3c03132
Cites_doi 10.1103/PhysRevLett.82.3835
10.1017/S0022112080001905
10.1038/438044a
10.1002/9783527618040
10.1021/nl0503126
10.1016/j.cplett.2003.12.049
10.1016/0095-8522(62)90051-X
10.1103/PhysRevLett.94.209701
10.1038/416495a
10.1126/science.283.5402.661
10.1103/PhysRevLett.94.105502
10.1021/jp056911i
10.1080/00268970500108403
10.1063/1.2151173
10.1080/01418618808205184
10.1103/PhysRevLett.90.214501
10.1103/PhysRevLett.89.185901
10.1038/35102535
10.1038/361333a0
10.1126/science.1126298
10.1038/386162a0
10.1021/nl051915k
10.1002/smll.200400009
10.1126/science.1124594
10.1073/pnas.072089599
10.1021/jp011344u
10.1038/nature02496
10.1103/PhysRevB.68.035425
10.1016/S0009-2614(00)00971-4
10.1016/j.ssc.2003.12.033
ContentType Journal Article
Copyright Copyright © 2006 American Chemical Society
2007 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 American Chemical Society
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/nl060982r
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 1917
ExternalDocumentID 16968000
18120979
10_1021_nl060982r
d09960508
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
6P2
IQODW
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-a343t-8006f5ae114bde26669d5956cc72f6dc7c5d809d55c9d75dcb83ffde168d7a383
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Fri Jul 11 12:19:14 EDT 2025
Wed Feb 19 01:42:55 EST 2025
Mon Jul 21 09:15:56 EDT 2025
Tue Jul 01 00:42:20 EDT 2025
Thu Apr 24 23:03:00 EDT 2025
Thu Aug 27 13:42:05 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Nanoparticles
Gold
Inorganic compounds
Transition elements
Temperature gradients
Digital simulation
Molecular dynamics method
Theoretical study
Carbon nanotubes
Nanostructures
Diffusion
Nanostructured materials
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a343t-8006f5ae114bde26669d5956cc72f6dc7c5d809d55c9d75dcb83ffde168d7a383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16968000
PQID 68863676
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_68863676
pubmed_primary_16968000
pascalfrancis_primary_18120979
crossref_citationtrail_10_1021_nl060982r
crossref_primary_10_1021_nl060982r
acs_journals_10_1021_nl060982r
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-09-00
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-00
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2006
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kwon Y.-K. (nl060982rb00040/nl060982rb00040_1) 2004; 92
Walther J. H. (nl060982rb00026/nl060982rb00026_1) 2001; 105
Lee J. (nl060982rb00035/nl060982rb00035_1) 2005; 40
Regan B. C. (nl060982rb00005/nl060982rb00005_1) 2004; 428
Talbot L. (nl060982rb00038/nl060982rb00038_1) 1980; 101
Skoulidas A. I. (nl060982rb00008/nl060982rb00008_1) 2006; 124
Maxwell J. C. (nl060982rb00037/nl060982rb00037_1) 1879; 170
Schelling P. K. (nl060982rb00041/nl060982rb00041_1) 2003; 68
Chung S.-W. (nl060982rb00014/nl060982rb00014_1) 2005; 1
Berendsen H. J. C. (nl060982rb00029/nl060982rb00029_1) 1984; 81
Bhatia S. (nl060982rb00006/nl060982rb00006_1) 2005; 31
Lozovik Y. E. (nl060982rb00034/nl060982rb00034_1) 2002; 44
Gu Z. (nl060982rb00022/nl060982rb00022_1) 2004; 20
Lee L. (nl060982rb00021/nl060982rb00021_1) 2000; 9
Ercolessi F. (nl060982rb00027/nl060982rb00027_1) 1988; 58
Brock J. R. (nl060982rb00036/nl060982rb00036_1) 1962; 17
Skoulidas A. I. (nl060982rb00009/nl060982rb00009_1) 2002; 89
Lozovik Y. E. (nl060982rb00033/nl060982rb00033_1) 2000; 328
MacGillivary L. R. (nl060982rb00020/nl060982rb00020_1) 1997; 389
nl060982rb00032/nl060982rb00032_1
Luedtke W. D. (nl060982rb00028/nl060982rb00028_1) 1999; 82
Majumdar M. (nl060982rb00002/nl060982rb00002_1) 2005; 438
Vauthey S. (nl060982rb00016/nl060982rb00016_1) 2002; 99
Terfort A. (nl060982rb00015/nl060982rb00015_1) 1997; 386
Hwang H. J. (nl060982rb00025/nl060982rb00025_1) 2004; 129
Yoshida Y. (nl060982rb00042/nl060982rb00042_1) 2002; 19
Chen H. (nl060982rb00007/nl060982rb00007_1) 2006; 110
Ajayan P. M. (nl060982rb00024/nl060982rb00024_1) 1993; 361
Keblinski P. (nl060982rb00039/nl060982rb00039_1) 2005; 94
Raut V. P. (nl060982rb00023/nl060982rb00023_1) 2005; 21
Seo H. W. (nl060982rb00019/nl060982rb00019_1) 2005; 81
Zimmerli U. (nl060982rb00004/nl060982rb00004_1) 2005; 5
Sun L. (nl060982rb00011/nl060982rb00011_1) 2006; 312
Holt J. K. (nl060982rb00010/nl060982rb00010_1) 2006; 312
Wei B. Q. (nl060982rb00012/nl060982rb00012_1) 2002; 416
Choi Y. S. (nl060982rb00018/nl060982rb00018_1) 2001; 371
Supple S. (nl060982rb00003/nl060982rb00003_1) 2003; 90
Hummer G. (nl060982rb00001/nl060982rb00001_1) 2001; 414
Piner R. D. (nl060982rb00013/nl060982rb00013_1) 1999; 283
Belikov A. V. (nl060982rb00031/nl060982rb00031_1) 2004; 385
Shirai Y. (nl060982rb00017/nl060982rb00017_1) 2005; 5
Arcidiacono S. (nl060982rb00030/nl060982rb00030_1) 2005; 94
References_xml – volume: 82
  start-page: 3838
  year: 1999
  ident: nl060982rb00028/nl060982rb00028_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.3835
– volume: 101
  start-page: 758
  year: 1980
  ident: nl060982rb00038/nl060982rb00038_1
  publication-title: J. Fluid. Mech.
  doi: 10.1017/S0022112080001905
– volume: 438
  start-page: 44
  year: 2005
  ident: nl060982rb00002/nl060982rb00002_1
  publication-title: J. Nature
  doi: 10.1038/438044a
– ident: nl060982rb00032/nl060982rb00032_1
  doi: 10.1002/9783527618040
– volume: 5
  start-page: 1022
  year: 2005
  ident: nl060982rb00004/nl060982rb00004_1
  publication-title: Nano Lett.
  doi: 10.1021/nl0503126
– volume: 385
  start-page: 78
  year: 2004
  ident: nl060982rb00031/nl060982rb00031_1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2003.12.049
– volume: 40
  start-page: 2171
  year: 2005
  ident: nl060982rb00035/nl060982rb00035_1
  publication-title: J. Mater. Sci.
– volume: 92
  start-page: 1
  year: 2004
  ident: nl060982rb00040/nl060982rb00040_1
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 3690
  year: 1984
  ident: nl060982rb00029/nl060982rb00029_1
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 768
  year: 1962
  ident: nl060982rb00036/nl060982rb00036_1
  publication-title: J. Colloid Sci.
  doi: 10.1016/0095-8522(62)90051-X
– volume: 94
  start-page: 209701
  year: 2005
  ident: nl060982rb00039/nl060982rb00039_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.209701
– volume: 416
  start-page: 495
  year: 2002
  ident: nl060982rb00012/nl060982rb00012_1
  publication-title: Nature
  doi: 10.1038/416495a
– volume: 283
  start-page: 663
  year: 1999
  ident: nl060982rb00013/nl060982rb00013_1
  publication-title: Science
  doi: 10.1126/science.283.5402.661
– volume: 21
  start-page: 1639
  year: 2005
  ident: nl060982rb00023/nl060982rb00023_1
  publication-title: Langmuir
– volume: 81
  start-page: 89
  year: 2005
  ident: nl060982rb00019/nl060982rb00019_1
  publication-title: Microlelectron. Eng.
– volume: 19
  start-page: 46
  year: 2002
  ident: nl060982rb00042/nl060982rb00042_1
  publication-title: Rigaku J.
– volume: 94
  start-page: 105502
  year: 2005
  ident: nl060982rb00030/nl060982rb00030_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.105502
– volume: 110
  start-page: 1971
  year: 2006
  ident: nl060982rb00007/nl060982rb00007_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp056911i
– volume: 31
  start-page: 643
  year: 2005
  ident: nl060982rb00006/nl060982rb00006_1
  publication-title: Mol. Sim.
  doi: 10.1080/00268970500108403
– volume: 124
  start-page: 054708
  year: 2006
  ident: nl060982rb00008/nl060982rb00008_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2151173
– volume: 170
  start-page: 256
  year: 1879
  ident: nl060982rb00037/nl060982rb00037_1
  publication-title: Philos. Trans. R. Soc.
– volume: 58
  start-page: 226
  year: 1988
  ident: nl060982rb00027/nl060982rb00027_1
  publication-title: Philos. Mag. A
  doi: 10.1080/01418618808205184
– volume: 90
  start-page: 214501
  year: 2003
  ident: nl060982rb00003/nl060982rb00003_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.214501
– volume: 89
  start-page: 185901
  year: 2002
  ident: nl060982rb00009/nl060982rb00009_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.185901
– volume: 414
  start-page: 190
  year: 2001
  ident: nl060982rb00001/nl060982rb00001_1
  publication-title: Nature
  doi: 10.1038/35102535
– volume: 44
  start-page: 194
  year: 2002
  ident: nl060982rb00034/nl060982rb00034_1
  publication-title: Phys. Solid State
– volume: 371
  start-page: 410
  year: 2001
  ident: nl060982rb00018/nl060982rb00018_1
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 361
  start-page: 334
  year: 1993
  ident: nl060982rb00024/nl060982rb00024_1
  publication-title: Nature
  doi: 10.1038/361333a0
– volume: 312
  start-page: 1034
  year: 2006
  ident: nl060982rb00010/nl060982rb00010_1
  publication-title: Science
  doi: 10.1126/science.1126298
– volume: 386
  start-page: 164
  year: 1997
  ident: nl060982rb00015/nl060982rb00015_1
  publication-title: Nature
  doi: 10.1038/386162a0
– volume: 5
  start-page: 2330
  year: 2005
  ident: nl060982rb00017/nl060982rb00017_1
  publication-title: Nano Lett.
  doi: 10.1021/nl051915k
– volume: 1
  start-page: 69
  year: 2005
  ident: nl060982rb00014/nl060982rb00014_1
  publication-title: Small
  doi: 10.1002/smll.200400009
– volume: 312
  start-page: 1199
  year: 2006
  ident: nl060982rb00011/nl060982rb00011_1
  publication-title: Science
  doi: 10.1126/science.1124594
– volume: 99
  start-page: 5360
  year: 2002
  ident: nl060982rb00016/nl060982rb00016_1
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.072089599
– volume: 105
  start-page: 9987
  year: 2001
  ident: nl060982rb00026/nl060982rb00026_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp011344u
– volume: 428
  start-page: 927
  year: 2004
  ident: nl060982rb00005/nl060982rb00005_1
  publication-title: Nature
  doi: 10.1038/nature02496
– volume: 389
  start-page: 472
  year: 1997
  ident: nl060982rb00020/nl060982rb00020_1
  publication-title: Nature
– volume: 68
  start-page: 035425
  year: 2003
  ident: nl060982rb00041/nl060982rb00041_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.035425
– volume: 328
  start-page: 362
  year: 2000
  ident: nl060982rb00033/nl060982rb00033_1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00971-4
– volume: 9
  start-page: 180
  year: 2000
  ident: nl060982rb00021/nl060982rb00021_1
  publication-title: J. Microelectromech. Syst.
– volume: 20
  start-page: 11311
  year: 2004
  ident: nl060982rb00022/nl060982rb00022_1
  publication-title: Langmuir
– volume: 129
  start-page: 690
  year: 2004
  ident: nl060982rb00025/nl060982rb00025_1
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2003.12.033
SSID ssj0009350
Score 2.2199192
Snippet Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1910
SubjectTerms Computer Simulation
Cross-disciplinary physics: materials science; rheology
Diffusion
Exact sciences and technology
Hot Temperature
Materials science
Models, Chemical
Models, Molecular
Motion
Nanoscale materials and structures: fabrication and characterization
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotubes
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - ultrastructure
Particle Size
Physics
Thermodynamics
Title Nanoparticle Traffic on Helical Tracks:  Thermophoretic Mass Transport through Carbon Nanotubes
URI http://dx.doi.org/10.1021/nl060982r
https://www.ncbi.nlm.nih.gov/pubmed/16968000
https://www.proquest.com/docview/68863676
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsNADLUKXECIfSlLGQEHLi1plpkJN1RACKlcoFJv0WwREpBWSXrhxJXf5EvwNOkmtmtkR5qxnWdnxs8Apx6zOCJZPdTKqfvMszGntb0JYJSkMaPKNie37-ltx7_rBt0KnPxygu82z5MXhzohd9M5WHApZ7bCumw9TJh1veEYVoxcrINC7o_og6ZVLfSobAZ6lvsiw12Ii_EVv-eXQ5y5WYWrUbdOcb3kuTHIZUO9fSdv_GsJa7BS5pnksnCMdaiYZAOWptgHN0HglxVL5kKCIGhZNgnSSwhCkTWdfaSes4vP9w-C3pS-9vpPRdMjaWPKTca86KQc9kNaIpWob9-bD6TJtqBzc_3Yuq2XExfqwvO9HOHKoXEgDBZJUhvEbhrqACsopZgbU62YCjR38FmgQs0CrST34libJuWaCSx2t2E-6SVmF4inmWsCymighG8cKWKfCUeHnBqO6qYKNTRJVEZMFg0Pw91mNN6rKpyNrBWpkq_cjs14-Un0eCzaL0g6fhKqzZh8Islt_zALq3A08oEIY8wenIjE9AZZRDmnltmuCjuFa0x0LbcQOuHef6vZh8Xi5429nXYA83k6MIeYzuSyNnTnLxUA8HY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xOJQKQd-YQrKqeugl4Pixu-4NRY3SNuFSkLhZ-7KQoE4UO5eeuPI3-0s6YzsxVKnKdTW72seMvxnvzjcAH0NBOKJFL7HG70UiJJuzll4COKN5Jrih5OTJOR9dRt-u4quGJodyYXASBY5UVJf4LbtA_zS_9bmfyGC-CdvohAQUaJ0NfrQEu2FVjRUNGMOhREZLFqGHXQmBTPEIgXZnqsDNyOoqFv92Myu4Ge7XdYuqiVavTG5OFqU-Mb_-4nB82kpewF7jdbKzWk1ewobLX8HzB1yEr0HhdxYD6FqCIYQRtwSb5gyBiQ6SmsxN8fn33T1D3Zr_nM6u6xRINkEHnK1Y0llT-ocN1Fxjfxq3XGhXvIHL4ZeLwajX1F_oqTAKSwQvn2exchgyaesQyXliY4ynjBFBxq0RJrbSx7bYJFbE1mgZZpl1fS6tUBj6voWtfJq7A2ChFYGLueCxUZHztcoioXybSO4kdncedHCr0sZ-irS6Gg_66WqvPPi0PLTUNOzlVETjdp3oh5XorKbsWCfUeXTyraSkbGKReNBdqkKKFkfXKCp300WRcik58dx58K7WkLYvMQ2hLh7-bzVdeDa6mIzT8dfz7-9hp_6tQ-_WjmCrnC_cMTo6pe5UGv4HR3j41w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BkBAIFdrySKHJCvXQS1ontnfXvUWBqEBbkNpIvVn7spBaHMt2Lpy48jf5JZ2xnUerVPS6mlntY8Yz49n5BmDPF2RHtOhF1ni9QPikc9bSSwBnNE8EN1ScfHrGjyfB18vwsgkUqRYGF1HgTEWVxCetzmzSIAz0D9Nrj3uRHOSP4Qml6yjYGo7OlyC7ftWRFZUYQ6JIBnMkoVVWskKmuGWFXmSqwANJ6k4W97ualckZv4Tvi8VWL02uDmalPjC_7-A4Pnw3r2Cj8T7ZsBaXTXjk0i14voJJuA0Kv7cYSNcUDE0ZYUywacrQQNGF0pC5Ko7-_fnLUMbyX9PsZ10KyU7REWcLtHTWtABiI5Vr5Kd5y5l2xWuYjD9fjI57TR-GnvIDv0Qj5vEkVA5DJ20dWnQe2RDjKmPEIOHWCBNa6eFYaCIrQmu09JPEuj6XVigMgd9AK52m7h0w34qBC7ngoVGB87RKAqE8G0nuJLK7NnTwuOJGj4q4SpEP-vHirNqwP7-42DQo5tRM43od6ccFaVZDd6wj6ty6_SWlpKpiEbWhOxeHGDWP0ikqddNZEXMpOeHdteFtLSVLXkIcQnnc-d9uuvD0x6dxfPLl7Nt7eFb_3aHnax-gVeYzt4v-Tqk7lZDfAFaI-1o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticle+Traffic+on+Helical+Tracks%3A%E2%80%89+Thermophoretic+Mass+Transport+through+Carbon+Nanotubes&rft.jtitle=Nano+letters&rft.au=Schoen%2C+Philipp+A.+E.&rft.au=Walther%2C+Jens+H.&rft.au=Arcidiacono%2C+Salvatore&rft.au=Poulikakos%2C+Dimos&rft.date=2006-09-01&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=6&rft.issue=9&rft.spage=1910&rft.epage=1917&rft_id=info:doi/10.1021%2Fnl060982r&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nl060982r
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon